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ABSTRACT 

The Buys-Ballot (B-B) approach for the decomposition of additive and multiplicative models in descriptive 

time series (TS) was examined in this paper. The selection of an adequate model is very important as it shows 

the underlying structure of the series because the fitted model will be used for future forecasting. Mis-

specifying the model characteristics of the data is consequential and can result in biased tests and false 

predictions The Buys-Ballot method was demonstrated for the selection of an appropriate model and a 

statistical test that will aid in the selection between additive and multiplicative models was proposed when the 

trending curve is quadratic. The model identified was used for the forecast. Using the B-B technique, the 

column variances for the additive model do not contain the seasonal effect while that of the multiplicative 

model contains the seasonal effect. This distinction was then applied to select between additive and 

multiplicative models. The chi-square test was proposed for the selection between additive and multiplicative 

models for the decomposition of TS data. The results when applied to a quadratic trend curve reveal that the 

appropriate model for the decomposition of the data is the additive model as all calculated chi-square values 

are within the chi-square acceptance region based on a two-tail test at a 1% level of significance. The additive 

model identified was then used to decompose the series and the trend analysis model was used for the forecast 

of the series. The chi-square test was proposed to justify the Buys-Ballot method for distinguishing when a 

model should be decomposed with an additive or multiplicative model in time series decomposition.  

 

Keywords: Buys-Ballot, Seasonal effect, Column Variances, Additive Model, Decomposition, Forecasting,  

Chi-Square 

 

INTRODUCTION 

Identifying the pattern as portrayed by the sequence of TS plot 

and forecasting are the two specific goals of TS analysis. 

These goals demand that time series data patterns be 

identified and completely described (Box and Jenkins, 1976;  

Brockwell and Davis 2002; Iwueze and Nwogu, 2014). In 

addition to studying the nature of the data, the goals are better 

implemented if the proper model is used for the analysis. 

The decomposition of a time series involves splitting the 

observed TS into components denoted by trend (𝑃𝑡), seasonal 

(𝑆𝑡), cyclical (𝐶𝑡), and irregular(𝑒𝑡)components. Chatfield 

(2004) noted that for short series, the cyclical component can 

be included in the trend. The TS (𝑌𝑡 , 𝑡 =
1,2, . . . , 𝑛)decomposition can the be referred to as trend-cycle 

(𝑃𝑡)seasonal (𝑆𝑡)
 
and residual (𝑒𝑡) components. 

Time series models can either be decomposed using additive,  

multiplicative, or mixed (combining both models). In this 

paper, the emphasis will be on additive and multiplicative 

models respectively. These are; 

Additive:  𝑌𝑡 = 𝑃𝑡 + 𝑆𝑡 + 𝑒𝑡  (1) 

Multiplicative : 𝑌𝑡 = 𝑃𝑡 × 𝑆𝑡 × 𝑒𝑡  (2) 

The time point is t, 𝑃𝑡 is the trend-cycle; 𝑆𝑡 the seasonal, and 

𝑒𝑡the random components. It is assumed that for model (1), 𝑒𝑡 
the error component is  Gaussian 𝑁(0, 𝜎1

2) white noise, and 

the summation of the seasonal component over a complete 

cycle is zero,(∑ 𝑆𝑗 = 0)
𝑠
𝑗=0 . It is also assumed that for the 

multiplicative model (2), 𝑒𝑡is the Gaussian 𝑁(1, 𝜎2
2) white 

noise and for a complete cycle, the summation of the seasonal 

component is equal to the period i.e (∑ 𝑆𝑗 = 𝑠)
𝑠
𝑗=0

 
A major concern in TS decomposition is the identification of 

the right model. The time series plot of the entire series is used 

to differentiate between the additive and multiplicative 

models. In some TS plots, the additive model is applicable if 

the amplitude of both the seasonal and irregular variations is 

constant as the level of the trend rises or falls. However, when 

there is a direct increase in the level of trend between the 

seasonal and irregular variations, the multiplicative model 

should be adopted,(Chatfield, 2004). There are occasions 

when such a plot (graph) is difficult to interpret and therefore 

may not be easy to ascertain whether a series is a 

multiplicative or additive model. This difficulty in the 

interpretation of the graph is what this paper intends to 

address. 

