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ABSTRACT 

Efficient solar irradiance forecasting is essential for optimizing solar energy systems and integrating renewable 

energy sources into power grids. This review aims to evaluate the effectiveness of various forecasting methods 

to inform energy management and grid integration strategies. It compares physical models, statistical 

approaches, machine learning techniques, and hybrid models, using specific criteria such as accuracy, 

computational efficiency, and data requirements. Physical models like Numerical Weather Prediction (NWP) 

provide detailed atmospheric simulations but are computationally intensive. Statistical models, such as 

ARIMA, are simpler yet struggle with non-linear data. Machine learning methods, particularly Artificial 

Neural Networks (ANNs) and Long Short-Term Memory (LSTM) networks, effectively capture complex data 

relationships but require substantial datasets and computing power. Hybrid models, which combine physical 

and machine learning approaches, achieve high accuracy and are suitable for real-time applications despite 

increased computational costs. One of the key findings indicates that hybrid models offer high accuracy but 

demand significant computational resources and offer the best balance between accuracy and computational 

efficiency. However, challenges such as data quality, geographic and temporal variability, and model 

complexity persist. Emerging technologies like artificial intelligence, big data, and quantum computing present 

promising solutions for enhanced irradiance forecasting. The review highlighted the models’ limitations and 

strengths to facilitate informed decision making and concluded with recommendation of the adoption of hybrid 

models, investment in data acquisition and sharing technologies, balancing model complexity with practicality 

as steps towards improved irradiance forecasting for grid integration and stability to ensure sustainable yet 

cost-effective energy solutions.  
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INTRODUCTION 

The world is transitioning towards more sustainable energy 

systems, solar energy stands out as one of the most abundant 

and renewable sources of power that is capable of playing a 

vital role in the decarbonization of energy systems and 

contributes significantly to efforts aimed at combating climate 

change. Unlike fossil alternatives, solar energy is clean, 

sustainable, and available in almost all regions globally. The 

increasing deployment of solar PV is expected to provide 

around 32% of the world's total electricity demand by 2050, 

necessitating an installed capacity of approximately 14 

terawatts peak (TWp) and annual installations of 630 GW 

each year by that time (Lennon et al., 2022), helping to reduce 

greenhouse gas emissions and enhance energy security 

(Sobrina et al., 2018). However, integrating solar power into 

existing power grids poses challenges due to its intermittent 

nature (Zha and Lu, 2014; Avwioroko et al., 2024). Solar 

irradiance, which refers to the power of solar radiation 

received per unit area, fluctuates based on weather conditions, 

time of day, and geographic location. This variability affects 

the stability and efficiency of solar energy systems. The need 

to ensure that electricity generation matches demand requires 

precise control and prediction of solar energy availability. 

Therefore, accurate solar irradiance forecasting is essential for 

optimizing the performance of solar PV systems, reducing 

operational costs, and maintaining the reliability of power 

grids (Sweeney et al., 2019). 

 

The Need for Accurate Solar Irradiance Forecasting 

Forecasting solar irradiance is a critical component of 

managing solar energy systems. Accurate predictions allow 

grid operators to plan energy dispatch and ensure a stable 

supply of electricity, even when solar energy is not 

immediately available. This is particularly important in 

regions where solar power constitutes a significant portion of 

the energy mix, as accurate forecasting helps balance supply 

and demand, reducing the need for costly backup power from 

fossil fuels (Zwane et al., 2022). Furthermore, precise 

irradiance forecasts enable solar power systems to integrate 

more smoothly with smart grids, facilitating effective energy 

storage, improving power quality, and enhancing overall grid 

stability (Wang et al, 2020). 

The benefits of solar irradiance forecasting extend beyond 

grid management. For energy market participants, accurate 

forecasting allows for better decision-making in energy 

trading and risk management. As described by Sweeney et al. 

(2019), the importance of forecast accuracy has increased 

with the rise of renewable energy sources like solar and wind, 

making forecasting a vital tool for both energy producers and 

consumers (Sweeney et.al., 2019). With the growing need for 

renewable energy and the variability of solar power, the 

development of efficient forecasting methods is essential for 

the successful integration of solar energy into the power grid. 

 

The Paper’s Structure 

This review paper is structured to provide an evaluation of the 

most efficient and recent methods for forecasting solar 

irradiance. The paper is organized as follows: Section 2 

covers the basics of solar irradiance, including its significance 

to solar energy systems and the factors influencing its 

variability, such as geographic location, atmospheric 

conditions, and seasonal changes. Section 3 examines various 

forecasting models, ranging from physical models like 

Numerical Weather Prediction (NWP) to statistical models, 
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machine learning techniques, and hybrid approaches that 

combine both physical and data-driven models. 

In Section 4, the performance of different forecasting methods 

is compared, focusing on accuracy, computational efficiency, 

and data requirements. The strengths and weaknesses of each 

method will be discussed, as well as the trade-offs between 

model complexity and practicality. Section 5 highlights the 

challenges and limitations associated with solar irradiance 

forecasting, such as uncertainty in weather predictions, data 

quality issues, and the complexities of model development. In 

Section 6, the paper tries to identify emerging techniques and 

research directions aimed at improving solar forecasting 

accuracy. Finally, Section 7 summarizes the key findings and 

provides recommendations for researchers and practitioners, 

emphasizing the growing importance of accurate solar 

irradiance forecasting for optimizing solar energy systems 

and ensuring grid stability. 

 

Aim of the Review 

The primary goal of this review is to highlight the efficient 

methods for forecasting solar irradiance, with a particular 

focus on accuracy, computational efficiency, and practical 

applicability. By examining various forecasting techniques, 

from traditional physical models to advanced machine 

learning approaches, this paper aims to provide a guide to 

selecting the appropriate methods for different solar energy 

applications. This review, in addition, will explore how 

emerging technologies, such as the Internet of Things (IoT), 

big data, and cloud-based systems, can revolutionize the field 

of solar forecasting. These advancements have the potential 

to significantly improve the accuracy of solar irradiance 

forecasts and enhance the reliability of solar energy systems 

(Wang et al., 2020). Ultimately, this review aims to provide 

valuable insights for researchers, engineers, and decision-

makers involved in the development and implementation of 

solar energy technologies.  

 

Solar Irradiance Basics 

The total solar irradiance (TSI) refers to the sum of the solar 

electromagnetic radiation energy of all wavebands reaching 

the top of the earth's atmosphere per unit area in unit time at 

the average distance between the sun and the earth (Biktash, 

2017).  Solar irradiance is defined as the power per unit area 

produced by the Sun in the form of electromagnetic radiation. 

It is a critical parameter in solar energy systems because it 

determines the amount of solar energy that can be converted 

into electricity by photovoltaic (PV) panels. Measured in 

watts per square meter (W/m²), solar irradiance fluctuates 

depending on several factors, including geographic location, 

atmospheric conditions, and time of day (Sobrina et al., 

2018). Understanding solar irradiance is essential for 

optimizing the performance of solar power systems, as it 

directly influences energy output. Zwane et al., (2022) 

indicated that Systems designed for solar energy production, 

such as PV panels and concentrated solar power plants, rely 

on accurate irradiance measurements to estimate energy 

potential and manage energy supply. 

