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ABSTRACT 

Regularized regression techniques such as the least absolute shrinkage and selection operator (LASSO), 

elastic-net, and the type 1 and type 2 correlation adjusted elastic-net (CAEN1 and CAEN2 respectively) are 

used for simultaneously carrying out variable selection and estimation of coefficients in machine learning. 

Modified estimators based on the CAEN1 and CAEN2 are proposed in this study by rescaling the estimates to 

undo the double shrinkage incurred due to the application of two penalties. The scale factors are derived by 

decomposing the correlation matrix of the predictors. The derived scale factors, which depend on the 

magnitude of correlations among the predictors, ensure that the elastic-net is included as a special case. 

Estimation is carried out using a robust worst-case quadratic solver algorithm. Simulations show that the 

proposed estimators referred to as corrected correlation adjusted elastic-net (CCAEN1 and CCAEN2) perform 

competitively with the CAEN1, CAEN2, LASSO, and elastic-net in terms of variable selection, estimation and 

prediction accuracy with CCAEN1 yielding the best results when the number of predictors is more than the 

number of observations and CCAEN2 producing the best performance when there is grouping effect, where 

highly correlated predictors tend to be included in or excluded from the model together. Applications to two 

real-life datasets further demonstrate the advantage of the proposed methods for machine learning.  

 

Keywords: Variable selection, Regularization, High-dimensional data, Grouping effect, LASSO,  

Machine Learning 

 

INTRODUCTION 

Regression analysis is a popular tool for building predictive 

models and studying the influence of some predictor variables 

on a continuous response variable (Biecek & Burzykowski, 

2021). Let 𝑌 = (𝑦1, … , 𝑦𝑛)
𝑇 and 𝑋 = [𝑋1, . . . , 𝑋𝑝]

𝑇
 denote 

the response vector and matrix of predictors (or features) 

respectively, where 𝑝 is the number of predictor variables. In 

a regression analysis, the relationship between 𝑌 and 𝑋1, 𝑋2, 

· · · , 𝑋𝑝 is represented by 

 𝑌 = 𝑋𝑇𝛽 + 𝜖,       (1) 

where 𝛽 = (𝛽1, . . . , 𝛽𝑝)
𝑇

with 𝛽𝑗 , 𝑗 = 1,… , 𝑝 is the 

regression coefficient representing the effect of a predictor 

variable 𝑋𝑗  on 𝑌.  

The ordinary least squares (OLS) technique, a classical 

technique for estimating the regression coefficients, can 

perform poorly when the predictors are highly correlated and 

is not applicable when the number of predictors 𝑝 exceeds the 

sample size 𝑛, see (Hoerl & Kennard, 1970; Ryan, 2008; 

Wang, Dunson, & Leng, 2016). However, technological 

breakthroughs in medicine, artificial intelligence, machine 

learning and other areas have given rise to large data 

situations where 𝑝 is greater than 𝑛, see (Garba, Yahya, & 

Aremu, 2016; Hapfelmeier, Babatunde, Yahya, & Ulm, 2012) 

and the references therein. 

One important aspect of regression modelling is variable 

selection especially when dealing with high-dimensional data 

(Fan & Li, 2006). Correctly selecting important predictors 

determines the performance of the fitted model. The best-

subset and stepwise model selection methods are popular for 

variable selection. However, it is computationally impractical 

to use the best-subset selection method when the number of 

predictors is large and when 𝑝 >  𝑛 the best-subset method is 

limited to only models having the number of predictors less 

than 𝑛 (Hanke, Dijkstra, Foraita, & Didelez, 2024). Moreover, 

Breiman (1996) reported that the subset selection can be 

unstable while the performance of the step-wise methods can 

result to a model with poor predictive performance. Also, 

when predictors are highly correlated, estimates of 𝛽 by the 

OLS are unstable. The ridge regression was introduced to 

circumvent the problem encountered by the OLS when 

dealing with collinear predictors (Hoerl & Kennard, 1970). 

The ridge regression involves imposing an 𝑙2-norm penalty on 

the OLS objective function. The ridge estimator is obtained 

by solving the 𝑙2regularized least squares problem. Thus 

𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔min
𝛽
‖𝑌 − 𝑋𝛽‖2

2 + 𝜆‖𝛽‖2
2  (2) 

where ‖𝛽‖2
2 = ∑ 𝛽𝑗

2𝑝
𝑗=1  is the 𝑙2-norm of 𝛽. The ridge 

regression tries to handle the problems caused by collinear 

predictors in the model but does not perform variable 

selection. 

A popular method proposed to perform variable selection and 

estimation of regression coefficients simultaneously is the 

least absolute shrinkage and selection operator (LASSO) 

technique (Tibshirani, 1996). This technique handles some of 

the problems associated with subset selection, stepwise 

selection and the OLS especially when 𝑝 ≫ 𝑛 and when the 

predictors are collinear. The LASSO estimator is obtained by 

solving the 𝑙1 regularized least squares problem: 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔min
𝛽
‖𝑌 − 𝑋𝛽‖2

2 + 𝜆‖𝛽‖1
1,   (3) 

where ‖𝛽‖1
1 = ∑ |𝛽𝑗|

𝑝
𝑗=1  is the 𝑙1-norm of 𝛽. Although the 

LASSO possesses some good statistical properties and has 

been found to provide good results in many situations, it has 

some drawbacks which include its inability to select more 

than 𝑛 predictors in the 𝑝 >  𝑛 situation; propensity to select 

only one variable from a group of highly correlated predictors 

and poor performance compared to ridge regression in the 

𝑛 >  𝑝 situation. To overcome these problems of LASSO, 

Zou and Hastie (2005) proposed a technique which combines 
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the 𝑙1 penalty of the LASSO and the 𝑙2  penalty of the ridge 

termed the elastic-net (ENET). The elastic-net estimator 

�̂�𝑛𝑎𝑖𝑣𝑒−𝑒𝑛𝑒𝑡 is obtained by solving  

 �̂�𝑛𝑎𝑖𝑣𝑒−𝑒𝑛𝑒𝑡 = 𝑎𝑟𝑔min
𝛽
‖𝑌 − 𝑋𝛽‖2

2 + 𝜆1‖𝛽‖1
1 + 𝜆2‖𝛽‖2

2.  

