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ABSTRACT 

In the field of reliability theory, practitioners have been working assiduously in recent years to propose new 

families of continuous probability distributions that extend the standard theoretical distribution that is currently 

in use. They have done this by hybridizing two or more probability models or by introducing one or more 

parameters to get more flexibility in fitting data from a variety of fields, including the environmental, 

economics, finance, and medical sciences. The T-X approach was used to establish the Kumaraswamy Type 

II Generalized Topp-Leone-G (KwT2GTL-G) family, which extends the Type II Generalized Topp-Leone-G 

family of distributions with extra shape parameters. A few statistical characteristics of the novel family were 

determined and examined. A sub-model emerged and MLE was used to estimate the model parameters. To 

demonstrate the value of the new family, two real-life data sets were used: a set that related to the relief times 

(in minutes) of patients taking an analgesic, and the other that related to the failure and service times for a 

windshield. The superior goodness-of-fits and empirical flexibility of the KwT2GTL-G distribution are 

demonstrated by comparisons with other distributions, including the Kumaraswamy Extension Exponential 

(KwEEx), Kumaraswamy Exponential (KEx), Exponential Generalized Exponentiated Exponential (EGEEx), 

and Exponentiated Weibull-Exponential (EWEx) distributions.. In the second dataset, the KwT2GTLEx 

distribution achieved an AIC value of 38.0489, outperforming the EGEEx distribution which had an AIC value 

of 39.6708 next to it. These findings highlight the KwT2GTL-G family's potential to enhance lifetime data 

modeling, which would have a substantial impact on engineering, medicine, and other domains.  
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INTRODUCTION 

Many problems abound in various field of human endeavor 

cannot be perfectly and adequately handled by most 

commonly known conventional probability distributions 

available for modeling lifetime data sets such as Normal, 

Weibull, Pareto, Gomepertz, Rayleigh, Exponential, e.t.c, 

(Yahaya and Doguwa (2021)). According to Adekunle et al 

(2022), Numerous statistical distributions have been used 

widely to describe and forecast current occurrences in a 

variety of fields, including biology, engineering, economics, 

geography, and many more. However, the data in many of 

these areas typically exhibit complex behavior and a variety 

of forms that are linked to varying levels of skewness and 

kurtosis. There is a clear need for an extended version of these 

classical distributions to enhance their capability while also 

improving their goodness of fit. Various strategies for 

changing existing classical distribution to make them more 

flexible or inventing new statistical distributions for modeling 

data sets from various fields of study have flooded the 

statistical archive in recent decades. Majority of the strategies 

are focused toward constructing heavy-tailed distributions, 

monotonic and non- monotonic failure rates, a tractable 

cumulative distribution function (CDF) for easy simulation, 

and modeling data with varying degrees of skewness and 

kurtosis.  

The Exponentiated Type II Generalized Topp-Leone-G 

Family by Kolawole et al (2023), the Beta-G by Eugene et al. 

(2002), the Weibull-X family of distributions of Alzaatreh et 

al. (2013), the Exponentiated Generalized class of Cordeiro et 

al. (2013), the Logistics-G introduced by Torabi and Montzeri 

(2014), the Gamma-X family of Alzaatreh et al. (2014), the 

Odd Generalized Exponential-G of Tahir et al. (2015), the 

Type I half- logistic family of Cordeiro et al. (2016), the 

Kumaraswamy-Weibull-Generated family of Hassan and 

Elgarhy (2016), the New Weibull-G family of Tahir et al. 

(2016), the Generalized Transmuted-G of Nofal et al. (2017), 

the New Generalized family of distributions of Ahmad et al 

(2018), the Topp-Leone Kumaraswamy- G family of 

distributions by Ibrahim et al. (2020), Rayleigh-

Exponentiated Odd Generalized-X Family by Yahaya and 

Doguwa (2021), Type I Half Logistic Exponentiated-G family 

by Bello et al. (2021) are some well- known modified families 

of distributions in the literature proposed by different 

researchers to improve the standard theoretical distribution 

The Generalized distribution can be used effectively in fitting 

lifetime datasets because it can accommodate monotonic and 

non-monotonic data characteristics. 