Solar irradiance also plays a crucial role in the economic 

feasibility of solar energy projects. By predicting the amount 

of sunlight that will reach a specific area, energy planners can 

determine the most suitable locations for solar farms and 

optimize their design. For instance, according to Heinemann 

et al., (2006), high irradiance levels make certain regions, 

such as deserts and equatorial areas, ideal for large-scale solar 

energy generation. Moreover, accurate irradiance data helps 

in planning energy storage systems, ensuring that surplus 

energy generated during sunny periods can be stored for later 

use, thereby improving grid stability (Radovan et al., 2021; 

Sobrina et al., 2022) 

 

Solar Irradiance and Photovoltaic Systems 

Photovoltaic systems rely on solar irradiance as the key input 

that determines the amount of electricity generated by PV 

panels. When sunlight strikes a PV panel, the energy from the 

irradiance is converted into electrical energy through the 

photovoltaic effect. The efficiency of this process is 

influenced by the intensity of the solar irradiance (Lei et al., 

2022)., the angle of incidence (Lu, 2023), and the temperature 

of the PV cells (Darian and Ghorreshi, 2020). For optimal 

performance, PV systems are designed to maximize their 

exposure to sunlight, often by adjusting the tilt and orientation 

of the panels to capture the most irradiance throughout the day 

and across seasons (Zwane et al., 2022). 

Solar irradiance forecasting is vital for predicting the power 

output of PV systems. By knowing the expected levels of 

irradiance, energy providers can plan energy dispatch, 

optimize the use of energy storage systems, and ensure that 

supply meets demand. This is particularly important in 

regions where solar energy forms a significant portion of the 

energy mix, as fluctuations in irradiance can lead to instability 

in the grid if not properly managed (Yang et al., 2018). 

Furthermore, understanding irradiance patterns helps energy 

developers in designing PV systems that can operate 

efficiently even under varying weather conditions. 

 

Factors Affecting Solar Irradiance 

Several factors influence solar irradiance, affecting the 

amount of solar energy available for power generation. These 

factors include: 

i. Geographic Location: Solar irradiance varies 

significantly depending on a location’s latitude and 

altitude. Regions near the equator receive more direct 

sunlight year-round compared to regions at higher 

latitudes, where the Sun’s angle is lower, and irradiance 

levels are generally weaker (Zhang et al., 2019) 

ii. Time of Year: The Earth's axial tilt causes seasonal 

variations in solar irradiance. During summer, regions in 

the northern and southern hemispheres experience higher 

irradiance as they tilt closer to the Sun, while during 

winter, the irradiance levels decrease as the tilt moves 

away from the Sun (Melhem and Shaker, 2023; 

Heinemann et al., 2006; Yang et al., 2018). 

iii. Weather Conditions: Cloud cover, humidity, and 

atmospheric particles, such as dust and aerosols, can 

scatter and absorb sunlight, reducing the amount of 

irradiance that reaches the Earth's surface. These weather 

patterns are highly variable and are one of the main 

challenges in predicting solar irradiance with accuracy 

(Govender and Sivakumar, 2019). 

iv. Atmospheric Influences: The thickness of the atmosphere 

between the Sun and the Earth's surface affect solar 

irradiance. In regions with higher altitudes, the 

atmosphere is thinner, resulting in less scattering and 

absorption of sunlight. Conversely, in regions closer to 

sea level, the atmosphere is denser, leading to more 

scattering and reduced irradiance (Lunche et al., 2016). 

v. Albedo Effect: The albedo effect refers to the reflection of 

solar radiation from the Earth's surface. Surfaces like 

snow, water, and sand have different reflectivity levels, 

which can influence the amount of irradiance that is 

absorbed by solar panels. High-reflectivity surfaces, such 

as snow, can increase the overall irradiance received by 

solar panels in certain conditions (Nguyen et al., 2017; 

Sobrina et al., 2018). 
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Figure 1 illustrates the flow of solar radiation through the atmosphere, highlighting how clouds and aerosols affect irradiance 

levels. 

 
Figure 1: The flow of solar radiation through the atmosphere (Ibrahim et al., 2012) 

 

Solar Irradiance Forecasting Methods 

Forecasting solar irradiance is crucial for enhancing solar 

energy production, particularly in relation to grid integration 

and energy demand management. Over the years, numerous 

methods have been developed, each presenting varying 

degrees of accuracy, computational efficiency, and data 

prerequisites. These methods can be generally classified into 

four categories: physical models, statistical models, machine 

learning-based models, and hybrid models. Each category 

possesses distinct benefits and drawbacks, which will be 

examined in this section. 

 

Physical Models 

Physical models rely on the laws of physics to predict solar 

irradiance by simulating atmospheric conditions and solar 

radiation processes. These models include Numerical 

Weather Prediction (NWP) models and radiative transfer 

models. 

 

Numerical Weather Prediction (NWP) Models 

NWP models are among the most widely used physical 

methods for solar irradiance forecasting. These models use 

atmospheric data, such as temperature, wind speed, humidity, 

and cloud cover, to simulate weather conditions and predict 

solar irradiance (Ibrahim et. al., 2022. NWP models typically 

operate over various time scales, from hours to several days, 

making them suitable for short-term and medium-term 

forecasting (Du et al., 2018; Trapero et al., 2015; Hashimoto 

and Yoshimoto, 2023) 

The basic equation governing NWP models is derived from 

the laws of fluid dynamics and thermodynamics, specifically 

through the application of partial differential equations 

(PDEs). These equations describe the motion and 

thermodynamic processes of the atmosphere, allowing for the 

simulation of weather phenomena. For instance, NWP models 

utilize non-linear differential equations that encapsulate the 

dynamics of atmospheric flow, which are essential for 

accurate forecasting (Sutikno, 2024; Trojáková et al., 2019; 

Zhang et al., 2014). 
∂𝑢

∂𝑡
+ (𝑢 ⋅ ∇)𝑢 = −

1

𝜌
∇𝑝 + 𝑔 + 𝐹  (1) 

Where: 

𝑢 is the velocity field, 𝑡 is time, 𝜌 is air density, 𝑝 is pressure,  

𝑔 is gravitational force, and 𝐹 represents frictional forces. 

NWP model face significant limitations, particularly 

regarding high computational costs and the necessity for 

extensive data inputs. The computational demands of NWP 

models arise from their complex algorithms and the need for 

high-resolution grids, which can restrict their operational 

feasibility and scalability (Rojas-Campos et al., 2022). 

Furthermore, the accuracy of NWP forecasts is often 

compromised by the quality and quantity of input data, as 

insufficient data can lead to systematic biases and errors in 

predictions (Tian, 2024; Seo and Cha, 2023). The assimilation 

of meteorological data is crucial for enhancing model 

accuracy, yet this process also contributes to the overall 

computational burden (Hastuti et al., 2023; Liu et al., 2013). 

Consequently, while NWP models are invaluable tools for 

weather forecasting, their operational efficiency is hindered 

by these inherent challenges (Pathak et al., 2022). 