     (4) 

Zou and Hastie (2005) referred to the estimator obtained from 

equation (4) as the naive elastic-net estimator and showed that 

its performance is not always satisfactory, nor does it possess 

the minimax optimal property because of the double 

shrinkage due to the simultaneous use of the 𝑙1 and 𝑙2 
penalties which introduce unnecessary extra bias. The authors 

derived the elastic-net (ENET) estimator as (1 +
𝜆2

𝑛
) �̂�𝑛𝑎𝑖𝑣𝑒−𝑒𝑛𝑒𝑡 or (1 + 𝜆2)�̂�𝑛𝑎𝑖𝑣𝑒−𝑒𝑛𝑒𝑡  if the predictors are 

standardized (each variable has a mean zero and 𝑙2-norm one). 

Nonetheless, Anbari and Mkhadri (2014) observed that the 

ENET seems to be slightly less reliable if the correlation 

between variables is not so extreme. Besides, the ENET like 

the LASSO does not factor in the information concerning the 

correlation among the predictors during shrinkage. 

The octagonal shrinkage and clustering algorithm for 

regression (OSCAR) is a regularized least squares with a 

penalty function that combines the 𝑙1 and the pairwise 𝑙∞ 

norms (Bondell & Reich, 2006). The OSCAR operates by 

constraining some coefficients to be identically equal, causing 

correlated predictors that have identical effects on the 

response to form groups represented with the same 

coefficients. However, obtaining the Oscar estimates for large 

𝑝 can be computationally burdensome (Anbari & Mkhadri, 

2014). Other proposed penalties for simultaneous estimation 

and variable selection in regression problems include the 

Smoothly Clipped Absolute Deviation (SCAD) penalty and 

the Minimax Concave Penalty (MCP) (Fan & Li, 2001; 

Zhang, 2010).  

In addition, Tutz and Ulbricht (2009) introduced a technique 

that combines a correlation-based penalty and a blockwise 

boosting (BB) procedure for performing shrinkage and 

variable selection. Determination of the appropriate step 

length factor and number of iterations for the BB technique 

can sometimes be problematic in practice and this affects the 

sparsity of the solution and the speed of the technique. 

Consequently, Anbari and Mkhadri (2014) introduced the 

L1CP estimator which combines the LASSO and the 

correlation-based penalty of Tutz and Ulbricht (2009). 

Similarly, Tan (2012) proposed two correlation-adjusted 

elastic-net (namely CAEN1 and CAEN2) penalties for linear 

regression which were further extended to Poisson regression 

by Algamal (2015). The CAEN1 and CAEN2 estimators are 

the minimizers of 

 𝐶𝐴𝐸𝑁1 = ‖𝑌 − 𝑋𝛽‖2
2 + 𝜆1‖𝛽‖1

1 + 𝜆2 [∑ [(𝛽𝑗 −
𝑝−1
𝑗=1

𝑟𝑗,𝑗+1𝛽𝑗+1)
2
] + 𝛽𝑝

2],    (5) 

and 

𝐶𝐴𝐸𝑁2 = ‖𝑌 − 𝑋𝛽‖2
2 + 𝜆1‖𝛽‖1

1 + 𝜆2 [∑ ∑ [(𝛽𝑗 −𝑘>𝑗
𝑝−1
𝑗=1

𝑟𝑗,𝑘𝛽𝑘)
2
] + 𝛽𝑝

2],    (6) 

respectively. The CAEN1 and CAEN2 performed better than 

the ENET for count data using the Poisson regression. 

However, the unnecessary bias that may be introduced due to 

double shrinkage by both the 𝑙1 and correlation-adjusted 

penalties were not accounted for in the CAEN1 and CAEN2. 

Also, empirical studies on the finite sample performance of 

the CAEN1 and CAEN2 for linear regression are not available 

in the literature. More details can be found on how the 

CAEN1 and CAEN2 methods can be augmented to become 

LASSO-type problems (Tan, 2012). The LASSO-type 

problems can be solved by a quadratic solver algorithm. The 

quadratic solver showed that the algorithm is robust and 

highly computationally efficient compared to other 

algorithms for sparse regression such as proximal (Beck & 

Teboulle, 2009) and the coordinate descent methods (Fu, 

1998). 

Our goal in this study is to introduce scaled versions of the 

CAEN1 and CAEN2 methods. The main idea is to improve 

the performance of the CAEN1 and CAEN2 by scaling the 

estimates to undo the double shrinkage thereby reducing the 

bias of the estimates. In this paper, we call the estimators 

proposed by Tan (2012) the naïve CAEN1 and CAEN2 while 

we call our proposed estimators CCAEN1 and CCAEN2. We 

obtain the scaling transformation using ideas similar to those 

used by Zou and Hastie (2005) to correct the naïve ENET to 

give the ENET estimator.  

All through this paper, the errors 𝜖 are assumed to be 

identically and independently distributed (IID) with zero 

mean and finite variance  𝜎2. The rest of the paper is 

organized as follows; In Section 2, the corrected correlation 

adjusted elastic net (CCAEN1 and CCAEN2) estimators are 

introduced alongside corresponding proposed scaling 

transformations. In Section 3, simulation studies are carried 

out to evaluate the finite sample performance of the proposed 

methods (CCAEN1 and CCAEN2) alongside the naive 

CAEN1 and CAEN2 as well as other competitors such as the 

LASSO and ENET. The applications of all the methods 

considered for real-life datasets are discussed in Section 4. 

Section 5 contains the concluding remarks. 

 

MATERIALS AND METHODS 

This section introduces scaled versions of the naive CAEN1 

and CAEN2 methods - termed CCAEN1 and CCAEN2 

respectively - and improve their performance by scaling the 

estimates to undo the double shrinkage thereby reducing the 

bias of the estimates. The scaling transformation is obtain 

using ideas similar to methods in Zou and Hastie (2005) to 

correct the naive ENET to give the ENET estimator. Firstly, 

the general form of the objective function to be minimized to 

yield the regression estimates is 

‖𝑌 − 𝑋𝛽‖2
2 + 𝜆1‖𝛽‖1

1 + 𝜆2𝑃(𝛽)  (7) 

Our proposed corrected estimators are of the form 

𝑆 [𝑎𝑟𝑔min
𝛽
‖𝑌 − 𝑋𝛽‖2

2 + 𝜆1‖𝛽‖1
1 + 𝜆2𝑃(𝛽)], (8) 

where 𝑆 is the scaling factor. In the following section, we 

show the derivation of the scaling factors used in CCAEN1 

and CCAEN2. 