Hence, this study proposed, Kumaraswamy Type II 

Generalized Topp-Leone-G family of distribution capable of 

modeling with monotonic and non- monotonic hazard 

functions that can provide better fits to medical and 

engineering data. 

In this work, we define another new class of generalized 

family of distribution called Kumarasawamy Type II 

Generalized Topp-Leone-G family (KwT2GTL-G) from the 

Cumulative Distribution Function of Kumaraswamy-G (Kw-

G)family defined by Cordeiro and de Castro (2011) as; 

𝐹𝑘𝑤(𝑥; 𝜆, 𝜃, 𝜉) = 1 − [1 − 𝐺𝜆(𝑥; 𝜉)]
𝜃

    (1) 

And pdf 

𝑓𝐾𝑤(𝑥; 𝜆, 𝜃, 𝜉) = 𝜃𝜆𝑔(𝑥; 𝜉)𝐺𝜆−1(𝑥; 𝜉)[1 − 𝐺𝜆(𝑥; 𝜉)]
𝜃−1

 

      (2) 

Where 𝜃 > 0, 𝑎𝑛𝑑𝜆 > 0  are two shape parameters belonging 

to set of positive real numbers. 

According to Alzaatreh et al. (2013), the cdf of the T-X family 

of distribution is given as  

𝐹(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
𝑁[𝐺(𝑥)]

𝛽1
= 𝑅[𝑁[𝐺(𝑥)]]   (3) 
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Where 𝑁[𝐺(𝑥)] must be found to satisfy the following conditions 

i. 𝑁[𝐺(𝑥)] ∈ [𝛽1 , 𝛽2] 
ii. 𝑁[𝐺(𝑥)]is differentiable and monotonically non-decreasing, and    (4) 

iii. 𝑁[𝐺(𝑥)] → 𝛽1 as 𝑥 → −∞ and 𝑁[𝐺(𝑥)] → 𝛽2 as 𝑥 → ∞ 

Let 𝑟(𝑡) be the pdf of a random variable 𝑇 ∈ [𝛽1 , 𝛽2]for −∞ ≤ 𝛽1 < 𝛽2 < ∞and 𝑁[𝐺(𝑥)] be a function of the cdf of a random 

variable 𝑋. 

Then the pdf corresponding to equation (3) is given by; 

𝑓(𝑥) = {
𝑑

𝑑𝑥
𝑁[𝐺(𝑥)]} 𝑟{𝑁[𝐺(𝑥)]}        (5) 

Let𝑋be any arbitrary random variable with CDF:𝐺(𝑥; 𝜉).Also, let 𝑇 ∈ (𝛽1 , 𝛽2) be a random variable with a PDF: 𝑟(𝑡). 

Furthermore, let our proposed link function be Type II Generalized Topp-Leone family of distribution, (Hassan et al., 2019) 

and it is given as, 

𝐹𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜉) = 1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼

       (6) 

And the Probability Density Function (pdf) is given as  

𝑓𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜉) = 2𝛼𝛽ℎ(𝑡; 𝜉)𝐻2𝛽−1(𝑡; 𝜉)[1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼−1

     (7) 

where 𝛽 > 0, 𝛼 > 0;𝑡 > 0and 𝐹(𝑡; 𝜉) 𝑎𝑛𝑑 𝑓(𝑡; 𝜉)are the cdf and pdf of the baseline distribution with parameter vector𝜉. 