Iwueze et al (2011) noted that the selection of a desired model 

can be achieved through the interrelationship of the seasonal 

means and the seasonal standard deviation. They noted that 

the graph for both means and standard deviation can aid the 

selection of an appropriate model for decomposition. 

However, no statistical test was provided for the selection of 

an adequate model. The method of seasonal quotient and 

difference as proposed by Justo and Rivera (2010) noted that 

when the seasonal quotient for the coefficient of variation is 

higher than the seasonal difference, the additive model should 

be used for decomposition otherwise the model is 

multiplicative is applicable. This method also failed to 

provide any statistical test to justify the choice of model for 

decomposition. 

In the literature, more researchers have started to use machine 

learning (ML) or a more hybrid model to complete time series 

prediction tasks. Generally, the Hybrid prediction models 

consist of two parts: signal decomposition and signal 

prediction. The most commonly used signal decomposition 

methods include EMD, EEMD, VMD, etc. Hao et al. (2024) 

applied a decomposition-guided mechanism to inherit the 

advantages of the decomposition method and ML methods for 

nonstationary time series prediction without introducing the 

end-effect problem in the hybrid model in time series 

forecasting. Jan and Anna (2019) studied the applicability and 

usefulness of time series decomposition in analyzing the 
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changeability in timber prices and supply in Poland. They 

employed the time series multiplicative model. The elements 

of the time series were determined utilizing the Census X11 

method, while cyclicality was separated from the trend 

employing the Hodrick–Prescott filter. 

Atajeromavwo et al. (2024) studied the estimation of oil 

spillage and salvage revenue in Kokori oil field using 

numerical method and python algorithm. They developed a 

linear model and compared it with the trapezoidal method and 

salvage revenue. They emphasis on the need of adopting 

accurate estimation model for environmental and economic 

purpose. 

Iwueze and Nwogu (2014) presented a guide for the selection 

of an adequate model that depends on the row, column, and 

overall averages and variances of the B-B table. They noted 

that for the additive model, the column variances are the 

trending curve of the TS while for the multiplicative model, it 

is the square of the seasonal effect and the product of the 

trending curve. Hence, the problem of selecting an 

appropriate model reduces to testing the hypothesis that the 

column variance of the B-B table is equal to the trending 

curve. In particular, when there is no upward or downward 

trend, the problem reduces to test for constant variance. 

The objective of this paper is to provide a statistical test that 

will aid in differentiating between additive and multiplicative 

models when the trending curve is quadratic. The significance 

of this paper is to fill the research gap experienced in the 

literature by proposing a statistical test that will aid in the 

model identification for decomposition. This paper will 

mainly focus on the additive and multiplicative model for 

decomposition in TS analysis.  

 

MATERIALS AND METHODS 

Buys-Ballot (B-B) Table 

The B-B table can be used to ascertain the effect of seasonal 

variation in time series data. To analyse the data, Iwueze and 

Nwogu (2014) posited that it is important to involve the 

periodic and seasonal totals(𝑇𝑖.𝑎𝑛𝑑𝑇.𝑗), period and seasonal 

averages(�̄�𝑖.𝑎𝑛𝑑�̄�.𝑗), and the overall total and mean(𝑇..𝑎𝑛𝑑�̄�..)   

According to Wei (1989), Wold (1938) credits these 

arrangements of time series data into a two-dimensional table 

to Buys-Ballot (1847). Thus, in the literature, the table is 

known as the Buys-Ballot table (as shown in Table 1). 

This paper will adopt the method proposed by Iwueze and 

Nwogu (2014).  