 

The Rescaled CAEN1 and CAEN2  

Tan (2012) proposed two correlated adjusted elastic-net 

(CAEN) estimators. The first type CAEN which we call the 

naïve CAEN1 is obtained when 𝑃(𝛽) in (6) is set to 

𝑃(𝛽) = ∑ [(𝛽𝑗 − 𝑟𝑗,𝑗+1𝛽𝑗+1)
2
]

𝑝−1
𝑗=1 + 𝛽𝑝

2.   (9) 

The second type (naïve CAEN2) is obtained when  

𝑃(𝛽) = ∑ ∑ [(𝛽𝑗 − 𝑟𝑗,𝑘𝛽𝑘)
2
]𝑘>𝑗

𝑝−1
𝑗=1 + 𝛽𝑝

2.   (10) 

Tan (2012) showed that equation (9) and (10) can be written 

in the following simple quadratic form: 

𝑃(𝛽) = 𝛽𝑇𝑊1𝛽, 
and 

𝑃(𝛽) = 𝛽𝑇𝑊2𝛽, 
respectively, where, 𝑊1 = 𝐷1

𝑇𝐷1,  𝑊2 = 𝐷2
𝑇𝐷2 and  

𝐷1 =

(

 
 

1 −𝑟1,2 0 … 0 0

0 1 −𝑟2,3 … 0 0

⋮ ⋮ ⋮ … ⋮ ⋮
0 0 0 … 1 −𝑟𝑃−1,𝑃
0 0 0 … 0 1 )

 
 
, 
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and  

𝐷2 =

(

 
 
 
 
 
 
 
 
 

1 −𝑟1,2 0 0 … 0 0

1 1 −𝑟1,3 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 1 0 0 … 0 −𝑟1,𝑝
0 1 −𝑟2,3 0 … 0 0

0 1 0 −𝑟2,4 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 1 0 0 … 0 −𝑟2,𝑝
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 … 1 −𝑟𝑝−1,𝑝
0 0 0 0 … 0 1 )

 
 
 
 
 
 
 
 
 

. 

The estimators proposed are two-stage procedures: the 

correlation-adjusted penalty regression coefficients based on 

CAEN1 or CAEN2 are first obtained for each fixed 𝜆2, and 

the lasso-type shrinkage is carried out along the lasso 

coefficient solution paths. To reduce a double amount of 

shrinkage, CCAEN1 and CCAEN2 estimators are introduced 

as follows  

𝑑𝑖𝑎𝑔(𝜆2𝑊1 + 𝐼) [𝑎𝑟𝑔min
𝛽
‖𝑌 − 𝛽0 − 𝑋𝛽‖2

2 + 𝜆1‖𝛽‖1
1 +

𝜆2𝛽
𝑇𝑊1𝛽],     (11) 

and 

𝑑𝑖𝑎𝑔(𝜆2𝑊2 + 𝐼) [𝑎𝑟𝑔min
𝛽
‖𝑌 − 𝛽0 − 𝑋𝛽‖2

2 + 𝜆1‖𝛽‖1
1 +

𝜆2𝛽
𝑇𝑊2𝛽],     (12) 

respectively, where 𝐼 is a 𝑝 × 𝑝 identity matrix and 𝑑𝑖𝑎𝑔(𝐴) 
is a diagonal matrix such that the diagonal elements are the 

same as the diagonal elements of 𝐴 (Babarinsa et al., 2022). It 

is easy to see, for example, that the CCAEN1 estimator is 

given by equation (8) when 𝑆 is set as 

𝑆 = 𝑑𝑖𝑎𝑔(𝜆2𝑊1 + 𝐼)   (13) 

The scale factor for the CCAEN1 (𝑆𝑐1) of a single 𝛽𝑗  can be 

simplified to 

𝑆𝑗
𝐶1 = {

1 + 𝜆2,                  𝑗 = 1

1 + 𝜆2(1 + 𝑟𝑗,𝑗+1
2 ),      𝑗 = 2,3,… 𝑝

.    (14) 

Similarly, the scale factor for the CCAEN2 (𝑆𝑐2) of a single 

𝛽𝑗  in the case of CCAEN2 can be simplified to 

𝑆𝑗
𝐶2 = {

1 + 𝜆2(𝑝 − 1) ,                𝑗 = 1

1 + 𝜆2(𝑝 − 𝑗 + ∑ 𝑟𝑖,𝑗
2𝑗−1

𝑖=1 ),       𝑗 = 2,3, … 𝑝
.  

     (15) 

The motivation for adopting 𝑑𝑖𝑎𝑔(𝜆2𝑊𝑠 + 𝐼), 𝑠 = 1,2 as 

scale factors are similar to the argument used by (Zou & 

Hastie, 2005) to improve the performance of the ENET by 

rescaling the naïve ENET. Without the LASSO penalty, the 

correlation-adjusted penalty (CAP) regression estimator (Tan 

2012) is given as 

�̂�𝐶𝐴𝑃 = (𝑋
𝑇𝑋 + 𝜆2𝑊1)

−1𝑋𝑇𝑌.   (16) 

Now, consider a decomposition of the first type CAP 

estimator with 𝑋 standardized, to obtain 

𝑋𝑇𝑋 =

[
 
 
 
1 𝑟1,2 … 𝑟1,𝑝
𝑟1,2 1 … 𝑟2,𝑝
⋮ ⋮ ⋱ ⋮
𝑟1,𝑝 𝑟2,𝑝 … 1 ]

 
 
 

,   (17) 

where   𝑋 = [

1 𝑟1,2 … 𝑟1,𝑝
0 1 … 𝑟2,𝑝
⋮ ⋮ ⋱ ⋮
0 0 … 1

] 

and 𝑊1 = (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑝
 is a real symmetric 𝑝 × 𝑝 matrix such 

that 

𝑤𝑖𝑗 =

{
 
 

 
 1,                                  𝑖𝑓 𝑖 = 𝑗 = 1

1 + 𝑟𝑖,𝑖+1
2 ,                 𝑖𝑓 𝑖 = 𝑗 = 2,3,… 𝑝

−𝑟𝑖,𝑗                               𝑖𝑓 𝑗 = 𝑖 + 1

0,                               𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  (18) 

Hence, the CAP estimator can be rewritten as 

�̂�𝐶𝐴𝑃 = 𝑅
−1𝑍−1𝑋𝑇𝑌,      (19) 

where 𝑅 =

[
 
 
 
