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ABSTRACT 

This study provides a comprehensive evaluation of the Breusch-Pagan test's performance in detecting 

heteroscedasticity across various structures and levels, addressing a significant gap in existing literature. 

Through Monte Carlo simulations, we investigate the test's power, Type II errors (σ = 0), and Type I errors (

σ ≠ 0) in confirming homoscedasticity assumptions at different sample sizes (100, 250, and 500). Our 

objectives include assessing the test's ability to detect heteroscedasticity at various levels and structures, 

examining the impact of sample size on its performance, comparing its performance across different structures, 

and identifying its limitations and potential biases. Our findings reveal that the Breusch-Pagan test's 

performance varies across different heteroscedasticity structures and levels, with poor detection of low-level 

heteroscedasticity but improved performance at higher levels, particularly for exponential heteroscedasticity 

structures (EHS). While increased sample size enhances the test's performance, it remains inadequate for linear 

heteroscedasticity structures (LHS) and square root heteroscedasticity structures (SQRTHS). Based on our 

results, we recommend cautious use of the Breusch-Pagan test, especially when dealing with low-level 

heteroscedasticity or specific structures like LHS and SQRTHS. We suggest using the test with moderate to 

high sample sizes for improved performance, particularly for EHS and quadratic heteroscedasticity structures 

(QHS). For researchers with limited sample sizes or dealing with LHS and SQRTHS, alternative tests for 

heteroscedasticity may be considered. Finally, we emphasize the importance of assessing the underlying 

structure of heteroscedasticity in the dataset to choose the most suitable test and interpretation.  

 

Keywords: Breusch-Pagan test, Heteroscedasticity, Monte Carlo simulations, Statistical inference,  

Econometrics, Regression analysis 

 

INTRODUCTION 

Every statistical procedure has some assumptions that must be 

at least approximately true before the procedure can thereafter 

produce reliable and accurate results (Ogunleye, Olaleye, and 

Solomon, 2014). 

Researchers often adopt statistical procedure to their data 

without validating the assumptions of the procedure they 

chose to adopt. If one or more of the assumptions of a given 

statistical procedure are violated, it is likely to arrive at 

misleading results by that procedure (White, 1980). 

In many real-life data and applications, variances of the errors 

vary from one observation to the other which is often regarded 

as heteroscedasticity. Since homoscedasticity is often 

unrealistic assumption, researchers have worked tirelessly to 

show the effect of heteroscedasticity on modelling and 

statistical inference. Even though the OLS estimates retain 

unbiasedness in the presence of heteroscedasticity, its 

estimates become inefficient. (Weerahandi, 1995).  

Heteroscedasticity refers to the situation where the variance 

of the error term changes across different levels of the 

independent variable(s), leading to inefficient estimates and 

incorrect inference." (Muhammad et al., 2023) 

Direct opposite in meaning to “homogeneity assumption” is 

“heterogeneity of error variances”, which simply refers to a 

situation where the variances of the residuals are affected by 

at least one predictor variable leading to unequal magnitude 

in spread. Thus, heterogeneity problem may arise in most of 

the economic (econometric), experimental and agricultural 

modelling where specifically analysis of variance technique 

is applied. Hence, homogeneity of variance is a major 

assumption underlying the validity of many parametric tests. 

More importantly, it serves as the null hypothesis in 

substantive studies that focus on cross- or within-group 

dispersion. (Onifade et all, 2020). 

The assumption of homoscedasticity, also known as constant 

variance or homogeneity of variances, is a fundamental 

requirement in regression analysis. It posits that the error term 

has a consistent variance across all levels of the predictor 

variables, meaning that the variation of each error around its 

zero mean is independent of the predictor values. In essence, 

this assumption ensures that the variance of each error term 

remains the same regardless of the size or value of the 

explanatory variables. If this assumption is violated, the error 

term is considered heteroscedastic, leading to potentially 

inaccurate estimates, biased standard errors, and incorrect 

conclusions in regression analysis. Heteroscedasticity can 

significantly affect the accuracy of predictions and policy 

analysis in linear regression models." (Sultana et al., 2024) 

In line with existing literature, such as Wiedermann et al. 

(2017), who identified Breusch-Pagan, Bartlett's, Goldfeld-

Quandt, White, and Koenker-Bassett tests as commonly used 

tests for heteroscedasticity in generalized linear models, 

another study carefully selects the Breusch-Pagan test due to 

its robustness and sensitivity in detecting heteroscedasticity, 

particularly in the presence of non-normal errors and outliers 

(Harvey, 1976; Breusch & Pagan, 1979). Recent studies (e.g., 

Zeileis, 2004; Hayes & Cai, 2007) also recommend the 

Breusch-Pagan test for its reliability and accuracy in detecting 

heteroscedasticity. 