 

Radiative Transfer Models 

Radiative transfer models focus on simulating the interaction 

of solar radiation with the Earth's atmosphere. These models 

account for the absorption, scattering, and reflection of solar 

radiation by atmospheric gases, clouds, and aerosols. The 

SMARTS (Simple Model of the Atmospheric Radiative 

Transfer of Sunshine) model is one example of a radiative 

transfer model used in solar irradiance forecasting 

(Bouchouicha and Bachari, 2023; Lunche et al., 2016). Santa 

Barbara DISORT Atmospheric Radiative Transfer 

(SBDART) model is another radiative transfer model, they 

are highly accurate, particularly for short-term forecasts 

where atmospheric conditions play a dominant role. Their 

development exemplifies the ongoing efforts to enhance the 

accuracy of radiative transfer simulations, thereby improving 

climate modeling and solar energy applications (Gupta, 2023; 

Jahani et al., 2021). However, they require precise 

atmospheric data, which may not always be available in real-

time (Heinemann et. al., 2006).  

 

Statistical Models 

Statistical models serve as essential tools for forecasting solar 

irradiance by leveraging historical data. Among these are time 

series models, and classical regression models which can be 

employed to establish relationships between solar irradiance 

and various predictor variables, such as meteorological 

factors. These were reviewed in this section.  
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Time Series Models (ARIMA, SARIMA) 

Autoregressive Integrated Moving Average (ARIMA) and 

Seasonal Autoregressive Integrated Moving Average 

(SARIMA) are popular time series models used in solar 

irradiance forecasting. ARIMA models are widely recognized 

for their effectiveness in predicting solar irradiance by 

leveraging historical data, assuming a linear relationship 

between past and future values. This linearity is crucial for 

accurate forecasting, as demonstrated in various studies 

(Alsharif et al., 2019; Santos et al., 2022; Chodakowska et al., 

2023). However, the inherent seasonality of solar radiation 

necessitates the use of Seasonal ARIMA (SARIMA) models, 

which incorporate seasonal patterns to enhance prediction 

accuracy. SARIMA models have been shown to outperform 

traditional ARIMA models in contexts where seasonal 

variability significantly influences solar irradiance, such as in 

solar energy forecasting (Belmahdi et al., 2023; Fara et al., 

2021). 

The general equation for ARIMA is: 

𝑌𝑡 = 𝛼 + ∑  
𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 + ∑  

𝑞
𝑗=1 𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡 (2) 

where: 

𝑌𝑡  is the predicted irradiance, 𝛼  is a constant, 𝜙𝑖 are the 

autoregressive parameters, 𝜃𝑗  are the moving average 

parameters, 𝜖𝑡 is the error term, and 𝑝  , 𝑞  are the 

autoregressive and moving average terms, respectively. 

Although ARIMA and SARIMA models are simple and 

computationally efficient, they may struggle to capture 

complex non-linear relationships in solar irradiance data 

(Akhter et al., 2016). 

 

Classical Regression Models 

Classical regression models, offer foundational techniques 

such as Linear and Logistic Regression, each suited to 

different types of data and research needs. Linear Regression 

is used for modeling linear relationships between variables, 

while Logistic Regression, employing the logit function, is 

ideal for binary outcome variables (Gupta et al., 2017; Zhang, 

2024). These basic models are essential for straightforward 

data analysis, while more specialized methods extend their 

utility in complex scenarios. The mathematical representation 

of a classical linear regression model is expressed in Equation 

3.  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖 + 𝜖𝑖 (3) 

where 𝑌𝑖  represents the dependent variable for observation i, 

𝑋1𝑖 , 𝑋2𝑖  ,…, 𝑋𝑘𝑖  are the independent variables, 𝛽0  is the 

intercept, 𝛽1, 𝛽2,..., 𝛽𝑘 are the coefficients, and 𝜖𝑖  is the error 

term accounting for unobserved factors. 

In high-dimensional settings, where the number of predictors 

exceeds the number of observations, regularization 

techniques such as Lasso, Ridge, and Elastic Net become 

crucial. The Least Absolute Shrinkage and Selection Operator 

(Lasso) applies an L1 penalty to induce sparsity in the model, 

effectively selecting a subset of predictors by shrinking some 

coefficients to zero (Emmert‐Streib and Dehmer, 2019; Xu, 

2024). Ridge regression, on the other hand, employs an L2 

penalty, which helps mitigate issues of multicollinearity 

without necessarily performing variable selection (Nur, 2023; 

Xin and Khalid, 2018). Elastic Net combines both Lasso and 

Ridge penalties, providing a balanced approach that can 

handle correlated predictors effectively (Kayanan and 

Wijekoon, 2020; Watagoda et al., 2021). 

Stepwise regression, including both forward and backward 

selection, is another method used to refine models by 

iteratively adding or removing predictors based on statistical 

criteria (Rady and Mahmoud, 2018; Ajeel and Hashem, 

2020). Generalized Linear Models (GLMs) extend traditional 

linear models to accommodate various types of response 

variables, such as Poisson and Binomial distributions, making 

them versatile for different research contexts (Rady and 

Mahmoud, 2018). Quantile Regression offers a robust 

alternative by estimating the conditional median or other 

quantiles of the response variable, which is particularly useful 

in cases of heteroscedasticity (Al-Sharoot, 2023; Tang et al., 

2020).  

Weighted Least Squares (WLS) is usually employed when 

dealing with heteroscedasticity, allowing for more accurate 

estimates by giving different weights to different observations 

based on their variance (Rady and Mahmoud, 2018; He et al., 

2019). Ordinary Least Squares (OLS) remains a widely used 

method due to its simplicity and interpretability, although it 

can be sensitive to outliers and multicollinearity (Rady and 

Mahmoud, 2018; Xin and Khalid, 2018). Partial Least 

Squares (PLS) and Principal Component Regression (PCR) 

are techniques that reduce dimensionality by transforming 

predictors into a smaller set of uncorrelated components, 

which can enhance model performance in high-dimensional 

data (Emmert‐Streib and Dehmer, 2019; Al-Sharoot, 2023).  

Classical regression models have been widely utilized to 

predict solar irradiance by correlating it with various 

meteorological factors such as temperature, humidity, and 

cloud cover. Some authors opined that these models are 

straightforward to implement and interpret, making them 

accessible for initial analyses of solar irradiance data (Soni et 

al., 2011; Hejase and Assi, 2012; Aggarwal and Saini, 2014). 

However, they often fall short in capturing the complex, non-

linear dynamics inherent in solar irradiance variations, 

primarily due to the stochastic nature of cloud cover and other 

atmospheric conditions (Cha et al., 2021). The choice of a 

regression model is contingent upon the specific 

characteristics of the data and the research questions at hand. 

Classical regression models provide a robust framework for 

understanding relationships between variables, while a more 

advanced techniques like Lasso, Ridge, and Elastic Net offer 

solutions for high-dimensional challenges, ensuring that 

researchers can derive meaningful insights from their 

analyses. 

 

Machine Learning-Based Models 

Machine learning models have become increasingly 

prominent in solar irradiance forecasting due to their 

capability to process extensive datasets and model complex 

non-linear relationships. Techniques such as Artificial Neural 

Networks (ANNs) and Support Vector Machines (SVMs) are 

widely utilized for this purpose, demonstrating significant 

efficacy in predicting solar irradiance components like global 

and diffuse radiation (Abdel-Nasser et al., 2021; Boubaker et 

al., 2021). Moreover, advanced methods, including 

Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks, have shown superior 

performance in capturing intricate patterns in solar data, 

thereby enhancing forecasting accuracy (Mukhtar et al., 2022; 

Alali et al., 2023). 