 
𝑆1
𝐶1 0 … 0

𝑆2
𝐶1 … 0

⋱ ⋮
𝑆𝑝
𝐶1]
 
 
 
 

. 𝑌 = (𝑦𝑖𝑗)1≤𝑖,𝑗≤𝑝
 and 𝑍 =

(𝑧𝑖𝑗)1≤𝑖,𝑗≤𝑝
 is a 𝑝 × 𝑝 matrix such that 

𝑧𝑖𝑗 =

{
 
 

 
 
1,                                                             𝑖𝑓 𝑖 = 𝑗
𝑟𝑖,𝑗(1−𝜆2)

𝑆𝑗
𝐶1 ,         𝑖𝑓 𝑗 = 𝑖 + 1 𝑜𝑟 𝑖 = 𝑗 + 1

𝑟1,𝑗

𝑆𝑗
𝐶1                                              𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

     (20) 

The matrix 𝑍 can further be expressed as 

 

𝑍 =

[
 
 
 
 
 
 
 
 
 1

𝑟1,2(1−𝜆2)

𝑆1
𝐶1

𝑟1,3

𝑆1
𝐶1

𝑟1,4

𝑆1
𝐶1 …

𝑟1,𝑝

𝑆1
𝐶1

𝑟1,2(1−𝜆2)

𝑆2
𝐶1 1

𝑟2,3(1−𝜆2)

𝑆2
𝐶1

𝑟2,4

𝑆2
𝐶1 …

𝑟2,𝑝

𝑆2
𝐶1

𝑟1,3

𝑆3
𝐶1

𝑟2,3(1−𝜆2)

𝑆3
𝐶1 1

𝑟3,4(1−𝜆2)

𝑆3
𝐶1 …

𝑟3,𝑝

𝑆3
𝐶1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑟1,𝑝−1

𝑆𝑝−1
𝐶1

𝑟2,𝑝−1

𝑆𝑝−1
𝐶1

𝑟3,𝑝−1

𝑆𝑝−1
𝐶1

𝑟4,𝑝−1

𝑆𝑝−1
𝐶1 …

𝑟𝑝−1,𝑝(1−𝜆2)

𝑆𝑝−1
𝐶1

𝑟1,𝑝

𝑆𝑝
𝐶1

𝑟2,𝑝

𝑆𝑝
𝐶1

𝑟3,𝑝

𝑆𝑝
𝐶1

𝑟4,𝑝

𝑆𝑝
𝐶1 … 1

]
 
 
 
 
 
 
 
 
 

     (21) 

From (15), the CAP estimator involves scaling the 

correlations by a factor of (1 − 𝜆2)(𝑆1
𝐶1)−1 or (𝑆1

𝐶1)−1 

followed by direct shrinkage with 𝑅−1 leading to double the 

amount of shrinkage. When combining the CAP with the 

LASSO, the direct 𝑅−1 shrinkage step is not needed and is 

removed by the proposed scaling factor. In the proposed 

method, the shrinkage by LASSO is sufficient for controlling 

the variance, and obtaining sparsity and therefore undoing the 

𝑅−1 = [𝑑𝑖𝑎𝑔(𝜆2𝑊1 + 𝐼)]
−1 shrinkage step by multiplying 

the naïve CAEN1 estimates by 𝑑𝑖𝑎𝑔(𝜆2𝑊1 + 𝐼).  
Similar to the case of the naïve CAEN1, the naïve CAEN2 

estimates incur double shrinkage by scaling the correlation 

and shrinking the estimates' direct scaling. We undo the direct 

scaling by rescaling the estimates using the proposed scaling 

factors given in equation (15) for the CAEN2. The scaling 

factors vary for each coefficient according to the correlation 

values and position of the corresponding covariate during 

estimation. It can be easily observed that CAEN1 and CAEN2 

estimates change when the arrangement of the predictors is 

changed. This is also the case with CCAEN1 and CCAEN2 

estimators.  

It can be observed that the CCAEN1 and CCAEN2 estimators 

become the Elastic-Net estimator when 𝑊1 and 𝑊2 are equal 

to a 𝑝 × 𝑝 identity matrix respectively, whereas the CAEN1 

and CAEN2 can only reduce to the naïve Elastic-Net 

estimator. This is another justification for the need to rescale 

the CAEN1 and CAEN2. Henceforth, we refer to the original 

formulations of the correlation-based methods as the “naïve 

correlation-based methods”. 

 

Estimation and Selection of Tuning Parameters (𝝀𝟏 And 

𝝀𝟐) 

The proposed estimators preserve the properties of the 

CAEN1 and CAEN2 estimators. Since the CAEN can be 
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reduced to a LASSO-type problem, existing computational 

techniques for regularised regression methods can easily be 

adapted to obtain the CAEN1, CAEN2, CCAEN1, and 

CCAEN2 estimates.  

To demonstrate the implementation of the proposed 

techniques and carry out the evaluation, the quadratic solver 

method proposed by Grandvalet, Chiquet, and Ambroise 

(2012) is adopted to obtain the regression coefficients for 

CAEN1, CAEN2,  CCAEN1, CCAEN2, LASSO and elastic-

net regression coefficients. This technique allows the inner 

minimization problem to be viewed as a simple unconstrained 

quadratic problem, and an optimization strategy based on the 

iterative resolution of small-size quadratic problems is used 

to obtain minimizers of the objective function. The R (R Core 

Team, 2021) package quadrupen implements this algorithm. 

Selecting the tuning parameters 𝜆1 and 𝜆2 appropriately is 

very important in practice to achieve good prediction and 

estimation accuracy. Minimizing an out-of-sample prediction 

error can be used to determine the tuning parameters. Out-of-

sample prediction error can be estimated using a validation 

dataset if available, otherwise, a k-fold cross-validation can 

be used, see (Efron & Tibshirani, 1997; Efron & Tibshirani, 

1994; Kohavi, 1995). In this study, validation datasets are 

generated for selecting tuning parameters for simulation 

studies while ten-fold cross-validation (10-fold CV) is used to 

choose tuning parameters in applications on real datasets. The 

cross-validations (or validations) for determining CAEN1, 

CAEN2, CCAEN1, CCAEN2 and ENET are done on a two-

dimensional surface because the methods involve two tuning 

parameters. We adopt the typical approach for carrying out 

validation or cross-validation by first choosing a grid of 𝜆2, 
and then for each 𝜆2 the entire solution path of the CAEN1, 

CAEN2, CCAEN1, CCAEN2 or ENET is produced by the 

quadratic solver algorithm. The chosen pair of 𝜆1 and 𝜆2 is 
the one that produces the least out-of-sample prediction error. 