This study provides a comprehensive evaluation of the 

Breusch-Pagan test's performance in detecting 

heteroscedasticity across various structures and levels, filling 

a gap in existing literature, by investigating its Power, 

frequency of Type II errors (when σ = 0) and Type I errors (σ 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 8 No. 6, December, 2024, pp 233 - 239 

DOI: https://doi.org/10.33003/fjs-2024-0806-2826    

mailto:habeebullahakewugberu@gmail.com
https://doi.org/10.33003/fjs-2024-0806-


BREUSCH-PAGAN TEST: A COMP…      Akewugberu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 6, December, 2024, pp 233 –239 234 

≠ 0) in confirming homoscedasticity assumptions at different 

sample sizes (100, 250, and 500).  

 

MATERIALS AND METHODS 

Forms of heteroscedasticity  

This study explores four distinct heteroscedastic structures 

derived from additive and multiplicative models. However, 

for the purpose of this research, we assume a specific 

heteroscedastic structure where the variance of the error term 

is directly proportional to the mean of the response variable. 

The two general forms of heteroscedasticity are:  

1. Var(e,e) =𝜎2𝑒𝐸(𝑦𝑖);  Exponential form.  

2. Var(e,e) = 𝜎2𝐸(𝑦𝑖)
𝑔; g > 0. Linear form.  

However, from the two above, we considered four 

heteroscedastic structures as follows:  

1. Exponential Form.  

2. Linear Form.  

3. Square-rooted Form, when g = 0.5.  

4. Quadratic Form, when g = 2.  

for confirming homoscedasticity assumption using Breusch-

Pagan test when different heteroscedasticity levels  are 

injected into the generalized linear models at 100, 250 and 

500 sample sizes and standard deviation σ = 0, 0.1, 0.3, 0.5, 

0.7 and 0.9 levels of heteroscedasticity.  

 

Procedure for Monte Carlo Simulation Experiment:  

Through Monte Carlo experiments, this research assesses the 

performance of test statistics in identifying heteroscedasticity 

under finite sample conditions. The simulation consisted of 

1000 iterations, each with varying sample sizes of 100, 250 

and 500 data points.  

In each iteration, we generated two data sets, i.e 

Heteroscedastic data and Homoscedastic data. For the 

heteroscedastic data, We simulated x from a standard normal 

distribution x ∼N(0,1) and y as a linear function of x with 

added noise, where the variance of the noise increased with x. 

𝑦 = 𝛽1𝑥 + 𝜀     (1)  

However, for the homoscedastic data, We simulated x and y 

from same standard normal distribution, x,y ∼ N(0,1), with 

no relationship between x and the variance of y.  

The structure was then formulated thus:  

Linear Form: 

In this form, the variance of the dependent variable increases 

linearly as the independent variable increases. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝛽1𝑥)  (2)  

Equation (2) indicates that the error term ϵ follows a normal 

distribution with a mean of zero and a variance that changes 

linearly with the independent variable x, according to 

the parameter β₁. 

Exponential Form: 

In this form, the variance of the dependent variable increases 

exponentially as the independent variable increases. This 

means that small changes in the independent variable can lead 

to large changes in the variance of the dependent variable. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝑒𝑥𝑝( 𝛽1𝑥))  (3) 

Equation (3) indicates that the error term ϵ follows a normal 

distribution with a mean of zero and a variance that changes 

exponentially with the independent variable x, according to 

the parameter β₁. 

Quadratic Form: 

In this form, the variance of the dependent variable changes 

in a quadratic, or U-shaped, manner as the independent 

variable increases. This means that the variance may initially 

decrease, then increase, or vice versa, as the independent 

variable changes. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝛽1𝑥
2)  (4) 

Equation (4) indicates that the error term ϵ follows a normal 

distribution with a mean of zero and a variance that changes 

quadratically with the independent variable x, according to 

the parameter β₁. 

Square root Form: 

In this form, the variance of the dependent variable increases 

as the independent variable increases, but at a decreasing rate. 

This is because the square root function grows more slowly as 

the input value increases. 

𝜀 ∼ 𝑁(0, 𝜎2(𝑥)) = 𝑁(0, 𝛽1√𝑥)  (5)  

Equation (5) indicates that the error term ϵ follows a normal 

distribution with a mean of zero and a variance that changes 

with the square root of the independent variable x, according 

to the parameter β₁. 

Which were then set to produce the three metrics used for the 

analysis i.e, Power, Type I error and Type II error. 