 

Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are effective for 

forecasting solar irradiance due to their ability to capture 

intricate, non-linear relationships between various inputs, 

such as meteorological data, and outputs like solar irradiance 

levels. The architecture of ANNs includes multiple layers of 

interconnected neurons, where each neuron computes a 

weighted sum of its inputs followed by a non-linear activation 

function, allowing for complex modeling capabilities 

(Belmahdi et al., 2023; Voyant et al., 2017). ANNs consist of 
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multiple layers of neurons, with each neuron performing a 

weighted sum of its inputs followed by a non-linear activation 

function. The general equation for an ANN is expressed in 

Equation 4: 

𝑓(𝑥) = 𝜎(∑  𝑛
𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏)   (4) 

where: 

𝑥𝑖  are the input variables, 𝑤𝑖  are the weights, 𝑏 is the bias 

term, and 𝜎 is the activation function (Ahmed et al., 2020).  

 
Figure 2: Basic artificial neural network structure (Zhu et al., 2015) 

 

Studies have shown that incorporating relevant 

meteorological parameters significantly enhances the 

accuracy of solar irradiance predictions, with specific factors 

such as the clearness index and relative air mass being 

identified as critical inputs (Belmahdi et al., 2023; Cha et al., 

2021). Moreover, the integration of satellite data and 

numerical weather prediction models with ANNs has been 

demonstrated to improve forecasting precision, particularly in 

dynamic environments where conditions change rapidly 

(Hashimoto and Yoshimoto, 2023; Du et al., 2018). This 

multifaceted approach underscores the potential of ANNs in 

optimizing solar energy management and enhancing the 

reliability of renewable energy systems (Santos et al., 2022). 

Application and implementation of ANN is however resource 

intensive. 

 

Support Vector Machines (SVM) 

Support Vector Machines (SVM) are a prominent machine 

learning technique utilized for solar irradiance forecasting. 

This method operates by identifying a hyperplane that 

effectively distinguishes between various data classes. In 

regression applications, SVM is adept at predicting 

continuous variables, such as solar irradiance levels, by 

minimizing prediction errors while maximizing the margin 

between the predicted and actual values (Cha et al., 2021; 

Voyant et al., 2017). SVM models demonstrate significant 

efficacy with small to medium-sized datasets; however, they 

may encounter challenges when applied to larger datasets due 

to computational complexity and overfitting risks (Voyant et 

al., 2017; Wang et al., 2016). Recent studies have highlighted 

the versatility of SVM in conjunction with other machine 

learning algorithms, enhancing the accuracy of solar 

irradiance predictions (Cha et al., 2021; Santos et al., 2022). 

 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) are pivotal in time-series 

forecasting, particularly for solar irradiance prediction. CNNs 

excel in feature extraction from spatial data, such as satellite 

imagery, enabling effective analysis of solar patterns 

(Belmahdi et al., 2023; Hashimoto and Yoshimoto, 2023). 

Conversely, RNNs, specifically Long Short-Term Memory 

(LSTM) networks, are adept at managing sequential data, 

making them suitable for capturing long-term dependencies 

in solar irradiance time series (Rojas-Campos et al., 2022). 

Research indicates that LSTMs can outperform traditional 

forecasting methods by leveraging their memory capabilities 

to enhance prediction accuracy (Santos et al., 2022; Du et al., 

2018). Figure 3 shows basic LSTM unit. 

 

 
Figure 3: Long-Short Term Memory (LSTM) unit (Smilevski, 2020) 
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The mathematical expression of the LSTM unit shown in 

Figure 3 is expressed by Equation 5 to Equation 10 

𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓),  (5) 

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖),  (6) 

�̃�𝑡 = tanh(𝑊𝑐̃ℎℎ𝑡−1 + 𝑊𝑐̃𝑥𝑥𝑡 + 𝑏𝑐̃),  (7) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡,   (8) 

𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜),  (9) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡).    (10) 

𝑐𝑡 denotes the cell state of the LSTM. 𝑊𝑖, 𝑊𝑐̃ and 𝑊𝑜 are the 

weights. Jozefowicz et. al., (2015) discovered that increasing 

the forget gate bias 𝑏𝑓 increases the performance of the LSTM 

unit. 

It is however germane to indicate that CNNs often struggle 

with capturing long-term temporal dependencies and require 

significant computational resources and data, limiting their 

practicality in certain scenarios. In RNNs, the opaque nature 

of the models makes it difficult to understand how and why 

they arrive at their predictions. This is particularly 

problematic in scenarios demanding high safety standards 

(Liu et. al., 2024). A prominent limitation of LSTMs is their 

high computational demands and the need for extensive 

training data, making real-time applications more challenging 

(Shrestha, 2023; Akhter et. al., 2016). 

 

Hybrid Models 

Hybrid models combine the strengths of physical models and 

machine learning approaches to improve forecasting 

accuracy. These models use physical models to capture the 

fundamental physics of solar irradiance, while machine 

learning algorithms are used to fine-tune the predictions based 

on historical data. Recent research has shown that hybrid 

models are highly effective for forecasting solar irradiance. 

These models, which integrate historical weather data, sky 

imaging, and physical principles, have demonstrated 

improved accuracy over different forecasting timeframes. For 

instance, Almarzooqi et al. (2024) introduced a hybrid system 

that utilizes truncated-regularized kernel ridge regression, 

surpassing traditional forecasting techniques in both short- 

and medium-term predictions. Karout et al. (2023) combined 

clear-sky direct normal irradiance (DNI) forecasts with 

machine learning processing of sky images, yielding superior 

results under varying sky conditions. Wang et al. (2023) 

developed a hybrid ensemble model using XGBoost, 

incorporating historical data and sky images, which 

outperformed standard methods for short-term forecasting. 

These findings emphasize the value of hybrid models towards 

the improvement of the precision of solar irradiance forecasts. 

Another example is the use of NWP models in conjunction 

with ANNs to improve short-term solar irradiance 

predictions. 

It is evident that hybrid approaches outperform standalone 

models (Santos et al., 2022; Chodakowska et al., 2023). 

However, the implementation of these models often demands 

substantial computational resources and extensive datasets, 

which can complicate their practical application (Pathak et al., 

2022; Rojas-Campos et al., 2022). 

 

Comparison of Forecasting Methods 

The performance of solar irradiance forecasting methods is 

evaluated based on several critical factors, including 

accuracy, computational efficiency, data requirements, and 

their respective advantages and disadvantages. In this section, 

we compare the physical, statistical, machine learning, and 

hybrid approaches based on these criteria. 

 

 

 

Evaluation Metrics 

The effectiveness of forecasting models is typically measured 

using standard metrics such as Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). These metrics quantify the 

difference between predicted and actual irradiance values and 

are widely used to evaluate the accuracy of forecasting 

methods. 