 

MATERIALS AND METHODS 

Kumaraswamy Type II Generalized Topp-Leone-G Family of Distribution (KwT2GTL-G) 

The CDF ofKwT2GTL-G family of distribution is given by; 

𝐹𝐾𝑤𝑇2GTL−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = 1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

     (8) 

Proof 

From equation (2), we can write; 

𝐹𝐾𝑤𝑇2GTL−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜉) = ∫ 𝑓𝐾𝑤
(𝑥; 𝜆, 𝜃, 𝜉)𝑑𝑥

𝐹𝑇2𝐺𝑇𝐿−𝐺(𝑡;𝛽,𝛼,𝜉)

0
     (9) 

𝐹𝐾𝑤𝑇2GTL−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = ∫ 𝜃𝜆𝑔(𝑥; 𝜉)𝐺𝜆−1(𝑥; 𝜉)[1 − 𝐺𝜆(𝑥; 𝜉)]
𝜃−1

𝑑𝑥
1−[1−𝐻2𝛽(𝑡;𝜉)]

𝛼

0

 

𝐿𝑒𝑡 𝑦 = 1 − 𝐺𝜆(𝑥; 𝜉), 𝑤ℎ𝑒𝑛 𝑥 = 0, 𝑦 = 1,𝑤ℎ𝑒𝑛 𝑥 = 1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
, 𝑦 = 1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]

𝛼
]
𝜆
 

𝑑𝑦

𝑑𝑥
= −𝜆𝑔(𝑥; 𝜉)𝐺𝜆−1(𝑥; 𝜉), 𝑑𝑥 =

𝑑𝑦

−𝜆𝑔(𝑥; 𝜉)𝐺𝜆−1(𝑥; 𝜉)
 

𝐹𝐾𝑤𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = ∫ 𝜃𝜆𝑔(𝑥; 𝜉)𝐺𝜆−1(𝑥; 𝜉)𝑦𝜃−1
𝑑𝑦

𝜆𝑔(𝑥; 𝜉)𝐺𝜆−1(𝑥; 𝜉)

1

1−[1−[1−𝐻2𝛽(𝑡;𝜉)]
𝛼
]
𝜆

 

𝐹𝐾𝑤𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = ∫ 𝜃𝑦𝜃−1𝑑𝑦
1

1−[1−[1−𝐻2𝛽(𝑡;𝜉)]
𝛼
]
𝜆

 

𝐹𝐾𝑤𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = 𝜃 [
𝑦𝜃−1+1

𝜃 − 1 + 1
]
1−[1−[1−𝐻2𝛽(𝑡;𝜉)]

𝛼
]
𝜆

1

 𝐹𝐾𝑤𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = [𝑦𝜃]
1−[1−[1−𝐻2𝛽(𝑡;𝜉)]

𝛼
]
𝜆

1
 

The cdf of the new family is as follows  

𝐹𝐾𝑤𝑇2𝐺𝑇𝐿−𝐺(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = 1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

 

  

Important Representation 

The binomial expansion to expand cdf of KwT2GTL-G is given below as;   

[1 − 𝑡]𝑏 = ∑ (−1)𝑖 (
𝑏
𝑖
) 𝑡𝑖∞

𝑖=0          (10) 

Using the series expansion in equation (10), then equation (8) becomes 

[𝐹(𝑡)]ℎ

 

[1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

]

ℎ

= ∑(−1)𝑖 (
ℎ
𝑖
) [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]

𝛼
]
𝜆
]
𝜃𝑖∞

𝑖=0

 

Consider; 

[1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃𝑖

= ∑(−1)𝑗 (
𝜃𝑖
𝑗
) [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]

𝛼
]
𝜆𝑗

∞

𝑗=0  

[1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆𝑗

= ∑(−1)𝑘 (
𝜆𝑗
𝑘

) [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼𝑘

∞

𝑘=0  
[1 − 𝐻2𝛽(𝑡; 𝜉)]

