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Abstract

There are still a lot of real-world issues where the observed facts cannot effectively fit into frequently
used classical probability models. To solve this, it is imperative to provide probability models that ac-
curately represent the behavior of certain real-world phenomena. having considered these problems,
the study proposed a new lifetime distribution, the Modified Dhillon Distribution (MDD), developed
using the Beta integrated model approach. The study examines the statistical properties of the
new distribution such as the Quantile function, Moment, Moment generating function, Entropy, and
reliability functions. Moreover, the maximum likelihood approach was used to estimate the distri-
bution parameters. Using real data, the study demonstrates the applications of the MDD using two
sets of real data sets, and it has the minimum value of AIC, BIC and CAIC. Therefore, based on
the results the study concluded that the MDD offers the best fit out of all the competing distributions.

Keywords: Dhillon distribution, Distribution Properties, Maximum Likelihood Estimate, Real
data Applications.

INTRODUCTION

Several researchers in the modern field of statis-
tics have worked hard, and some are still working
hard, to create distributions by extending the exis-
tence of classical distributions or combining some
well-known classical distributions with others to
produce a better fit than when they are used alone
due to the added flexibility. The Weibull distri-
bution (Weibull, 1951) is described as the most
extensively used in many other disciplines outside
reliability. It was named after the Swedish mathe-
matician Waloddi Weibull, who provided a detailed
description of it. On the other hand, the Weibull
distribution’s failure rate function can only be in-
creasing, decreasing, or constant. Human mortality
and the failure rate are examples of lifetime data
that were not captured by it. Therefore, To satisfy
the requirements, numerous Weibull distribution
extensions, changes, and generalizations have been
proposed (Xie et al., 2002). One of the extensions of
the Weibull distribution was the modified Weibull
(MW) distribution which is a notable distribution
that has been used by hundreds of researchers and
has been applied in different applications. The
MW distribution was developed through the lim-
iting distribution of the so-called Beta-integrated
model (Lai et al., 1998).(Xie et al., 2002) Suggested

models using bathtub-shaped failure rate functions
for reliability analysis, which cannot be modeled
by the standard Weibull distribution. (Lai et al.,
2003) Proposed a novel lifetime distribution ca-
pable of simulating a hazard-rate function in the
form of a bathtub, with parameters estimated us-
ing a Weibull probability paper plot.(Nassar and
Eissa, 2003) Proposed the exponentiated Weibull
distribution, which extends the Weibull family and
includes various statistical measures. (Cordeiro
et al., 2014) Introduced the exponential-Weibull
distribution, a novel three-parameter model with
various mathematical aspects obtained and evalu-
ated for effectiveness through simulations.Xie and
Lai (1996) Examined a basic model combining two
Weibull survival functions to represent a bathtub-
shaped failure rate. Lai et al. (2016) Introduced
the integrated beta model for bathtub-shaped haz-
ard rate data, specifically designed for modeling
lifetime data with a finite range. Nadarajah and
Haghighi (2011) Introduced the generalization of
the exponential distribution where the generaliza-
tion always has its mode at zero and allows for
increasing, decreasing, and constant hazard rates.
Abubakar et al. (2024) we introduce a new modified
distribution called arcsine Rayliegh Pareto (ASRP)
Distribution. Statistical properties, including sur-
vival function, hazard function, entropy, moment,
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moment generating function, and order statistics
were derived. Also, a maximum likelihood estima-
tion was used to estimate the parameters of the
distribution. Thach et al. (2020) Presented a non-
linear failure rate as a generalization of the linear
failure rate model. This model was evaluated and
applied to actual data sets, both censored and un-
censored, demonstrating its flexibility and robust-
ness.Almalki (2018) Hybridized the five-parameter
new modified Weibull (NMW) distribution into a
reduced variation, maintaining its desirable prop-
erties while using fewer parameters.