 

Table 1: Buys-Ballot (B-B) Table 

Months(𝒊) 
Seasons 

1 2 … j … s 𝑻𝒊 �̄�𝒊. �̂�𝒊. 
1 𝑌1 𝑌2 … 𝑌𝑗  … 𝑌𝑠 𝑇1 �̄�1 �̆�1 

2 𝑌𝑠+1 𝑌𝑠+2 … 𝑌𝑠+𝑗 … 𝑌2𝑠 𝑇2 �̄�2 �̆�2 

3 𝑌2𝑠+1 𝑌2𝑠+2 … 𝑌2𝑠+𝑗 … 𝑌3𝑠 𝑇3 �̄�3 �̆�3 

… … … … … … … … … … 

𝑘 𝑌(𝑘−1)𝑠+1 𝑌(𝑘−1)𝑠+2 … 𝑌(𝑘−1)𝑠+𝑗 … 𝑌(𝑘−1)𝑠+𝑠 𝑇𝑘 �̄�𝑘 �̆�𝑘 

… … … … … … … … … … 

𝑛. 𝑌(𝑛−1)𝑠+1 𝑌(𝑛−1)𝑠+2 … 𝑌(𝑛−1)𝑠+𝑗  … 𝑌𝑛𝑠 𝑇𝑛 �̄�𝑛. �̆�𝑛 

�̄�.𝑗 �̄�.1 �̄�.2 … �̄�.𝑗 … �̄�.𝑠 - �̄�.. - 

�̆�.𝑗 �̆�.1 �̆�.2 … �̆�.𝑗 … �̆�.𝑠 - - �̆�.. 

Iwueze and Nwogu (2014) 

 

𝑤ℎ𝑒𝑟𝑒

 

�̄�.𝑗 =
1

𝑛
∑ 𝑌(𝑘−1)𝑠+𝑗 , 𝑘 = 1,2, . . . ,
𝑛
𝑘=1  is the average 

�̆�.𝑗 = √
1

𝑛−1
∑ (𝑌(𝑘−1)𝑠+𝑗 − �̄�.𝑗)

2𝑛
𝑘=1 , is the standard 

deviation 

𝑤ℎ𝑒𝑟𝑒 𝑌𝑡, 𝑛, 𝑠𝑎𝑛𝑑𝑚 = 𝑘𝑠 is the series, periods, periodicity, 

and total sample size respectively 

Definition: let �̄�.𝑗 , be the column mean and 𝜎.𝑗
2 be column 

variances for additive model 

 

The TS observation at time t is given by 

𝑌𝑡 = 𝑎 + 𝑏𝑡 + 𝑐𝑡
2 + 𝑆𝑡 + 𝑒𝑡. 

The expression 𝑡 = (𝑘 − 1)𝑠 + 𝑗can be written in the form of 

the row (k) and column (j) of the B-B table. The  results of the 

B- B techniques are:  

 

�̄�.𝑗 = 𝑎 +
𝑏

2
(𝑚 − 𝑠) +

𝑐

6
(2𝑚 − 𝑠)(𝑚 − 𝑠) + [𝑏 + 𝑐(𝑚 −

𝑠)]𝑗 + 𝑐𝑗2 + 𝑆𝑗 + �̄�.𝑗 

�̆�.𝑗
2 =

𝑚(𝑚+𝑠)

180
[(2𝑚 − 𝑠)(8𝑚 − 11𝑠)𝑐2 + 30(𝑚 − 𝑠)𝑏𝑐 +

15𝑏2] +
𝑚(𝑚+𝑠)

3
[(𝑚 − 𝑠)𝑐2 + 𝑏𝑐]𝑗 + [

𝑚(𝑚+𝑠)𝑐2

3
] 𝑗2 + 𝜎1

2   

For the multiplicative model: 

Let �̄�.𝑗 be the column mean and 𝜎.𝑗
2 be column variances for 

multiplicative model 

The TS observation at time t is given by 

𝑌𝑡 = (𝑎 + 𝑏𝑡 + 𝑐𝑡
2) ∗ 𝑆𝑡 ∗ 𝑒𝑡. 