𝛼𝑘
= ∑ (−1)𝑛 (

𝛼𝑘
𝑛

) 𝐻2𝛽𝑛(𝑡; 𝜉)∞
𝑛=0  

 Therefore, 
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[𝐹(𝑡)]ℎ = ∑ (−1)𝑖+𝑗+𝑘+𝑛 (
ℎ
𝑖
) (

𝜃𝑖
𝑗
) (

𝜆𝑘
𝑘

) (
𝛼𝑘
𝑛

) 𝐻2𝛽𝑛(𝑡; 𝜉)∞
𝑖,𝑗,𝑘,𝑛=0      

[𝐹(𝑡)]ℎ = ∑ 𝜑𝑞𝐻
2𝛽𝑛(𝑡; 𝜉)∞

𝑖,𝑗,𝑘,𝑛=0         (11) 

Where; 

𝜑𝑞 = (−1)𝑖+𝑗+𝑘+𝑛 (
ℎ
𝑖
) (

𝜃𝑖
𝑗
) (

𝜆𝑘
𝑘

) (
𝛼𝑘
𝑛

) 

Also we have expansion for pdf as; 

𝑓(𝑡, 𝛼, 𝛽, 𝜃, 𝜆, 𝜉) = ∑ 𝜁𝑞ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+1)−1(𝑡; 𝜉)∞
𝑘,𝑙,𝑚=0       (12) 

Where; 

𝜁𝑞 = 2𝛼𝛽𝜃𝜆(−1)𝑘+𝑙+𝑚 (
𝜃 − 1

𝑘
) (

𝜆(𝑘 + 1) − 1
𝑙

) (
𝛼(𝑙 + 1) − 1

𝑚
) 

 

Statistical Properties of KwT2GTL-G Family of Distribution  

In this section, some statistical properties of the KwT2GTL-G family of distributions were derived. 

 

Moments 

Since the moments are necessary and important in any statistical analysis, especially in applications. Therefore, 𝑟𝑡ℎmoment 

for the variable 𝑇 ∼ 𝐾𝑤𝑇2𝐺𝑇𝐿 − 𝐺, says 𝜇1
𝑟 is derived as follows; 

𝜇𝑟
1 = 𝐸(𝑡𝑟) = ∫ 𝑡𝑟𝑓(𝑡)𝑑𝑡

∞

−∞
         (13) 

By using important representation in equation (12), we have 

= ∫ 𝑡𝑟2𝛼𝛽𝜃𝜆ℎ(𝑡; 𝜉)∑ (−1)𝑘+𝑙+𝑚 (
𝜃 − 1

𝑘
) (

𝜆(𝑘 + 1) − 1
𝑙

) (
𝛼(𝑙 + 1) − 1

𝑚
)𝐻2𝛽(𝑚+1)−1(𝑡; 𝜉)∞

𝑘,𝑙,𝑚=0
1

0
𝑑𝑡 (14) 

= ∫ 𝑡𝑟 ∑ 𝜁𝑞ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+1)−1(𝑡; 𝜉)∞
𝑘,𝑙,𝑚=0 𝑑𝑡

1

0
       

 

Moment Generating Function (MGF) 

The Moment Generating Function of 𝑇 ∼ 𝐾𝑤𝑇2𝐺𝑇𝐿 − 𝐺is given as: 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑡)𝑑𝑡
∞

−∞
         (15) 

By using important representation in (12), we have 

= ∫ 𝑒𝑡𝑥 ∑ 𝜁𝑞ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+1)−1(𝑡; 𝜉)∞
𝑘,𝑙,𝑚=0 𝑑𝑡

∞

0
       (16) 

𝑀𝑥(𝑡) = ∑ 𝜁𝑞𝐽𝑟
∞
𝑘,𝑙,𝑚=0          (17) 

Where; 

𝐽𝑟 = ∫ 𝑒𝑡𝑥𝜁𝑞ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+1)−1(𝑡; 𝜉)𝑑𝑡
1

0

 

 

Probability Weighted Moments (PWM) 