Moreover, flexible statistical distributions are
always needed for practical purposes. Silva et al.
(2010) extend the MW distribution to propose
a five-parameter hybridized distribution known
as the beta-modified Weibull distribution. Sim-
ilarly in 2013, (Almalki and Yuan, 2013) intro-
duced an additive distribution called the new mod-
ified Weibull NMW model by combining the MW
and Weibull distribution. The NMW model was
known for its great flexibility in modeling datasets
characterized by increasing and bathtub failure
rate shapes. (Zamani et al., 2021) Introduced a
novel distribution tailored for specific data mod-
eling needs. The new log-logistic distribution was
designed to handle a wide range of hazard func-
tions, including bathtub-shaped, unimodal, and
monotone hazard functions. Al-Essa et al. (2023)
The modified exponential-Weibull (MEW) distri-
bution is a novel flexible four-parameter distribu-
tion that was proposed by the transfer function
of the exponential and Weibull distribution using
the odd function transformation. Anzagra et al.
(2020) Developed a flexible generator of distribu-
tions within the odd Chen-G family, providing two
distinct versions to address different modeling sce-
narios. Ghazal (2023) proposed a novel extension
of the three-parameter modified Weibull distribu-
tion NMW3 called NMW3, In terms of reliabil-
ity, it shows bathtub-shaped or increasing hazard
rates, which can be advantageous. Its statistical
properties were derived. Furthermore, the flat-
ness of the NMW3 distribution’s bathtub curve
and the parameter sensitivity were examined. Pal
et al. (2006) Introduced the family of distributions
called exponentiated Weibull distribution EW. The
distribution has three parameters: one scale and
two shapes. The distributions’ moments, survival
function, and failure rate have all been determined
through the application of specific special formulas.
The failure rate’s behavior has been examined and
the distribution has been fitted to an actual data set
with excellent results. Cordeiro et al. (2014) pro-
posed a new three-parameter model called the ex-
ponential–Weibull EXW distribution, Some math-
ematical properties of the proposed distribution

were investigated. The four explicit expressions for
the generalized ordinary moments and a general
formula for the incomplete moments based on infi-
nite sums of Meijer’s G functions were derived.

Several decades ago, (Dhillon, 1980) proposed
the so-called hazard rate (HR) models in his effort
to suggest models that are alternative to Weibull
distribution and alike for modeling non-monotone
failure rates. Among Dhillon’s constructed HR
models, one is identified as a suitable model for
an inverted bathtub failure rate with its survival
function given as

S(x) = e− ln(λtn+1), x > 0, λ, η > 0 (1)

Inspired by the great flexibility of MW distri-
bution in various real data applications identified
with non-monotone hazard rates, in this research,
we propose to extend the HR model Dhillon (1980)
by adopting the same approach as in the case of
Weibull and MW distributions. Given that the
author referred to the model as the HR model,
in this study, we named it after the author for
clarity. The author demonstrated the model’s po-
tential for describing various types of monotone
HR (when η ≤ 1) and non-monotone HR (when
η > 1). The Dhillon model, despite its flexibility,
lacks the recognition it merits. Therefore, in this
work, we intend to propose yet another version of
the Dhillon distribution using the methodology by
Lai et al. (2003).

MATERIALS AND METHODS

Modified Dhillon Distribution

Lai et al. (2003) applied the idea of a Beta-
integrated model by taking a suitable limit of Beta-
integrated distributions developed by Lai et al.
(1998), to extend the Weibull distribution Cumu-
lative Density Function (CDF) and proposed the
so-called modified Weibull (MW) distribution, with
CDF

F (x) = 1− e−axbeλx

, x > 0 (2)

In essence, the term axb in the Weibull CDF

F (x) = 1− e−axb

is replaced by the term axbeλx to
have the modified Weibull CDF (2). The resulting
model in (2) has received wide attention in the lit-
erature due to its ability to overcome some of the
Weibull’s limitations, including the Weibull inabil-
ity to model failure time found with the bathtub
failure rate. The Dhillon model has its hazard rate
and the reliability functions defined as

h(t) =
ηλtη−1

λtη + 1
, t, λ, η > 0. (3)

and
R(t) = e−ln(λtη+1) λ, t > 0, (4)
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where λ > 0 is the scale parameter and η > 0 repre-
sents the model’s shape parameter (which controls
the shape of the model).

In this study, we propose to extend the two-
parameters classical distribution introduced by
Dhillon (1980) by applying the same approach as
in the case of Weibull and modified Weibull distri-
butions.
Therefore, If X is an MDD random variable, it is
said to have followed the cumulative distribution
function (CDF) and The probability density func-
tions (PDF) as;

F (x) = 1− e−ln(λxαeβx+1) (5)

and

f(x) =
(α+ βx)λxα−1eβx

λxαeβx + 1
e−ln(λxαeβx+1) (6)

Figure 1 below are CDF plots of some values of
the parameters and it can be seen clearly that the
CDF is increasing and converges to one. Figure 2 is
the pdf plot Modified Dhillon distributions (MDD).