 

RESULTS AND DISCUSSION 

Simulation Study 

In this section, we discuss a simulation study carried out to 

examine the performance of the CCAEN1, and CCAEN2 

under various conditions alongside CAEN1, CAEN2, LASSO 

and ENET. The methods are examined under different cases 

of medium, high and ultrahigh (𝑝 > 𝑛) dimensional settings. 

The true underlying regression model from which we simulate 

data is given by 

𝑌 = 𝑋𝑇𝛽 + 𝜖, 𝜖~𝑁(0, 𝜎2),      (22) 

where 𝜎2 is the error variance. Each simulated data consists 

of a training set for fitting the model, a validation set for 

selecting the tuning parameters, and a test set on which the 

test errors are computed for evaluation of performance. The 

notation ·/·/· is used to represent the number of observations 

in the training, validation and test set, respectively, for 

example, 100/200/300 implies that there are 100, 200 and 

300 observations in the training, validation and test datasets 

respectively. 

 

 

 

 

Simulation Setting  

The simulation settings for the six cases considered here are 

similar to those used in (Tutz & Ulbricht, 2009; Zou & Hastie, 

2005). 

Case 1: We simulated 100 data sets consisting of 𝑛/10𝑛/200 

observations and 8 predictors. We set 𝛽 =
(3, 1.5, 0, 0, 2, 0, 0, 0), 𝑛 ∈ { 50, 100} and 𝜎 = 2. The 

pairwise correlation between 𝑋𝑖 and 𝑋𝑗  was set to be 𝜌(𝑖, 𝑗) =

𝜃|𝑖−𝑗| for all 𝑖, 𝑗, where 𝜃 ∈ {0.5, 0.99}. 
Case 2: This setting is similar to that of Case 1 except that 

𝛽𝑗 = 0.85, for all 𝑗. 

Case 3: In this case, the generated data sets consist of 

𝑛/10𝑛/200 observations and 40 predictors and 𝛽 =
(0,… ,0⏟  

10

, 2,… ,2⏟  
10

, 0, … ,0⏟  
10

, 2,… ,2⏟  
10

), 𝑛 ∈ { 100, 200}, 𝜎 = 5 and 

𝜌(𝑖, 𝑗) = 0.5 for all 𝑖, 𝑗. 
Case 4: Each simulated dataset contains 𝑛/10𝑛/200 

observations and 40 predictors and we set 𝛽 =
(3,… ,3⏟  

15

, 0,… ,0⏟  
25

), 𝑛 ∈ { 100, 200} and 𝜎 = 15. The predictors 

𝑋 are generated as follows: 

𝑋𝑖 = 𝑍1 + 𝑤𝑖
𝑥, 𝑍1~𝑁(0,1), 𝑖 = 1,… ,5, 

𝑋𝑖 = 𝑍2 + 𝑤𝑖
𝑥, 𝑍2~𝑁(0,1), 𝑖 = 6,… ,10, 

𝑋𝑖 = 𝑍3 + 𝑤𝑖
𝑥, 𝑍3~𝑁(0,1), 𝑖 = 11,… ,15. 

𝑋𝑖 are independent and identically distributed (IID) 

𝑁(0,1), for 𝑖 = 16,… ,40 and 𝑤𝑖
𝑥 are iid 𝑁(0,0.01). This 

setting implies three equally important groups with each 

containing 5 members. 

Case 5: In this case, the simulated datasets consist of 

100/1000/200 observations and 200 predictors and we set 

𝛽 = (5,… ,5⏟  
20

, 0, … ,0⏟  
180

), 𝜎 = 3 and 𝜌(𝑖, 𝑗) = 0.5|𝑖−𝑗| for all 𝑖, 𝑗. 

This represents a 𝑝 ≫ 𝑛 situation with 20 of the 200 

predictors being relevant. 

Case 6: This setting is similar to that of Case 1 except that =
(3, 1.5, 0, 0, 2, 0,… ,0⏟  

195

), 𝜎 = 3 and only cases of 𝑛 = 100 and 

𝜃 = 0.5 are considered. Here, 𝑝 ≫ 𝑛 but only 3 of the 200 

predictors are relevant. 

 

Simulation Results 

The performance of the methods is evaluated over 100 

replications of each setting discussed above. The evaluation 

criteria are: prediction mean-squared errors on the test data 

(𝑀𝑆𝐸𝑌) defined as 
1

𝑛𝑡𝑒𝑠𝑡
‖𝑌𝑡𝑒𝑠𝑡 − 𝑋𝑡𝑒𝑠𝑡

𝑇 �̂�‖
2
; mean-squared 

errors of estimates (𝑀𝑆𝐸𝛽) defined as ‖�̂� − 𝛽‖
2
 for assessing 

coefficients’ estimation accuracy, size (𝑆) which is the 

number of non-zero estimated regression coefficients; hits 

(𝑇𝑃) which is the number of truly non-zero coefficients 

correctly estimated to be non-zero , false positive (𝐹𝑃) which 

is the number of truly zero coefficients incorrectly estimated 

to be non-zero. For each method and simulation case, each of 

the evaluation criteria was computed over 100 replications. 

Tables 1-6 summarizes the medians of 𝑀𝑆𝐸𝑌, 𝑀𝑆𝐸𝛽, 𝑆, 𝑇𝑃 

and 𝐹𝑃, while Figure 1-6 gives graphical representations of 

𝑀𝑆𝐸𝑌. 
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Table 1: Medians of mean squared errors of estimation and prediction (𝑴𝑺𝑬𝜷 and 𝑴𝑺𝑬𝒀); median estimated model 

sizes (𝑺), median Hits (𝑻𝑷) and median false positives (FP) for CASE 1 when 𝜽 = 𝟎. 𝟓, 𝟎. 𝟗𝟗 based on 100 replications. 