The class of moment used to describe inverse form estimators for the parameters and quantiles of a distribution is known as 

Probability Weighted Moments (PWMs) and was proposed by Greenwood et al., (1979).  The PWMs, represented by 𝜏𝑟, 𝑠can 

be derived for a random variable 𝑇 using the following relationship. " 

𝜏𝑟, 𝑠 = 𝐸[𝑇𝑟𝐹(𝑡)𝑠] = ∫ 𝑇𝑟𝑓(𝑡)(𝐹(𝑡))
𝑠
𝑑𝑡

∞

−∞
       (18) 

The PMWs is derived by substituting equation (11) and (12) into equation (18) replacing ℎ with 𝑠, we have 

𝜏𝑟, 𝑠 = ∫ 𝑇𝑟2𝛼𝛽𝜃𝜆ℎ(𝑡; 𝜉)
1

0

∗ 

∑ ∑ (−1)𝑖+𝑗+𝑘+𝑛(−1)𝑘+𝑙+𝑚 (
𝜃 − 1

𝑘
)(𝜆

(𝑘 + 1) − 1
𝑙

) (
𝛼(𝑙 + 1) − 1

𝑚
)(

ℎ
𝑖
) (

𝜃𝑖
𝑗
) (

𝜆𝑗
𝑘

) (
𝛼𝑘
𝑛

)𝐻2𝛽(𝑚+𝑛+1)−1(𝑡; 𝜉)𝑑𝑡∞
𝑘,𝑙.𝑚=0

𝑠
𝑖,𝑗,𝑘,𝑛=0

            (19) 

𝜏𝑟, 𝑠 = ∫ 𝑇𝑟 ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜑𝑞𝜁𝑞ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+𝑛+1)−1(𝑡; 𝜉)𝑑∞
𝑛=0

∞
𝑘=0

∞
𝑗=0 𝑡∞

𝑖=0
∞
𝑚=0

∞
𝑙=0

∞
𝑘=0

1

0
   (20) 

= ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜑𝑞𝜁𝑞
∞
𝑛=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0

∞
𝑚=0

∞
𝑙=0

∞
𝑘=0 ∫ 𝑇𝑟ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+𝑛+1)−1(𝑡; 𝜉)𝑑𝑡

1

0
   (21) 

𝜏𝑟, 𝑠 = ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜑𝑞𝜁𝑞
∞
𝑛=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0

∞
𝑚=0

∞
𝑙=0

∞
𝑘=0 . 𝑇𝑟, 2𝛽(𝑚 + 𝑛 + 1) − 1    (22) 

Where; 

𝜏𝑟, 2𝛽(𝑚 + 𝑛 + 1) − 1 = ∫ 𝑇𝑟ℎ(𝑡; 𝜉)𝐻2𝛽(𝑚+𝑛+1)−1(𝑡; 𝜉)
1

0

𝑑𝑡

  

Quantile Function of KwT2GTL-G 

The quantile function is an important tool to create random variables from any continuous probability distribution. As a result, 

it has a significant position in probability theory. For 𝑡, the quantile function is 𝐹(𝑡) = 𝑈, where 𝑈is distributed as 𝑈(0,1).The 

KwT2GTL-G family is easily simulated by inverting equation (8) which yields the Quantile function  𝑄(𝑈) defined as 

𝑄(𝑢) = 𝐻−1(𝑡; 𝜉) [1 − [1 − [1 − [1 − 𝑈]
1

𝜃]

1

𝜆
]

1

𝛼

]

1

2𝛽

      (23)

  where 𝐻(𝑡; 𝜉)−1 is the quantile function of the baseline cdf𝐺(𝑡; 𝜉). The first quartile, the median and the third quartile are 

obtained by seting𝑈 = 0.25,𝑈 = 0.5,𝑈 = 0.75, respectively in equation (23) 
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Where 𝑡 = 𝑄−1 is the quantile function of the baseline distribution. 