The hazard rate and survival function are ex-
pressed respectively as;

h(x) =
(α+ βx)λxα−1eβx

λxαeβx + 1
(7)

and

S(x) = e−ln(λxαeβx+1) (8)

Figure 3 It can be seen clearly that the sur-
vival function is monotonically decreasing. Figure
6 Shows that the hazard function is increasing, de-
creasing and bathtub as the α and β level changes.

Quantile Function

Suppose that X is a random variable, then the
quantile function of X say Xq(u) of the Modified
Dhillon distribution is given as:

F (x) = 1− e−log(λxαeβx+1) (9)

In this study, the quantile function close form can
be obtained by substituting k = xαeβx, it can
be shown that xu =

∑∞
i=1 aik

i
α . See Carrasco

et al. (2008). Where ai =
(−1)i+1ii−2

i− 1
(
α

β
)i−1

and the condition of convergence of this sum is
u− 2

λ
< a

(
α

βe

)α

. In that case, the quantile func-

tion Q(u) is.

Q(u) =

∞∑
i=1

ai

(
u− 2

λ

) i
α

(10)

The skewness and the kurtosis are defined as

SK =
Q
(
2
4

)
− 2Q

(
1
2

)
+Q

(
1
4

)
Q
(
3
4

)
−Q

(
1
4

) (11)

and

KU =
Q( 78 )−Q( 38 )−Q( 38 ) + ( 18 )

Q( 68 )−Q( 28 )
(12)

Moments

The rth moment of the random variable X is de-
fined as follows:

µ′
r =

∫ ∞

0

xrλ(α+ βx)xr+λ−1eβx

(λxαeβx + 1)2
dx (13)

It is obvious that equation 13 can not produce the
closed-form solution, it can be simplified using a
tailor series expansion as:

µ′
r =

∞∑
i=0

∫ ∞

0

λβii!(α+ βx)xr+α+i−1

(λβi
∑∞

i=0 x
α+i + i!)2

dx (14)

where

I(x, r, α, i, λ, β) =

∫ ∞

0

(α+ βx)xr+α+i−1

(λβi
∑∞

i=0 x
α+i + i!)2

dx

(15)
Therefore moment can be represented as:

µ′
r =

∞∑
i=0

λβii!I(x, r, α, i, λ, β) (16)

Moment Generating Function (MGF)

The moment-generating function of the Modified
Dhillon distribution is defined as

Mx(t) =

∫ ∞

0

etxλ(α+ βx)xα−1eβx

(λxαeβx + 1)2
dx (17)

Using Tailor series expansion

eβx =

∞∑
j=0

βjxj

j!
(18)

apply the Tailor series expansion in 18 we have

Mx(t) =

∞∑
i=0

∞∑
j=0

∫ ∞

0

λi!(α+ βx)tiβjxα=i=j−1

(λβj
∑∞

j=0 x
α+j + j!)

dx

(19)
Then the MGF of MDD can be seen as:

Mx(t) =

∞∑
i,j=0

λi!tiβj

j!
I(x, α, β, t,m, i, j, λ) (20)
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Figure 1: Plot of Modified Dhillon Cumulative density function (CDF)

Figure 2: Plot of Modified Dhillon probability density function (pdf)

Where

I(x, α, β, t,m, i, j, λ) =

∫ ∞

0

(α+ βx)xα+i+j−1

(λβj
∑∞

j=0 x
α+j + j!)

dx

(21)

Order statistics

Suppose x1, ...xn is a random sample from the
MDD and let xi:n < ... < xn:n denote the corre-
sponding order statistic obtained from this sample.
The pdf, fi:n(x) of the ith order statistic can be
obtained as

fi:n(x) =
n!

(i− 1)!(n− 1)!
f(x)F (x)i−1[1−F (x)]n−i

(22)

Using binomial expansion

[i− F (x)]
n−i

=

n−i∑
j=0

(−1)j
(
n− j

j

)
[F (x)]j (23)

Which is equivalent to

fi,n(x) =

n−i∑
j=0

(−1)jn!