 

Root Mean Square Error 

This metric emphasizes larger errors by squaring the 

differences between predicted and observed values, making it 

sensitive to outliers. The equation for RMSE is: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1 (𝑌𝑖 − 𝑌�̂�)
2   (11) 

where: 

𝑌𝑖 is the actual irradiance, 𝑌�̂� is the predicted irradiance, and 𝑛 

is the number of observations. 

 

Mean Absolute Error 

MAE is the average of the absolute errors between the 

predicted and observed values, making it more robust to 

outliers. The equation for MAE is: 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |𝑌𝑖 − 𝑌�̂�|   (12) 

 

Mean Absolute Percentage Error 

This metric expresses forecast error as a percentage of the 

actual values, providing an intuitive measure of accuracy. 

MAPE is calculated as: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑  𝑛

𝑖=1 |
𝑌𝑖−�̂�𝑖

𝑌𝑖
|   (13) 

These metrics are critical in comparing the relative accuracy 

of the various forecasting models. 

 

Accuracy 

Accuracy in solar irradiance forecasting refers to the degree 

to which predicted values align with actual observed values 

over a specified timeframe. Accuracy in solar irradiance 

forecasting is typically assessed using several key metrics, 

including Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and Mean Absolute Percentage Error (MAPE). 

These metrics quantitatively measure the discrepancies 

between predicted and actual irradiance values, enabling 

developers to evaluate model performance effectively. For 

instance, studies have shown that RMSE and MAE are 

essential for comparing the accuracy of various forecasting 

models, including those based on machine learning and 

statistical approaches (Belmahdi et al., 2023; Yang et al., 

2018). The closer to zero the values of an error metric is, the 

more accurate the model.  Hybrid models like CNN + LSTM 

can achieve a lower RMSE and MAE values, making them 

more accurate. These models leverage the strengths of both 

convolutional layers (for spatial data analysis) and recurrent 

layers (for time-series forecasting), resulting in improved 

performance over standalone models like ARIMA or ANN. 

 

Computational Efficiency 

While accuracy is crucial, computational efficiency is also an 

important consideration, particularly for real-time 

applications. Physical models like Numerical Weather 

Prediction (NWP), while highly detailed, are computationally 

expensive due to the need for simulating atmospheric 

processes over large geographic areas. This makes NWP 

models less suitable for real-time solar forecasting (Sutikno, 

2024). In contrast, statistical models like ARIMA are 

computationally efficient, leveraging simple linear 

relationships in data, but they often fail to capture the non-
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linear dynamics of solar irradiance effectively (Santos et al., 

2022; Chodakowska et al., 2023). 

Machine learning models, particularly ANNs and LSTMs, 

offer a balance between accuracy and computational 

complexity. While they require more processing power than 

traditional statistical models, advances in computational 

hardware and algorithms have made them more viable for 

real-time forecasting (Belmahdi et al., 2023; Cha et al., 2021). 

Hybrid models, which combine physical and machine 

learning approaches, tend to be the most computationally 

intensive, but they also deliver the highest accuracy 

(Hashimoto and Yoshimoto, 2023; Fara et al., 2021). 

 

Data Requirements 

Data availability is a key factor in the choice of forecasting 

models. Physical models like NWP rely heavily on 

meteorological data, including temperature, wind speed, and 

cloud cover, which can be difficult to obtain in real-time for 

certain regions (Pathak et al., 2022; Trojáková et al., 2019). 

Radiative transfer models also require detailed atmospheric 

data, such as aerosol concentrations and humidity levels. 

Statistical models, such as ARIMA, require historical 

irradiance data but do not depend on real-time meteorological 

inputs. This makes them suitable for locations with limited 

meteorological infrastructure, but they may struggle to 

capture sudden changes in weather patterns (Santos et al., 

2022; Chodakowska et al., 2023). 

Machine learning models require large datasets for training, 

including both historical irradiance data and meteorological 

variables. These models can also integrate satellite data and 

real-time weather information, making them highly flexible 

but data-intensive (Voyant et al., 2017; Cha et al., 2021). The 

hybrid models, which combine physical and machine learning 

approaches, require even more extensive datasets, as they 

need both real-time meteorological inputs and historical 

irradiance data (Belmahdi et al., 2023; Fara et al., 2021).  

Strengths and Weaknesses of Models 

Each forecasting method has its strengths and weaknesses, 

depending on the application and available resources. 

Physical models are highly detailed but computationally 

demanding, while statistical models are simpler and more 

efficient yet may struggle with non-linear relationships. 

Machine learning models can capture complex patterns in 

data but often require extensive resources and expertise. 

Hybrid models combine the strengths of multiple approaches 

for improved accuracy but are complex to implement. 

Ensemble methods enhance stability and generalization but 

may lack interpretability. Table 2 provides a detailed 

comparison of the strengths and weaknesses of various 

forecasting approaches for broader insights. 

 

Comparative Analysis of Models 

Solar irradiance forecasting models present varying levels of 

accuracy, data requirements, computational efficiency, and 

applicability to specific use scenarios. Deep learning and 

hybrid models, such as LSTM, CNN, and CNN-LSTM 

hybrids, offer the highest accuracy (Sansine et. al., 2023). 

However, these models come with substantial trade-offs, 

requiring extensive historical and real-time meteorological 

datasets and significant computational power, which limits 

their real-time applicability in resource-constrained settings. 

In contrast, statistical models like ARIMA and linear 

regression have lower data requirements and are highly 

computationally efficient, making them suitable for rapid 

forecasting in data-limited environments. However, their 

simplicity often results in less accurate predictions compared 

to machine learning and hybrid approaches. Physical models, 

such as NWP, provide reasonable medium-term accuracy and 

simulate atmospheric processes in detail but require extensive 

data and high computational resources, impacting their 

practicality for real-time use. 

 

Table 1: Strength and weaknesses of the forecasting methods 

Model Type Model Name Strengths Weaknesses 

Physical Models 

Numerical Weather 

Prediction (NWP) 

- Highly detailed; incorporates 

complex meteorological 

processes 

- Computationally intensive; requires 

extensive atmospheric data; limited 

real-time application 

Radiative Transfer 

Models (RTM) 

- Accurate in modeling solar 

radiation interactions in the 

atmosphere;  

- Requires precise atmospheric data; not 

suitable for short-term forecasts or real-

time prediction;  

Excellent for clear-sky irradiance 

forecasting 

- Limited by the availability of real-time 

atmospheric parameters 

 

Statistical Models 

ARIMA, SARIMA 
- Simple and computationally 

efficient 

- Struggles with non-linear 

relationships; less accurate for short-

term forecasts 

Multiple Linear 

Regression (MLR) 

- Easy to implement and interpret  - Assumes linear relationships, which 

may not capture non-linear behavior in 

solar irradiance data 

- Requires fewer data points than 

machine learning models 

 - Performs poorly when irradiance is 

influenced by complex, dynamic 

weather patterns 

 

Machine Learning 

& Deep Learning 

Models 

Artificial Neural 

Networks (ANN) 

- Can model complex, non-linear 

relationships in the data 

- Requires large datasets for training; 

computationally intensive 

Support Vector 

Machines (SVM) 

- Good generalization with small 

datasets 

- Limited ability to handle very large 

datasets; requires careful tuning of 

hyperparameters 

Long Short-Term 

Memory (LSTM) 