 

Breusch-Pagan test 

Breusch-Pagan (BP) test (1979). Consider the linear 

regression model:   

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑘𝑥𝑘𝑖 + 𝑒𝑖  (6) 

Assumed the error variance (var ui) = 𝜎1
2 given as follows:   

𝜎1
2 = 𝑓(𝑎0 + 𝑎1𝑤1𝑖 +⋯+ 𝑎𝑚𝑤𝑚𝑖

  (7) 

that is, 𝜎1
2  is some function of the non-stochastic variables 

w’s; some or all of the x’s can serve as w’s. Specifically, 

compute the following auxiliary regression:    

𝜎1
2 = 𝑎0 + 𝑎1𝑤1𝑖 +⋯+ 𝑎𝑚𝑤𝑚𝑖

  (8) 

The null hypothesis of homoscedasticity is: 

𝐻0: 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑃 = 0 

while the alternative hypothesis is given that at least one of 

the α’s is not zero and that at least one of the w’s affects the 

variance of the residuals, which will be different for 

respective i’s. 

 

RESULTS AND DISCUSSION 

As stated earlier, Breusch-Pagan test for detecting 

heteroscedasticity is used in this study, with the use of three 

metrics, that is the number of time (frequency) the test 

commits type II error and type I error as the case may be and 

the power of the test such that the least frequency (type II 

error) when sigma = 0 shall be considered as the best among 

other structures and the highest frequency (type I error) when 

sigma ≠ 0 shall be considered as the best among others, 

likewise the structure with the highest power.  

The null hypothesis is such that homoscedasticity assumption 

is upheld. 

 

Table 1: Performance of Breusch-Pagan test when n=100 across different heteroscedasticity structures.  

Performance of the test when error follows LHS at 5% level of significance 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=100 Power 0.055 0.051 0.053 0.047 0.041 0.044 

Type I Error 0.102 0.048 0.054 0.044 0.049 0.052 

Type II Error 0.945 0.949 0.947 0.953 0.959 0.956 
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Performance of the test when error follows EHS at 5% level of significance 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=100 Power 0.427 0.409 0.420 0.470 0.467 0.441 

Type I Error 0.927 0.919 0.911 0.856 0.816 0.756 

Type II Error 0.573 0.591 0.580 0.530 0.533 0.559 

Performance of the test when error follows QHS at 5% level of significance 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=100 Power 0.119 0.129 0.129 0.148 0.146 0.137 

Type I Error 0.194 0.207 0.207 0.217 0.195 0.190 

Type II Error 0.881 0.871 0.871 0.852 0.854 0.863 

Performance of the test when error follows SQRTHS at 5% level of significance 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=100 Power 0.042 0.042 0.142 0.029 0.038 0.045 

Type I Error 0.048 0.048 0.204 0.044 0.049 0.052 

Type II Error 0.958 0.958 0.858 0.971 0.962 0.955 

 

 
Figure 1: Performance of Breusch-Pagan test  

 
Figure 2: Performance of Breusch-Pagan test  

 

 
Figure 3: Performance of Breusch-Pagan test  

 
Figure 4: Performance of Breusch-Pagan test  
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The above Figures shows the performance of Breusch-Pagan test when n=100 across different heteroscedasticity structures.  

 

Table 2: Performance of Breusch-Pagan test when n=250 across different heteroscedasticity structures.  

Performance of the test when error follows LHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=250 Power 0.045 0.043 0.047 0.034 0.059 0.059 

Type I Error 0.067 0.051 0.055 0.041 0.057 0.057 

Type II Error 0.955 0.957 0.953 0.966 0.941 0.941 

Performance of the test when error follows EHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=250 Power 0.751 0.773 0.776 0.802 0.791 0.776 

Type I Error 1.000 1.000 1.000 0.999 0.994 0.988 

Type II Error 0.227 0.227 0.224 0.198 0.209 0.224 

Performance of the test when error follows QHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=250 Power 0.158 0.180 0.195 0.196 0.198 0.159 

Type I Error 0.221 0.225 0.246 0.225 0.243 0.228 

Type II Error 0.842 0.820 0.805 0.804 0.802 0.841 

Performance of the test when error follows SQRTHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=250 Power 0.039 0.042 0.042 0.046 0.041 0.037 

Type I Error 0.118 0.092 0.092 0.047 0.051 0.041 

Type II Error 0.961 0.958 0.958 0.954 0.959 0.963 

 

 
Figure 5: Performance of Breusch-Pagan test  

 
Figure 6: Performance of Breusch-Pagan test  
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Figure 7: Performance of Breusch-Pagan test  

 
Figure 8: Performance of Breusch-Pagan test  

 

Figures 5,6,7 and 8 above shows the performance of Breusch-Pagan test when n=250 across different heteroscedasticity 

structures. 

 

Table 3: Performance of Breusch-Pagan test when n=500 across different heteroscedasticity structures.  