(i− 1)(n− i− j)!j!
f(x)[F (x)]j+i−1

(24)
substitute (5) and (6) into (24) gives:

fi,n(x) =

n−i∑
j=0

(−1)jn!(αλxα−1 + λβxα)×

eβx(1− (λxβx)−1)j+i−1

(i− 1)(n− i− j)!j!(λxαeβx + 1)2

(25)

The minimum order statistics are obtained as
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Figure 3: survival function plot of MDD

Figure 4: Hazard function plots of MDD

fi,n(x) =

∞∑
j=0

(
n− 1

j

)
(−1)j(λαxα−1+

λβxα)eβx(1− (λxαeβx + 1)−1)j

(26)

Also, the maximum order of statistics is obtained as

fn,n(x) = n(αλxα−1 + λβxα)eβx×
(1− (λxαeβx + 1)−1)n−1

(27)

Entropy

Entropy also known as Shanon entropy, is a mea-
sure of uncertainty or randomness of a probability
distribution which is defined as.

Iy(x) =
1

1− ϕ
log

∫ ∞

−∞
f(y)ϕdx (28)

The Modified Dhillon distribution is defined as:

f(x)ϕ =

(
i!(αλxα+ i− 1 + λβi+1xα+i)

(λxα+iβi + 1)

)ϕ

(29)

The MDD Entropy is defined as:

Iy(x) =
1

1− ϕ
log

∫ ∞

0

(
i!(αλxα+ i− 1 + λβi+1xα+i)

)ϕ
(λxα+iβi + 1)2ϕ

dx

(30)

Parameters estimation of the MDD

let x1, ˙..., xn be a random sample of size n from the
Modified Dhillon distribution (MDD) with param-
eter (α,β,λ). Then the log-likelihood function of
MDD is expressed as

L(x, θ) =

n∏
i=1

f(x, θ) (31)

Now, substitutes (6) into (31) gives;

L(x, θ) =

n∏
i=1

λ(α+ βx)xα−1eβx

λxαeβx + 1
e−ln(λxαeβx+1)

(32)
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Evaluate (32) it becomes;

Lf(xi, θ) = λn(α+ βxi)
nxn(α−1)×

eβ
∑n

i=0 xi(λxα
i e

βxi + 1)−2n
(33)

take the log of equation 33 we have;

logLf(xi, θ) = logλn + log(α+ βxi)
n+

log

[
n∏

i=1

x
n(α−1)
i

]
+ logee

β
∑n

i=0 xi
+

log(λxα
i e

β
∑n

i=0 xi + 1)−2n

(34)

evaluate equations (34) to gives;

..

nlogλ+ nlog(α+ βxi) + nlog

n∑
i=0

xi−

nlog

n∑
i=0

xi − nlog

n∑
i=0

xi + β

n∑
i=0

xi−

2nlog(λxα
i e

∑n
i=0 xi + 1)..

(35)

differentiate equation (35) with respect to α we
have

n

α+ βxi
+ nlog

n∑
i=0

xi −
2nλxα

i e
β
∑n

i=0 xi

(λxα
i e

β
∑n

i=0 xi + 1)
(36)

differentiate equation (35) with respect to β we
have

dlogLf(xi, θ)

dβ
=

nxi

α+ βxi
+

n∑
i=0

xi−

2nλxα
i e

β
∑n

i=0 xi ∗
∑n

i=0 xi

(λxα
i e

β
∑n

i=0 xi + 1)

(37)

differentiate equation (35) with respect to λ we
have;

dlogLf(xi, θ)

dλ
=

n

λ
− 2nxα

i e
β
∑n

i=0 xi

(λxα
i e

β
∑n

i=0 xi + 1)
(38)

RESULTS AND DISCUSSIONS

In this section, we used an actual data set that
was fitted to the model along with some baseline
generalizations to demonstrate the performance of
the Modified Dhillon distribution.

The Akaike Information Criterion (AIC), Con-
sistent Akaike Information Criterion (CAIC), and
Bayesian Information Criterion (BIC) are taken
into consideration while evaluating the performance
of our suggested distribution in comparison to alter-
native distributions. The values of log-likelihood
functions (L), The Akaike Information Criterion

(AIC), the Consistent Akaike Information Crite-
rion (CAIC), and the Bayesian Information Crite-
rion (BIC) are given in the Table for the models to
verify which of the distributions best fit the data-
set.

Dataset 1

The first data set utilized comes from (Dhillon,
1981) and has been extensively utilized in numer-
ous literary works see (Rizvi et al., 2008; Dhillon,
2007; Sra and Dhillon, 2006), it represents the
”Time to first failure (1000’s hours) of 500 MW”
generators. The data sets are given below;

0.058, 0.070, 0.090, 0.105, 0.113, 0.121, 0.153, 0.159, 0.224,
0.421, 0.570, 0.596, 0.618, 0.834, 1.019, 1.104, 1.497, 2.027,
2.234, 2.372, 2.433, 2.505, 2.690, 2.877, 2.879, 3.166, 3.455,
3.551, 4.378, 4.872, 5.085, 5.272, 5.341, 8.952, 9.188, 11.399.