- Excellent for time-series 

forecasting; remembers long-

term dependencies 

- Requires large amounts of data; 

computationally intensive 
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Convolutional 

Neural Networks 

(CNN) 

- Effective at extracting spatial 

patterns from satellite images  

- Requires large computational 

resources and data; complex to 

implement.  
- High accuracy in capturing both 

spatial and temporal data 

 

- Prone to overfitting in smaller datasets 

Hybrid Models 

Physical + Machine 

Learning (e.g., 

CNN + LSTM) 

- Combines physical insights 

with data-driven accuracy 

  

Requires extensive computational 

resources and data; challenging for real-

time application  
- Highest accuracy in short-term 

and medium-term forecasts 

 

Complex model architecture that is 

difficult to interpret 

Ensemble 

Methods 

Boosting, Bagging, 

Random Forests 

- Improves model stability by 

combining multiple weak 

learners 

- Computationally demanding; 

hyperparameter tuning is critical 

 - Reduces variance and improves 

generalization 

- May be less interpretable compared to 

single models 

 

The trade-offs between model complexity and real-time 

applicability are crucial, especially in resource-limited 

settings. While complex models like deep learning and hybrid 

approaches excel in accuracy and adaptability, their demand 

for data and computational power can make them impractical 

for smaller-scale or under-resourced applications. Table 3 

highlights these distinctions, showing how different models 

perform based on key factors. Physical models are more 

suited for medium- to long-term planning where 

computational delays are acceptable. In contrast, statistical 

models offer simplicity, fast computation, and minimal data 

requirements, making them valuable for quick forecasting and 

feasibility studies, albeit with a compromise in predictive 

power. Machine learning models such as ANN and LSTM 

balance complexity and utility, providing good accuracy for 

short-term predictions in moderately resourced environments. 

Ultimately, selecting the appropriate forecasting model 

involves navigating the trade-offs between accuracy, 

complexity, data availability, and the need for real-time 

responses to ensure the chosen approach aligns with the 

specific operational and resource constraints of the 

application. 

 

Summary of Model Comparison 

The choice of solar irradiance forecasting methods depends 

on factors like accuracy, computational resources, and data 

availability. Physical models provide detailed forecasts but 

are computationally intensive, which limits their use in real-

time applications (Hashimoto and Yoshimoto, 2023). 

Statistical models like ARIMA are easier to implement, 

though they may lack the necessary precision for more critical 

scenarios (Cha et al., 2021; Fara et al., 2021). Machine 

learning and hybrid models offer a balance between accuracy 

and efficiency by leveraging large datasets, including satellite 

and weather prediction data, to enhance performance 

(Belmahdi et al., 2023; Voyant et al., 2017; Wang et al., 

2020). Despite their higher accuracy, these models require 

substantial computational power and training data, making 

them challenging to implement in resource-constrained 

settings (Belmahdi et al., 2023; Voyant et al., 2017). 

 

Challenges and Limitations 

While significant progress has been made in developing 

models for solar irradiance forecasting, several challenges and 

limitations still hinder the effectiveness and efficiency of 

these methods. These challenges arise from the variability in 

weather patterns, the complexity of data, and the need for 

balancing model accuracy with computational feasibility. 

This section outlines the primary challenges associated with 

solar irradiance forecasting and the limitations faced by the 

current forecasting models. 

 

Uncertainty in Weather Predictions 

One of the key challenges in solar irradiance forecasting is the 

uncertainty in weather predictions, particularly with cloud 

cover and atmospheric conditions. NWP models, although 

effective for large-scale simulations, often struggle with 

localized weather phenomena and the rapid changes in cloud 

cover, which significantly affect irradiance levels (Hashimoto 

and Yoshimoto, 2023; Tian, 2024). This issue is especially 

problematic for short-term forecasts, where even small 

inaccuracies can lead to large deviations in irradiance 

estimates (Radovan et al., 2021). Machine learning models, 

while capable of capturing non-linear relationships, also face 

limitations due to the chaotic and unpredictable nature of 

weather systems. These models rely on historical data, which 

may not fully capture future variability (Cha et al., 2021). 

 

Table 3: Comparative Overview of Forecasting Models: Performance Metrics and Use Scenarios 

Model 

Type 
Model Name Accuracy 

Data 

Requirements 

Computational 

Efficiency 
Typical Use Scenario 

Physical 

Model 

Numerical 

Weather 

Prediction 

(NWP) 

Medium-High 

(accurate for 

medium-term) 

Very High 

(extensive 

meteorological 

data, real-time 

inputs) 

Low (high 

computational 

cost) 

Medium- to long-term 

grid operation planning, 

energy dispatch  

Radiative 

Transfer 

Models 

High for short-

term (clear 

conditions) 

High (detailed 

atmospheric data, 

aerosols, cloud 

cover) 

Low 

(computationally 

intensive) 

Short-term solar power 

output prediction in 

specific weather 

conditions   
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Statistical 

Model 

ARIMA Medium 

Low (basic 

historical 

irradiance data) 

High (low 

computational 

cost) 

Basic short-term forecasts 

in data-limited areas, 

initial system planning  

SARIMA Medium 

Low-Medium 

(historical data 

with seasonal 

components) 

High (low 

computational 

cost) 

Seasonal solar generation 

forecasting, early-stage 

planning  

Linear 

Regression 
Low-Medium 

Low (minimal 

historical data) 

Very High (simple 

to compute) 

Preliminary analysis, 

educational tools, simple 

solar forecasting  

Multiple 

Linear 

Regression 

Medium 

Medium 

(historical data 

with multiple 

input variables)  

High 

Simple multi-variable 

forecasting for basic 

operational insights  

      

Machine 

Learning 

Model 

Artificial 

Neural 

Networks 

(ANN) 

High (non-linear 

data handling) 

High (large 

datasets with 

historical and 

weather inputs) 

Medium-High 

(training-

intensive) 

Adaptive short-term 

forecasting with changing 

weather patterns  

Support 

Vector 

Machines 

(SVM) 

Medium-High 

Medium 

(moderate-sized 

datasets with 

meteorological 

variables) 

Medium (efficient 

with proper kernel 

selection) 

Short-term predictions in 

moderately resourced 

environments  

Long Short-

Term 

Memory 

(LSTM) 

Very High 

Very High (large 

training datasets, 

sequential time-

series data) 

Low-Medium 

(computationally 

demanding) 

Real-time solar power 

prediction, handling 

diurnal and sequential 

data  

Convolutional 

Neural 

Networks 

(CNN) 

High (spatial data 

processing) 

High (satellite 

imagery, weather 

data) 

Medium 

(processing-

intensive) 

Forecasting spatial 

variations in irradiance, 

cloud tracking  

Gradient 

Boosted Trees 
High 

Medium-High 

(historical data, 

weather 

variables) 

Medium (efficient 

with boosting 

techniques) 

Enhanced medium-term 

forecasts with structured 

data  

Random 

Forests 
Medium-High 

Medium 

(historical and 

meteorological 

data)  

High (efficient but 

with many trees) 

Forecasting with non-

linear data variability, 

robust modeling  

      