The expression 𝑡 = (𝑘 − 1)𝑠 + 𝑗can be in the form of the row 

(k) and column (j) of the B-B table. The  results of the B- B 

techniques are:  

 �̄�.𝑗   =  {
[𝑎 + 𝑏𝑗 + 𝑐𝑗2]𝑒𝑖𝑗 + 𝑠[𝑏 + 2𝑐𝑗](𝑘 − 1)𝑒𝑖𝑗

𝑐𝑠2(𝑘 − 1)2𝑒𝑖𝑗
} ∗ 𝑆𝑗 

 

𝜎.𝑗
2 =

{
  
 

  
 𝑎2 +

𝑐2

30
[6𝑚4 − 15𝑚3𝑠 + 10𝑚2𝑠2 − 𝑠4] + 2𝑎𝑏𝑗 + [𝑏2 + 2𝑎𝑐]𝑗2 + 2𝑏𝑐𝑗3 + 𝑐2𝑗4

+
(𝑚 − 𝑠)(𝑏 + 2𝑐𝑗)

6
[(𝑏 + 2𝑐𝑗)(2𝑚 − 𝑠) + 3𝑐𝑚(𝑚 − 𝑠)]

+
(𝑚 − 𝑠)(𝑎 + 𝑏𝑗 + 𝑐𝑗2)

3
[3(𝑏 + 2𝑐𝑗) + 𝑐(2𝑚 − 𝑠)] }

  
 

  
 

𝜎2
2𝑆.𝑗

2 
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Table 2: Summary of Row and Column  Variances for Additive and Multiplicative Models 
 Linear trend-cycle component:  𝑵𝒕 = 𝒂 + 𝒃𝒕 + 𝒄𝒕

𝟐, 𝒕 = 𝟏, 𝟐, . . . 𝒏𝒎 = 𝒌𝒔 

 Additive Multiplicative 

�̄�.𝒋 𝑎 +
𝑏

2
(𝑚 − 𝑠) +

𝑐

6
(2𝑚 − 𝑠)(𝑚 − 𝑠) 

[𝑏 + 𝑐(𝑚 − 𝑠)]𝑗 + 𝑐𝑗2 + 𝑆𝑗 + �̄�.𝑗 

{
[𝑎 + 𝑏𝑗 + 𝑐𝑗2]�̄�,𝑗 + 𝑠[𝑏 + 2𝑐𝑗](𝑘 − 1)�̄�.𝑗′

𝑐𝑠2(𝑘 − 1)2�̄�.𝑗″
} ∗ 𝑆𝑗 

𝝈.𝒋.
𝟐

 
𝑚(𝑚 + 𝑠)

180
[(2𝑚− 𝑠)(8𝑚 − 11𝑠)𝑐2 + 30(𝑚− 𝑠)𝑏𝑐 + 15𝑏2] 

+
𝑚(𝑚 + 𝑠)

3
[(𝑚 − 𝑠)𝑐2 + 𝑏𝑐]𝑗 + [

𝑚(𝑚 + 𝑠)𝑐2

3
] 𝑗2 + 𝜎1

2

 
{
 
 

 
 𝑎2 +

𝑐2

30
[6𝑚4 − 15𝑚3𝑠 + 10𝑛𝑚2𝑠2 − 𝑠4] + 2𝑎𝑏𝑗 + [𝑏2 + 2𝑎𝑐]𝑗2

+2𝑏𝑐𝑗3 + 𝑐2𝑗4 +
(𝑚 − 𝑠)(𝑏 + 2𝑐𝑗)

6
[(𝑏 + 2𝑐𝑗)(2𝑛 − 𝑠) + 3𝑐𝑚(𝑚 − 𝑠)]