Dataset 2

The second data is the data sets representing the
failure and running times of thirty devices see
(Meeker et al., 2022), the thirty sets of datasets
that represent the failure and running times of
thirty devices is given below;
2, 10, 13, 23, 23, 28, 30, 65, 80, 88, 106, 143,
147, 173, 181, 212, 245, 247, 261, 266, 275,
293, 300, 300, 300, 300, 300, 300, 300, 300.

Discussion

Table 2 Is the result obtained using time to first
failure of 500 Mega Watts (MW) generator data
sets, which indicates the corresponding values of L,
AIC, CAIC, and BIC for each model. The table is
clearly demonstrate that the modified Dhillon dis-
tribution (MDD) has the minimum value of L, AIC,
CAIC, and BIC among others, this indicate MMD
outperforms the others extension distributions in
terms of performance. As a result, when it comes
to fitting the same data set, it will considered as
the best model among the four (4) distributions
that were used to compare performance.
On the other hand table 5 Is the result obtained
using the Meeker and Escobar data set, it is clearly
shown that the proposed distribution: Modified
Dhillon distributions (MDD) proved to be a better-
fitted model with the least value of (L), (AIC),
(AICC), and (BIC), Using the Meeker and Escobar
data set. This makes it clearer that, out of the four
models, MDD might be the best. Consequently, we
conclude that the MDD offers the best fit among
the studied distributions after taking into account
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Table 1: Summary of time to failure MW Generator

Min Q(1) Median Mean Q(5) Max
0.0580 0.3718 2.1305 2.5674 3.5674 11.3994

Figure 5: Histogram illustration of right-skewed Megawatts Generator data

Table 2: Models performance comparison using MW data sets

Models α̂ β̂ λ̂ θ̂ L̂ AIC AICC BIC
MDD 0.7041 0.2495 0.4930 -68.3577 142.7155 143.4655 147.4660
EXW 0.2245 1.3378 0.4754 -68.4044 142.8089 143.5589 147.5598
AW 0.0036 2.5145 0.4924 0.71985 -68.0764 144.1528 145.4431 150.4868
EW 0.7226 0.3532 0.1480 -68.6540 143.3080 144.0580 148.0586
DH 0.0021 0.0027 -72.0209 148.0417 148.4050 151.2087

Table 3: Normality test for the fitted models

Models KS A W
MDD 0.10253 0.48643 0.070111
EXW 0.10245 0.46462 0.063375
AW 0.099371 0.4558 0.062381
EW 0.11789 0.55714 0.08505
DH 0.3499 1.1653 0.1932

Table 4: Summary of failure and running time data of thirty devices by Meeker and Escobar

Min Q(1) Median Mean Q(5) Max
2.00 68.75 196.50 177.03 298.25 300.00

the outcomes of the two distinct data sets men-
tioned above.

CONCLUSION

From the foregone results, the Modified Dhillon
Distribution (MDD) emerges as a superior model

for time-to-failure data, showcasing its robustness
and accuracy in comparison to other distributions.
The MDD’s ability to provide a better fit across dif-
ferent data sets underscores its practical utility in
reliability analysis and decision-making processes.
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Figure 6: Failure and running time

Table 5: Model performance comparison using Meeker and Escobar data sets

Models α̂ β̂ λ̂ θ̂ L̂ AIC AICC BIC
MDD 0.67037 0.00442 0.014145 -142.2023 290.4046 291.3277 294.6082
EXW 0.00314 4.90531 0.186365 -142.5892 291.1783 292.1014 295.3819
AW 0.5432 1.3452 0.3421 0.7199 -162.3937 332.7874 334.3874 338.3922
EW 0.99396 0.11765 0.11950 -142.7917 290.5834 290.5065 294.7870
DH 0.0021 0.0027 -193.1844 390.3688 390.8132 393.1712

Table 6: Normality test for the fitted model’s Meeker Escobar

Models KS A W
MDD 0.29106 1.6521 0.27325
EXW 0.23415 1.3114 0.20497
AW 0.51366 0.0542 0.062381
EW 0.21875 0.1.8295 0.31136
DH 0.2069 2.1667 0.3797
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