Hybrid 

Model 

CNN + LSTM 

Hybrid 

Very High (best 

performance) 

Very High 

(extensive 

combined 

meteorological 

and historical 

data) 

Low (most 

demanding 

computationally) 

High-accuracy short-term 

forecasting, advanced 

grid management  

NWP + ANN High 

High (combined 

real-time and 

historical data) 

Medium (depends 

on input 

complexity) 

Comprehensive medium- 

to long-term solar 

generation predictions  

Ensemble 

Learning 

(e.g., 

Bagging, 

Boosting)  

Very High 
High (large, 

diverse datasets) 

Low-Medium 

(depending on 

ensemble size) 

Aggregated forecasts for 

high precision, 

uncertainty reduction  

      

Deep 

Learning 

Model 

Deep Belief 

Networks 

(DBN) 

High 

Very High 

(extensive 

datasets) 

Low (due to 

complex training 

phases) 

Advanced non-linear 

forecasting with 

extensive data modeling  

Recurrent 

Neural 

Networks 

(RNNs) 

High 

High (sequential 

data with weather 

attributes) 

Medium-High 

(computationally 

complex) 

Time-dependent solar 

power predictions, 

handling variability  

 

Although combining NWP and data-driven techniques has 

enhanced forecasting, the unpredictability of weather patterns 

remains a significant obstacle (Yang et al., 2018; Fara et al., 

2021). 

 

Data Availability and Quality 

Accurate solar irradiance forecasting heavily relies on high-

quality data, including real-time meteorological information, 
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historical records, and satellite observations. However, in 

many developing regions, the scarcity or poor quality of such 

data hinders forecasting accuracy (Belmahdi et al., 2023; 

Chodakowska et al., 2023). Machine learning models, in 

particular, require clean, well-labelled datasets, and 

incomplete data reduces their performance (Voyant et al., 

2017). Additionally, acquiring high-resolution satellite 

imagery and real-time weather data is especially challenging 

in rural or remote areas with limited infrastructure 

(Hashimoto and Yoshimoto, 2023; Radovan et al., 2021). 

Innovative solutions, such as ground-based sky imagers, are 

needed to improve data quality and forecasting reliability (Du 

et al., 2018; Lu, 2023). 

 

Model Complexity vs Practicality 

As solar irradiance forecasting models evolve, a clear trade-

off arises between accuracy and computational feasibility. 

Hybrid models, which combine Numerical Weather 

Prediction (NWP) with machine learning techniques like 

Artificial Neural Networks (ANN) or Long Short-Term 

Memory (LSTM) networks, deliver superior accuracy in 

capturing complex meteorological patterns. However, their 

high computational requirements limit their practicality in 

resource-constrained environments such as developing 

regions or small-scale solar operations (Hashimoto and 

Yoshimoto, 2023; Belmahdi et al., 2023). On the other hand, 

simpler statistical models like ARIMA and linear regression 

offer better computational efficiency but often lack the 

accuracy needed for modeling the complex dynamics of solar 

irradiance (Alsharif et al., 2019; Chodakowska et al., 2023; 

Fara et al., 2021). The challenge lies in balancing model 

complexity with the need for real-time predictions, 

particularly in scenarios requiring rapid data processing 

(Sobri et al., 2018; Wang et al., 2020). 

 

Geographic and Temporal Resolution 

The accuracy and applicability of solar irradiance forecasting 

models are heavily influenced by their geographic and 

temporal resolution. Localized factors such as topography, 

vegetation, and urban infrastructure require models capable of 

capturing these variations for more precise forecasts, 

particularly in distributed solar energy systems 

(Chodakowska et al., 2023; Du et al., 2018). Temporal 

resolution is equally important, with short-term forecasts 

critical for real-time grid management and medium-term 

forecasts supporting energy dispatch (Sweeney et al., 2019). 

While NWP models perform well for medium-term 

forecasting, they face challenges in short-term accuracy due 

to rapid atmospheric changes (Rojas-Campos et al., 2022). To 

enhance both spatial and temporal resolution, satellite 

imagery and ground-based data are utilized, though their 

integration can add complexity and may not always be 

available in real-time (Du et al., 2018). Ground-based sky 

imagers offer improved data for intra-hour forecasts, 

addressing some limitations of satellite data (Lu, 2023). 

 

Model Interpretability 

Interpretability refers to the ability to understand how a model 

arrives at its predictions or forecasts. It is the extent to which 

humans, especially operators and decision-makers, can trust, 

explain, and justify the outcomes produced by a model. 

Machine learning models, particularly deep learning 

techniques like Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks, demonstrate 

high accuracy in solar irradiance forecasting but face 

challenges due to their lack of interpretability. This "black 

box" nature complicates trust and decision-making in critical 

applications such as energy grid management, where 

transparency is essential (Tian, 2024; Voyant et al., 2017; 

Belmahdi et al., 2023). To improve interpretability, 

researchers are developing hybrid models that integrate 

physical principles with machine learning to enhance 

understanding, though these systems still pose challenges for 

non-expert users due to their complexity (Wang et al., 2020; 

Sobri et al., 2018). Despite advancements, interpretability 

remains a significant concern in the field (Tian, 2024; Wang 

et al., 2020). 

 

Climate Change and Long-Term Forecasting 

Climate change introduces significant uncertainties in long-

term solar irradiance forecasting, particularly due to changes 

in atmospheric conditions like increased cloud cover and 

extreme weather events. These changes can disrupt historical 

patterns that machine learning models rely on, reducing the 

accuracy of predictions (Voyant et al., 2017). Traditional 

models may struggle to adapt to these evolving conditions, 

leading to potential inaccuracies in solar energy assessments 

(Radovan et al., 2021). Integrating climate models with solar 

irradiance forecasting holds promise for improving accuracy, 

though the development of such models remains in its early 

stages (Belmahdi et al., 2023). Ongoing research focuses on 

refining these models to better account for climate-induced 

variability in solar energy generation (Yang et al., 2018). 

 

Future Directions 

The field of solar irradiance forecasting continues to evolve, 

driven by advancements in technology, data availability, and 

the need for improved accuracy in renewable energy systems. 

As the demand for solar energy grows, so too does the need 

for more efficient and precise forecasting methods. This 

section explores emerging techniques and research directions 

that hold promise for overcoming the challenges discussed in 

Section 5. 

 

Emerging Techniques 

Recent advancements in computational technologies, 

particularly quantum computing and artificial intelligence 

(AI), are revolutionizing solar irradiance forecasting. 

Quantum computing offers the potential to solve complex 

optimization problems more efficiently than classical 

methods, improving real-time forecasting as quantum 

algorithms advance (Sweeney et al., 2019). In AI, machine 

learning techniques such as deep learning, reinforcement 

learning, and transfer learning are enhancing accuracy. Deep 

learning uncovers patterns from large datasets, reinforcement 

learning adapts models in response to real-time feedback, and 

transfer learning allows models trained in data-rich 

environments to be applied in data-scarce regions, improving 

forecasts in those areas (Wang et al., 2020; Radovan et al., 

2021; Santos et al., 2022). These innovations are set to make 

solar irradiance forecasting more reliable and efficient, crucial 

for integrating solar energy into power grids (Yang et al., 

2018). 