+
(𝑚 − 𝑠)(𝑎 + 𝑏𝑗 + 𝑐𝑗2)

3
[3(𝑏 + 2𝑐𝑗) + 𝑐(2𝑚 − 𝑠)] }

 
 

 
 

𝜎2
2𝑆.𝑗

2

 

𝐹𝑜𝑜𝑡𝑛𝑜𝑡𝑒: �̄�.𝑗′ =
1

𝑛
∑ (𝑘 − 1)𝑒𝑖𝑗
𝑛
𝑖=1 , �̄�.𝑗″ =

1

𝑛
∑ (𝑘 − 1)2𝑛
𝑖=1 𝑒𝑖𝑗  

𝜎1
2 = 𝐸𝑟𝑟𝑜𝑟𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒𝑚𝑜𝑑 𝑒 𝑙), 𝜎2

2 = 𝐸𝑟𝑟𝑜𝑟𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝑚𝑜𝑑 𝑒 𝑙)

  
 

The difficulty in selecting an appropriate model for 

decomposition in a quadratic trend component reduces to 

testing the null hypothesis: 

𝐻0: 𝜎𝑗
2 = 𝜉𝑗(𝜃), 𝑗 = 1,2, . . . 𝑠

 

and the jth column variance is simply the trend value.  Against 

the alternative  

 𝐻1: 𝜎𝑗
2 ≠ 𝜉𝑗(𝜃),for at least one j 

and the jth column variance is different from the trend value. 

For the quadratic trend curve, the column variance is given as 

�̂�.𝑗
2 = (𝜃0 + 𝜃1𝑗 + 𝜃2𝑗

2) + 𝜎1
2, 𝑓𝑜𝑟𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒𝑚𝑜𝑑 𝑒 𝑙 

𝑤ℎ𝑒𝑟𝑒

 𝜃0 =
𝑚(𝑚+𝑠)

180
[(2𝑚 − 𝑠)(8𝑚 − 11𝑠)𝑐2 + 30(𝑚 − 𝑠)𝑏𝑐 +

15𝑏2]  

𝜃1 =
𝑚(𝑚+𝑠)

3
[(𝑚 − 𝑠)𝑐2 + 𝑏𝑐] ,  𝜃2 = [

𝑚(𝑚+𝑠)𝑐2

3
]

 The test statistic is set to be the hypothesized variance of each 

column divided by the nominal value of the variance (ie the 

value to be tested). The statistic has a Chi-Square distribution 

with n-1 degree of freedom. Hence, the Chi-Square test 

statistic was proposed in this paper and the test for the null 

hypothesis  is given by  

𝜒2 =
(𝑛−1)�̂�𝑗

2

𝜎0
2       (3) 

The observations in each column are represented by n,�̂�𝑗
2 

which is the jth column computed variances and 𝜎0
2 = 𝜉𝑗(𝜃)is 

the hypothesized variance for each column. Under the null 

hypothesis, the statistic in (3) complies with the Chi-Square 

distribution with n-1 degrees of freedom (Spiegel, 1975; 

Mood et al., 1974). An assumption of the Chi-Square test used 

in this paper is based on its asymptotic null distribution. Based 

on this two-tailed test at 𝛼 level of significance, the null 

hypothesis would not be rejected if   

𝜒𝛼 2⁄
2 <

(𝑛−1)�̂�𝑗
2

𝜎0
2 < 𝜒1−𝛼 2⁄

2       

 or rejected otherwise. 

Thus, the appropriate model is additive when the null 

hypothesis is not rejected or multiplicative when it is rejected. 

 

Empirical Examples 

The data used for the illustrative example is Nigeria's Spot 

component price of oil (US Dollar per Barrel) from 1991-

2021. The characteristics of the data from figure 1 shows that 

the original data has a quadratic trend curve. Thus, the 

application of B-B table technique was used to ascertain if the 

additive or multiplicative models should be adopted for TS 

decomposition. The column variances and the trend values 

using the B-B table method are shown below. 