Performance of the test when error follows LHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=500 Power 0.041 0.046 0.056 0.045 0.053 0.051 

Type I Error 0.062 0.062 0.056 0.046 0.056 0.046 

Type II Error 0.959 0.954 0.944 0.955 0.947 0.949 

Performance of the test when error follows EHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=500 Power 0.943 0.948 0.952 0.950 0.961 0.951 

Type I Error 1.000 1.000 1.000 1.000 1.000 1.000 

Type II Error 0.057 0.052 0.048 0.050 0.039 0.049 

Performance of the test when error follows QHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=500 Power 0.218 0.231 0.206 0.213 0.208 0.206 

Type I Error 0.261 0.262 0.298 0.276 0.283 0.264 

Type II Error 0.782 0.769 0.794 0.787 0.792 0.794 

Performance of the test when error follows SQRTHS at 5% level of significance. 

  Variations 

  σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 

N=500 Power 0.052 0.054 0.056 0.050 0.039 0.061 

Type I Error 0.167 0.129 0.072 0.043 0.060 0.056 

Type II Error 0.948 0.946 0.944 0.950 0.961 0.939 
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Figure 9: Performance of Breusch-Pagan test  

 
Figure 10: Performance of Breusch-Pagan test  

 

 
Figure 11: Performance of Breusch-Pagan test  

 
Figure 12: Performance of Breusch-Pagan test  

 

Figure 9,10,11 and 12 above shows the performance of 

Breusch-Pagan test when n=500 across different 

heteroscedasticity structures. 

Table 1 above shows the performance of Breusch-Pagan test 

across different heteroscedasticity structures and levels, it 

exhibits poor detection of non-existent heteroscedasticity (σ = 

0) and low power ranging from 42.7% - 4.2% alongside high 

Type II error rates of about 95%. As heteroscedasticity 

increases (σ = 0.1, 0.3), the test's power improves but Type I 

error rates rise, indicating increased sensitivity but also more 

false positives. At higher heteroscedasticity levels (σ = 0.5, 

0.7, 0.9), power increases while Type II error rates decrease, 

making the test more effective. However, performance differs 

across structures: LHS and SQRTHS show poor performance, 

QHS moderate performance, and EHS the best performance 

with high power and low Type II error rates at high 

heteroscedasticity levels, highlighting the test's variability in 

detecting heteroscedasticity across different scenarios. 

Table 2 shows that the performance of Breusch-Pagan test 

varies across different heteroscedasticity structures and 

levels, with a sample size of n=250. At no heteroscedasticity 

(σ = 0), the test performs poorly, with low power of barely 4% 

- 7.5% and high Type II error rates 0f 95%. As 

heteroscedasticity increases from low to moderate levels (σ = 

0.1, 0.3), there exist an improvement in the test's power, but 

Type I error rates also rise, indicating increased sensitivity in 

heteroscedasticity detection but also more false positives. At 

higher heteroscedasticity levels (σ = 0.5, 0.7, 0.9), the test 

becomes more effective, especially for EHS structures, 

showing high power 75% -80% and low Type II error rates of 

barely 20% - 25%. However, LHS and SQRTHS structures 

show poor performance, even at high heteroscedasticity 

levels. 

Table 3 also shows that the performance of Breusch-Pagan 

test varies across different heteroscedasticity structures and 

levels, with a sample size of n=500. At no heteroscedasticity 

(σ = 0), the test performs poorly, with low power of 4% - 5% 

and high Type II error rates of about 95%. As 

heteroscedasticity increases from low to moderate levels (σ = 

0.1, 0.3), power improves, but Type I error rates rise, 

indicating increased sensitivity in heteroscedasticity detection 

but also more false positives. At higher heteroscedasticity 

levels (σ = 0.5, 0.7, 0.9), power increases, and Type II error 

rates decrease, making the test more effective. The test 

performs best for EHS structures with optimum type I error 

rate detection, with high power 94% - 96% and low Type II 
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error rates 3.9%, but poorly for LHS and SQRTHS structures, 

even at high heteroscedasticity levels, while QHS structures 

show moderate performance with increasing power. 

 

CONCLUSION 

Obviously, the Breusch-Pagan test performance varies across 

different heteroscedasticity structures and levels adopted for 

this research. While it shows poor performance in detecting 

low-level heteroscedasticity, it however, becomes more 

effective and shows improved performance at higher levels, 

especially for certain structures like EHS. As the sample size 

increases, the test exhibit improved performance, but it still 

performs poorly for LHS and SQRTHS structures. 

 

RECOMMENDATIONS 

i. Breusch-Pagan test should be used with caution, 

researchers should be aware of its limitations, especially 

when dealing with low-level heteroscedasticity or specific 

structures like LHS and SQRTHS. 

ii. Researchers should use Breusch-pagan test with moderate 

to high sample sizes for improved performance, 

especially for EHS and QHS structures. 

iii. Researchers with low sample sizes or LHS and SQRTHS 

might consider alternative test for heteroscedasticity for 

improved performance. 

iv. Assess the underlying structure of heteroscedasticity in 

your dataset in other to choose the most suitable test and 

interpretation. 
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