TS stands for the true size of the model 

𝜽 𝒏 Method 𝑴𝑺𝑬𝜷 𝑴𝑺𝑬𝒀 𝑺 (𝑻𝑺 = 𝟑) 𝐓𝐏 𝐅𝐏 

0.5 

50 

LASSO 0.50 4.38 6 3 3 

ENET 0.36 4.27 4 3 1 

CAEN1 0.49 4.38 6 3 3 

CCAEN1 0.35 4.28 4 3 1 

CAEN2 0.50 4.39 6 3 3 

CCAEN2 0.39 4.24 4 3 1 

       

100 

LASSO 0.21 4.17 6 3 3 

ENET 0.14 4.11 4 3 1 

CAEN1 0.21 4.16 6 3 3 

CCAEN1 0.13 4.12 4 3 1 

CAEN2 0.2 4.16 6 3 3 

CCAEN2 0.17 4.16 4 3 1 

        

0.99 

50 

LASSO 10.57 4.09 4 2 2 

ENET 6.50 4.04 7 3 4 

CAEN1 6.93 4.06 8 3 5 

CCAEN1 7.49 4.05 6 3 3 

CAEN2 6.84 4.07 7 3 4 

CCAEN2 6.67 4.07 7 3 4 

       

100 

LASSO 7.13 4.16 4 2 2 

ENET 5.41 4.16 7 3 4 

CAEN1 5.92 4.18 8 3 5 

CCAEN1 6.05 4.16 6 3 3 

CAEN2 5.60 4.19 6 3 3 

CCAEN2 5.62 4.18 6 3 3 

 

The simulation results for case 1 at training sample sizes (𝑛) 

of 50 and 100 for  𝜃 = 0.5 and 𝜃 = 0.99 are presented in 

Table 1 while the boxplots in Figure 1 provide a graphical 

view of predictive performance (𝑀𝑆𝐸𝑌). The results 

generally show that CCAEN1 and CCAEN2 outperform 

CAEN1 and CAEN2 respectively in respect to prediction 

accuracy and variable selection. The results also show that 

CCAEN1 has the least estimation error at both sample sizes 

considered when the correlation among the predictors is 

moderate to low (𝜃 = 0.5), while ENET has the best 

estimation performance at both sample sizes when 𝜃 = 0.99. 

The LASSO expectedly performs poorly when there is a high 

correlation among some of the predictors (𝜃 = 0.99), 

especially with respect to estimation. 

 

 
(a) 𝑛 = 50, 𝜃 = 0.5 

 
(b) 𝑛 = 100, 𝜃 = 0.5 
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(c) 𝑛 = 50, 𝜃 = 0.99 

 
(d) 𝑛 = 100, 𝜃 = 0.99 

Figure 1: Boxplots of Empirical MSEY comparing LASSO, ENET, CAEN1, CCAEN1, CAEN2 

and CCAEN2 for case 1 over 100 replications at (a) 𝑛 = 50, 𝜃 = 0.5; (b) 𝑛 = 100, 𝜃 = 0.5; (c) 

𝑛 = 50, 𝜃 = 0.99 and (d) 𝑛 = 100, 𝜃 = 0.99 

 

Table 2: Medians of mean squared errors of estimation and prediction (𝑴𝑺𝑬𝜷 and 𝑴𝑺𝑬𝒀); median estimated model 

sizes (𝑺), median Hits (𝑻𝑷) and median false positives (FP) for CASE 2 when 𝜽 = 𝟎. 𝟓, 𝟎. 𝟗𝟗 based on 100 replications 

𝜽 𝒏 Method 𝑴𝑺𝑬𝜷 𝑴𝑺𝑬𝒀 𝑺 (𝑻𝑺 = 𝟖) 𝑻𝑷 𝑭𝑷 

0.5 

50 

LASSO 1.07 4.52 8 8 0 

ENET 0.72 4.32 8 8 0 

CAEN1 0.32 4.16 8 8 0 

CCAEN1 0.69 4.31 8 8 0 

CAEN2 0.54 4.29 8 8 0 

CCAEN2 0.74 4.35 8 8 0 

       

100 

LASSO 0.48 4.43 8 8 0 

ENET 0.33 4.32 8 8 0 

CAEN1 0.18 4.21 8 8 0 

CCAEN1 0.33 4.30 8 8 0 

CAEN2 0.32 4.34 8 8 0 

CCAEN2 0.34 4.32 8 8 0 

        

0.99 

50 

LASSO 10.13 4.07 4 4 0 

ENET 0.05 3.85 8 8 0 

CAEN1 0.49 3.95 8 8 0 

CCAEN1 1.08 3.92 8 8 0 

CAEN2 0.04 3.89 8 8 0 

CCAEN2 0.15 3.86 8 8 0 

       

100 

LASSO 7.05 4.20 5 5 0 

ENET 0.04 3.99 8 8 0 

CAEN1 0.31 4.01 8 8 0 

CCAEN1 0.78 4.03 8 8 0 

CAEN2 0.02 4.00 8 8 0 

CCAEN2 0.07 3.99 8 8 0 

 

Table 2 and the boxplots in Figure 2 summarize the simulation 

results for case 2 which represents a situation where the 

predictors have a non-sparse structure. When the correlation 

among the predictors is moderate to low (𝜃 = 0.5), all the 

regularized methods have similar performances with regards 

to prediction and variable selection while CAEN1 has the best 

performance as regards estimation.  With high correlation 

among some of the predictors (𝜃 = 0.99), LASSO produced 

the worst performance among the regularized methods and 

CAEN2 has the best performance regarding estimation. The 

performances of all the methods improve as sample size 

increases. These findings are similar to the observations made 

by Zou and Hastie (2005) regarding the naive elastic-net and 

elastic-net under a similar simulation setting. Summarily, 

when the model is dense as in case 2 and there is moderate to 

low correlation among the predictors, CAEN1 is the best but 

if the correlation among some of the predictors is high when 

the model is dense, then CAEN2 produces the best 

performance. 
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(a) 𝑛 = 50, 𝜃 = 0.5 

 
(b) 𝑛 = 100, 𝜃 = 0.5 

 
(c) 𝑛 = 50, 𝜃 = 0.99 

 
(d) 𝑛 = 100, 𝜃 = 0.99 

Figure 2: Boxplots of Empirical MSEY comparing LASSO, ENET, CAEN1, CCAEN1, CAEN2 and CCAEN2 for case 2 over 

100 replications at (a) 𝑛 = 50, 𝜃 = 0.5; (b) 𝑛 = 100, 𝜃 = 0.5; (c) 𝑛 = 50, 𝜃 = 0.99 and (d) 𝑛 = 100, 𝜃 = 0.99 

 