 

𝜎.𝑗
2 =

(

 
 
 
 
 
 
 
 
 

921.27
1038.09
1157.35
1221.97
1168.87
1199.73
1279.41
1177.37
1092.78
1017.79
1032.34
1042.91)

 
 
 
 
 
 
 
 
 

, 𝜎0
2 =

(

 
 
 
 
 
 
 
 
 

969.5232
1049.123
1112.642
1160.078
1191.432
1206.705
1205.896
1189.005
1156.032
1106.978
1041.841
960.6232)

 
 
 
 
 
 
 
 
 

,
(𝑛 − 1)(𝜎.𝑗

2)

𝜎0
2 =

(

 
 
 
 
 
 
 
 
 

28.51
29.68
31.21
31.60
29.43
29.83
31.83
29.71
28.36
27.58
29.73
32.57)

 
 
 
 
 
 
 
 
 

 

At 0.01, under the null hypothesis, the chi-square is stated as 

𝜒2: 13.79 ≤ (𝑛 − 1)
𝜎.𝑗
2

𝜎0
2 ≤ 53.67, 𝑗 = 1,2, . . . ,12

  

The numerical example shown above shows that all calculated 

chi-square values are within the acceptance region 13.79 ≤

(𝑛 − 1)
𝜎.𝑗
2

𝜎0
2 ≤ 53.67 at 1% level of significance indicating that 

the additive model is the necessary model for the 

decomposition of the data  

 

 

 

 

Decomposition and Forecast 

The additive model identified was used to decompose the 

series. The P--P plot in Figure 3 shows that the residual seems 

to be normally distributed indicating that an adequate model 

was used for decomposition. Also, most of the data points lie 

along the normal line and those outside the line deviate in a 

similar pattern below and above the normal line. The 

quadratic trend model was used for the forecast. The original 

TS plot and trend analysis are given in Figures 1 and 2 

respectively  
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Figure 1: Original Series of Nigeria Spot Component Price 

 
Figure 2: Fitted Quadratic Trend Curve 

 

Fitted Trend Equation 

Yt = 36.88 - 0.4047×t + 0.001716×t^2 

Months      Forecast for 2022 

January      124.640 

February     125.517 

March        126.397 

April        127.281 

May          128.168 

June         129.059 

July         129.953 

August       130.851 

September    131.752 

October      132.656 

November     133.564 

December     134.476 
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Figure 3: Normal Probability Plot of Decomposed Residual 

 

CONCLUSION 

A main concern in the application of descriptive TS analysis 

is that of the selection of a model for the decomposition of TS 

data. From the available literature, there is no definite test for 

the selection of a model. The B-B procedure reveals that (a) 

the additive and multiplicative models have different column 

mean and variances, and (b) for the additive and 

multiplicative models,  the column variances imitate the shape 

of the trending series when the trend curve is quadratic. 

However, while the column variances of the additive model 

exclude the seasonal component, the column variances of the 

multiplicative model contain the seasonal component. This 

characteristic is what has been used to develop the test for the 

choice of an adequate model for decomposition. The problem 

of choice between additive and multiplicative models reduces 

to a Chi-Square test for variances based on a two-tail test at𝛼 

level of significance. The calculated chi-square values are 

within the acceptance region 13.79 ≤ (𝑚 − 1)
𝜎.𝑗
2

𝜎0
2 ≤ 53.67 at 

1% level of significance. Thus, the additive model was 

recommended. The normal probability plot shows that an 

appropriate decomposition model was used to decompose the 

series. The regression trend equation was then used for the 

forecast. Decomposition often plays a vital role in making 

time series better as well as improving the forecast. The chi-

square test proposed in this paper justify the Buys-Ballot 

method for distinguishing when a model should be 

decomposed with an additive or multiplicative model when 

the trend curve is quadratic. The Buys-Ballot method can be 

extended to other series whose trend curve is exponential. 
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