Integration with Smart Grids 

Integrating solar irradiance forecasting with smart grid 

technologies significantly improves the efficiency and 

reliability of renewable energy systems. Smart grids leverage 

real-time data to optimize energy distribution and maintain 

grid stability, making them ideal for managing the 

intermittency of solar energy (Avwioroko, 2024; Zhao and 

Lu, 2014). By incorporating accurate solar forecasts, energy 

providers can dynamically manage distributed energy 

resources (DERs) and demand response systems, enhancing 

grid stability and reducing reliance on fossil fuels during low 
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solar generation periods (Santos et al., 2022; Sweeney et al., 

2019). Additionally, blockchain technology facilitates secure 

and transparent energy transactions, further supporting solar 

integration within smart grids and improving energy trading 

practices (Sweeney et al., 2019; Cha et al., 2021). 

 

Improving Data Acquisition and Real-Time Forecasting 

Advancements in data acquisition technologies are key to 

improving the accuracy of solar irradiance forecasting. Recent 

research highlights the growing importance of IoT and 

ground-based sensors in solar forecasting and monitoring. 

Satellite-based systems are being enhanced with higher-

resolution imaging and frequent updates, allowing for better 

monitoring of atmospheric conditions like cloud cover and 

aerosols, which significantly impact solar irradiance 

(Hashimoto and Yoshimoto, 2023; Radovan et al., 2021). 

Ground-based sensors and IoT devices further contribute by 

enabling real-time data collection across multiple locations, 

providing granular insights that boost the performance of 

machine learning models, particularly for short-term 

forecasting (Cha et al., 2021; Wang et al., 2020). The 

integration of big data technologies allows for the processing 

of large datasets, combining historical and real-time data with 

cloud computing to provide scalable, accurate solar forecasts 

(Fara et al., 2021; Belmahdi et al., 2023). These 

advancements are vital for enhancing the precision of solar 

energy predictions, supporting the transition to renewable 

energy (Chodakowska et al., 2023; Sobri et al., 2018). 

 

Advances in Hybrid Models 

Hybrid models that integrate physical and machine learning 

approaches are becoming essential in solar irradiance 

forecasting, combining the atmospheric simulations of 

Numerical Weather Prediction (NWP) with the pattern 

recognition capabilities of machine learning to enhance short-

term forecast accuracy (Pathak et al., 2022). Recent 

advancements include the use of Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), 

where CNNs process spatial data like satellite imagery, and 

RNNs handle time-series data, optimizing both spatial and 

temporal predictions (Yang et al., 2018; Fara et al., 2021). 

Additionally, ensemble learning techniques are being 

employed within hybrid models to improve prediction 

robustness in regions with variable weather conditions by 

aggregating multiple forecasting outputs (Santos et al., 2022; 

Belmahdi et al., 2023). This comprehensive approach 

significantly enhances both the accuracy and reliability of 

solar irradiance forecasting. 

 

Interdisciplinary Research and Collaboration 

The future of solar irradiance forecasting is set, as it has 

started to benefit greatly from interdisciplinary collaboration, 

particularly among experts in meteorology, data science, 

computer science, and energy systems engineering. By 

combining advanced meteorological models with artificial 

intelligence (AI) techniques, researchers can enhance both the 

accuracy and interpretability of forecasts (Tian, 2024; Wang 

et al., 2020). Collaboration between computer scientists and 

energy engineers is essential for making these models scalable 

and practically applicable, allowing them to be more 

accessible to energy providers (Radovan et al., 2021; Santos 

et al., 2022). As climate change continues to impact weather 

patterns, adapting forecasting models to account for these 

shifts is increasingly important. Incorporating climate 

projections into solar forecasting models will help ensure the 

resilience of renewable energy systems in a changing 

environment (Soni et al., 2011; Sweeney et al., 2019). This 

interdisciplinary approach will be crucial for improving 

forecasting accuracy and ensuring the sustainable integration 

of solar energy into power grids (Zhao and Lu, 2014; 

Chodakowska et al., 2023). 

 

CONCLUSION 

Solar irradiance forecasting is a critical component of 

optimizing solar energy systems and integrating renewable 

energy sources into power grids. Over the years, various 

methods—ranging from physical models like Numerical 

Weather Prediction (NWP) to advanced machine learning-

based models—have been developed to improve the accuracy 

and efficiency of these forecasts. However, despite the 

significant progress, challenges such as data availability, 

model complexity, geographic and temporal resolution, and 

uncertainty in weather predictions persist. Future research in 

solar irradiance forecasting should focus on integrating 

emerging technologies like IOT, quantum computing, 

artificial intelligence, and big data to improve both the 

accuracy and speed of forecasts. Additionally, 

interdisciplinary collaboration will be essential in addressing 

the remaining challenges, such as climate change's impact on 

irradiance patterns and the need for scalable, real-time 

forecasting solutions. Ultimately, accurate solar irradiance 

forecasting is crucial for the growth of solar energy and the 

broader transformation towards a low-carbon future. 

 

Summary of Key Findings 

Machine learning models, particularly Artificial Neural 

Networks (ANNs) and Long Short-Term Memory (LSTM) 

networks, have shown considerable potential in solar 

irradiance forecasting. Hybrid models that combine physical 

meteorological simulations with machine learning techniques 

further enhance accuracy by leveraging the strengths of both 

approaches (Belmahdi et al., 2023; Voyant et al., 2017). 

However, these models often require significant 

computational resources and large datasets, complicating 

their real-time application (Wang et al., 2020; Rojas-Campos 

et al., 2022). On the other hand, traditional statistical models 

like ARIMA are computationally efficient but lack the 

accuracy needed to capture the non-linear dynamics of solar 

irradiance (Alsharif et al., 2019). Physical models like 

Numerical Weather Prediction (NWP) excel in medium- to 

long-term forecasting but struggle with short-term variability 

due to the unpredictability of weather patterns (Hashimoto 

and Yoshimoto, 2023; Sweeney et al., 2019). Thus, while 

machine learning and hybrid models offer advancements in 

accuracy, their computational demands and forecasting 

horizons remain critical trade-offs. 

 

RECOMMENDATIONS 

Advancing solar energy forecasting techniques requires 

several strategic steps. The findings from this review implied 

that adopting advanced solar irradiance forecasting methods 

can significantly enhance grid integration and stability. 

Adopting hybrid models is crucial, as they combine physical 

principles and machine learning to improve accuracy in areas 

like grid management. Investing in data acquisition 

technologies, such as IoT sensors and high-resolution satellite 

imagery, along with improved data-sharing infrastructures, is 

essential, particularly for regions with limited meteorological 

data. Balancing model complexity with practicality is also 

important; while complex models like CNN-LSTM hybrids 

offer high accuracy, they costly to implement while simpler 

models like ARIMA may be more suitable for smaller 

operators and cheaper. Improving the interpretability of 

machine learning models is key to building trust in forecast 
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outputs, especially for critical applications like energy grid 

management. Finally, it is paramount for researchers and 

practitioners in the choice of a model for forecasting to engage 

in the balancing of the application need and model 

implementation costs to ensure a sustainable and cost-

effective solution supporting the global transition toward a 

sustainable and reliable energy future. 
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