Table 3: Medians of mean squared errors of estimation and prediction (𝑴𝑺𝑬𝜷 and 𝑴𝑺𝑬𝒀); median estimated model 

sizes (𝑺), median Hits (𝑻𝑷) and median false positives (FP) for CASE 3 based on 100 replications 

𝒏 Method 𝑴𝑺𝑬𝜷 𝑴𝑺𝑬𝒀 𝑺 (𝑻𝑺 = 𝟐𝟎) 𝑻𝑷 𝑭𝑷 

100 

LASSO 17.9 33.61 29 20 9 

ENET 16.13 32.50 29 20 9.5 

CAEN1 9.35 29.40 36.5 20 16.5 

CCAEN1 15.12 31.83 28 20 8 

CAEN2 13.87 31.63 35 20 15 

CCAEN2 16.16 32.57 29 20 9 

       

200 

LASSO 7.87 28.65 29 20 9 

ENET 7.50 28.44 30 20 10 

CAEN1 5.73 27.78 36 20 16 

CCAEN1 6.58 28.06 28 20 8 

CAEN2 7.51 28.79 32 20 12 

CCAEN2 7.55 28.45 30 20 10 

 

Table 3 and Figure 3 summarize the results for case 3 which 

represents a situation where there is a moderate number of 

relevant and irrelevant slightly correlated predictors. The 

generated dataset for case 3 has 20 relevant and 20 noise 

predictors indicating a situation where the predictors have a 

moderately dense structure. Also, the pairwise correlation 

among the 40 generated predictors is set at 0.5. The results 

indicate that CAEN1 is the best in terms of prediction and 

estimation. However, our proposed methods here have the 

best performance in reference to variable selection with 

CCAEN1 producing the best performance. Zou and Hastie 

(2005) reported similar findings in that the naive elastic-net 

outperformed the elastic-net regarding prediction under a 

similar simulation setting. It can also be observed that 

CCAEN1 and CCAEN2 produce results that are identical to 

the ENET under this setting. 
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(a) 𝑛 = 100 

 
(b) 𝑛 = 200 

Figure 3: Boxplots of Empirical MSEY comparing LASSO, ENET, CAEN1, CCAEN1, CAEN2 and CCAEN2 for case 3 over 

100 replications at (a) 𝑛 = 100 and (b) 𝑛 = 200 

 

Table 4: Medians of mean squared errors of estimation and prediction (𝑴𝑺𝑬𝜷 and 𝑴𝑺𝑬𝒀); median estimated model 

sizes (𝑺), median Hits (𝑻𝑷) and median false positives (FP) for CASE 4 based on 100 replications 

𝒏 Method 𝑴𝑺𝑬𝜷 𝑴𝑺𝑬𝒀 𝑺 (𝑻𝑺 = 𝟏𝟓) 𝑻𝑷 𝑭𝑷 

100 

LASSO 420.38 237.60 10 3 7 

ENET 1.62 225.80 17 15 2 

CAEN1 16.99 228.53 40 15 25 

CCAEN1 14.60 224.41 16 15 1 

CAEN2 99.12 238.58 18 11 7 

CCAEN2 1.96 227.32 16 15 1 

       

200 

LASSO 450.72 239.86 10 3 6 

ENET 0.72 233.07 16 15 1 

CAEN1 16.01 239.74 40 15 25 

CCAEN1 13.89 233.68 16 15 1 

CAEN2 69.21 241.24 19 13 6 

CCAEN2 0.72 234.23 16 15 1 

 

The results for case 4, which represents situations where there 

are grouped predictors are presented in Table 4 and Figure 4. 

The results reveal that CCAEN1 and CCAEN2 perform better 

than CAEN1 and CAEN2 in all criteria. CAEN2 seems not to 

be able to do group variable selection adequately. The LASSO 

as expected has the worst performance in this case while the 

ENET and CCAEN2 have the best performance with respect 

to estimation error and variable selection. However, the 

CAEN1 while selecting all the relevant predictors always 

selects larger models containing many irrelevant predictors 

compared to others. 

 

 
(a) 𝑛 = 100 

 
(b) 𝑛 = 200 

Figure 4: Boxplots of Empirical MSEY comparing LASSO, ENET, CAEN1, CCAEN1, CAEN2 and CCAEN2 for case 4 over 

100 replications at (a) 𝑛 = 100 and (b) 𝑛 = 200 
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Table 5: Medians of mean squared errors of estimation and prediction (𝑴𝑺𝑬𝜷 and 𝑴𝑺𝑬𝒀); median estimated model 

sizes (𝑺), median Hits (𝑻𝑷) and median false positives (FP) for CASE 5 based on 100 replications at 𝒏 = 𝟏𝟎𝟎 

Method 𝑴𝑺𝑬𝜷 𝑴𝑺𝑬𝒀 𝑺 (𝑻𝑺 = 𝟐𝟎) 𝑻𝑷 𝑭𝑷 

LASSO 7.01 15.69 42 20 22 

ENET 6.88 15.28 39.5 20 19.5 

CAEN1 6.05 15.45 46.5 20 26.5 

CCAEN1 4.64 12.47 32 20 12 

CAEN2 7.74 17.83 43 20 23 

CCAEN2 6.92 15.39 40 20 20 

 

The simulation setting for case 5 represents the scenario 

where 𝑝 ≫ 𝑛 and the results are presented in Table 5. The 

results show that all the correlation based methods can also 

produce sparse solutions when 𝑝 ≫ 𝑛. The proposed 

CCAEN1 yields the best results in all criteria considered. It 

can also be noted that CCAEN1 and CCAEN2 produce better 

predictions and select more parsimonious models compared 

to CAEN1 and CAEN2 respectively. 

 

 
Figure 5: Boxplots of empirical MSEY comparing LASSO, ENET, 

CAEN1, CCAEN1, CAEN2 and CCAEN2 for case 5 over 100 

replications at 𝑛 = 100 

 

Table 6: Medians of mean squared errors of estimation and prediction (𝑴𝑺𝑬𝜷 and 𝑴𝑺𝑬𝒀); median estimated model 

sizes (𝑺), median Hits (𝑻𝑷) and median false positives (FP) for CASE 6 based on 100 replications at 𝒏 = 𝟏𝟎𝟎 

Method 𝑴𝑺𝑬𝜷 𝑴𝑺𝑬𝒀 𝑺 (𝑻𝑺 = 𝟐𝟎) 𝑻𝑷 𝑭𝑷 

LASSO 1.29 10.79 14 3 11 

ENET 1.17 10.46 13 3 10 

CAEN1 1.3 10.82 15 3 12 

CCAEN1 1.17 10.12 12 3 9 

CAEN2 1.42 10.94 15 3 12 

CCAEN2 1.33 10.57 13 3 10 

 

Table 6 and Figure 6 provides the results for case 6 in which 

the predictor matrix 𝑋 has a sparse structure with 𝑝 ≫ 𝑛. The 

results are similar to those of case 5 with CCAEN1 and 

CCAEN2 outperforming CAEN1 and CAEN2 respectively. 

Again, CCAEN1 seems to produce the best performance 

while CAEN2 seems to be outperformed by all other methods. 
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Figure 6: Boxplots of empirical MSEY comparing LASSO, ENET, CAEN1, 

CCAEN1, CAEN2 and CCAEN2 for case 6 over 100 replications at 𝑛 = 100 

 

Generally, from the simulation study, it appears that when the 

model is dense and there is moderate to high correlations 

among the predictors, the extra shrinkage incurred by the 

correlation-based penalties is needed and should not be 

undone. Therefore, the naïve correlation-based methods are 

better in terms of estimation and prediction when the 

correlations among the predictors when the model is dense. 

However, the naïve methods (CAEN1 and CAEN2) always 

select larger models including irrelevant predictors compared 

to our proposed methods implying that our proposed methods 

are better at producing sparse solutions while still preserving 

the ability to do ‘grouped variables’ selection.  

 

Discussion  

Application to Real Life Datasets 

This section presents applications of the proposed methods on 

two real-life datasets. The data consists of a response variable 

which is the log of prostate specific antigen (lpsa) and eight 

predictors. The predictors are log cancer volume (lcavol), log 

prostate weight (lweight), age, log of the amount of benign 

prostatic hyperplasia (lbph), seminal vesicle invasion (svi), 

log capsular penetration (lcp), Gleason score (gleason) and 

percentage Gleason score 4 or 5 (pgg45). The prostate cancer 

dataset were analysed in (Zou & Hastie, 2005).  

The second dataset, which is referred to as the gene expression 

dataset, comes from the microarray experiments on 120 

mammalian eye tissue samples (Scheetz et al., 2006). The 

dataset consists of 200 predictors which represent 200 gene 

probes of 120 rats. The response is the expression level of 

TRIM32 gene. In contrast to the first dataset, the dimension 

of the gene expression data is very high with the sample size 

(𝑛 =  120) less than the number of predictors (𝑝 =  200). 

The LASSO, ENET, CAEN1, CCAEN1, CAEN2 and 

CCAEN2 were all applied to the prostate dataset while only 

the regularized methods were applied to the gene expression 

dataset.  

Firstly, the prostate cancer data were randomly split into a 

training set with 50 observations, and a test set with 47 

observations. The training dataset was used for model fitting 

and selection of tuning parameters by 10-fold cross-

validation. The performance of the methods is then compared 

based on their prediction mean squared error (MSEy) on the 

test dataset and the number of non-zero coefficients. For the 

gene expression dataset, the training set consists of 60 

observations while the test set consists of 60 observations 

likewise. The process of data splitting, model fitting and 

computation of MSEy was repeated 100 times. The results for 

both datasets are summarized in Table 7. 

The first dataset which we refer to as the prostate cancer 

dataset comes from a study of prostate cancer by Stamey et al. 

(2001)) involving 97 men. The data consist of a response 

variable which is the log of prostate specific antigen (lpsa) and 

eight predictors. The predictors are log cancer volume  

 

Table 7: Median mean squared errors of prediction (𝑴𝑺𝑬𝒀) and median estimated model sizes (𝑺), based on 100 

replications 

Method 
Prostate Data Eye Tissue Data 

𝑴𝑺𝑬𝒀 𝑺 𝑴𝑺𝑬𝒀 𝑺 

LASSO 0.594 5 0.008 23 

ENET 0.597 5 0.008 31 

CAEN1 0.601 6 0.007 102 

CCAEN1 0.595 5 0.008 22 

CAEN2 0.605 6 0.007 145.5 

CCAEN2 0.614 5 0.007 23 

 

The results in Table 7 indicate that the naive versions of the 

correlation-based methods select larger models compared to 

the corresponding scaled versions with no substantial gain in 

prediction accuracy in both datasets. For the prostate cancer 

data, only the lasso performs better than CCAEN1 in terms of 

prediction and sparsity. The LASSO, ENET, CCAEN1 and 

CCAEN2 select 5 predictors while CAEN1 and CAEN2 
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select the higher number of predictors with no significant gain 

in prediction accuracy. 

The second gene expression dataset is a real life situation 

when the number of predictors exceeds the sample size. The 

results from applying the considered methods on the gene 

expression dataset show that the proposed rescaled 

correlation-based methods outperform their corresponding 

nave versions in terms of sparsity with no significant loss in 

prediction accuracy terms. The CAEN2 produced a prediction 

error of about 0.007, albeit with the median number of 

predictors of 145.5 which is almost six times that of the 

CCAEN2 with the same prediction error. The CCAEN1 

selected the fewest number of predictors (22 predictors) with 

no significant difference between its prediction error (0.008) 

and the lowest prediction error of 0.007 which was produced 

by the CAEN1, CAEN2 and CCAEN2 using an average of 

102, 145.5, 23 and 176 predictors respectively. Out of all the 

nave correlation-based methods, the CAEN1 is the best in 

terms of sparsity and prediction accuracy. The results from 

this section further show that scaling the correlation-based 

methods improves their performances in terms of variable 

selection. 

 

CONCLUSION 

Decomposition of the ridge operator is important to rescale 

and undo the double shrinkage incurred by using both the 

ridge and LASSO penalties. The CAEN1 and CAEN2 assess 

the finite sample performance where an efficient and robust 

worst-case quadratic solver method was adopted for 

estimation. The CCAEN1 and CCAEN2 through simulations 

and applications to real-life datasets perform better in terms 

of variable selection and ability to handle grouping effects 

than the naive CAEN1, CAEN2, LASSO and ENET. The 

CCAEN1 produce the best results in high-dimensional 

situations (𝑝 ≫  𝑛) while CCAEN2 outperforms all other 

methods when there are grouped variables. By correctly 

identifying relevant variables in high-dimensional problems, 

CCAEN1 and CCAEN2 have made a significant contribution 

to big data analytics and mining. 
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