 

Survival Function 

The Probability of an item not failing prior to some time is known as survival or reliability function and it is defined as; 

𝑅(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡; 𝜉) 

𝑅(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = 𝑃(𝑇 > 𝑡) = 1 − [1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

]    (24) 

Hazard Function 

The hazard function is the probability of an event of interest occurring within a relatively short time period and it is given as; 

𝑇(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) =
𝑓(𝑡;𝛼,𝛽,𝜃;𝜉)

𝑅(𝑡;𝛼,𝛽,𝜃;𝜉)
        

𝑇(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) =

2𝛽𝛼𝜆𝜃ℎ(𝑡;𝜉)𝐻2𝛽−1(𝑡,𝜉)[1−𝐻2𝛽(𝑡;𝜉)]
𝛼−1

[1−[1−𝐻2𝛽(𝑡;𝜉)]
𝛼
]
𝜆−1

[1−[1−[1−𝐻2𝛽(𝑡;𝜉)]
𝛼
]
𝜆
]
𝜃−1

1−[1−[1−[1−[1−𝐻2𝛽(𝑡;𝜉)]
𝛼
]
𝜆
]
𝜃

]

       (25) 

 

Distribution of Order Statistics 

Order statistics have been extensively applied in many fields of statistics, such as reliability and life testing. Let 𝑇1, 𝑇2. . . 𝑇𝑛be 

independent and identically distributed (𝑖. 𝑖. 𝑑) random variables with their corresponding continuous distribution 

function 𝐹(𝑡) . Let 𝑇1:𝑛 < 𝑇2:𝑛 <. . . < 𝑇𝑛:𝑛 the corresponding ordered random sample from a population of size n. 

Let𝐹𝑟:𝑛(𝑡) and 𝑓𝑟:𝑛(𝑡), 𝑟 = 1,2,3. . . , 𝑛denote the cdf and pdf of the 𝑟𝑡ℎorder statistics 𝑇𝑟:𝑛respectively. David (1970) gave the 

probability density function of 𝑇𝑟:𝑛 as; 

𝑓𝑟:𝑛(𝑡) =
1

𝐵(𝑟,𝑛−𝑟+1)
𝐹𝑟−1(𝑡)[1 − 𝐹(𝑡)]𝑛−𝑟𝑓(𝑡)       (26) 

By substituting equation (8) and equation (9) into equation (26), we have; 

𝑓𝑟:𝑛(𝑡) =
1

𝐵(𝑟, 𝑛 − 𝑟 + 1)
[1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]

𝛼
]
𝜆
]
𝜃

]

𝑟−1

[1 − [1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

]]

𝑛−𝑟

 

2𝛽𝛼𝜆𝜃ℎ(𝑡; 𝜉)𝐻2𝛽−1(𝑡, 𝜉)[1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼−1

[1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆−1

[1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃−1

 (27) 

The pdf of the maximum order statistics is obtained by setting 𝑟 = 𝑛 in equation (27) as; 𝑓𝑛:𝑛(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) =

2𝑛𝛽𝛼𝜆𝜃ℎ(𝑡; 𝜉)𝐻2𝛽−1(𝑡, 𝜉)[1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼−1

[1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆−1

 

[1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃−1

[1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

]

𝑟−1

     (28) 

Also, the pdf of the minimum order statistics is obtained by setting 𝑟 = 1in equation (27) 

𝑓1:𝑛(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝜉) = 2𝑛𝛽𝛼𝜆𝜃ℎ(𝑡; 𝜉)𝐻2𝛽−1(𝑡, 𝜉)[1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼−1

[1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆−1

 

[1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃−1

[1 − [1 − [1 − [1 − [1 − 𝐻2𝛽(𝑡; 𝜉)]
𝛼
]
𝜆
]
𝜃

]]

𝑛−𝑟

   29) 

Sub-Model 

In this section, we provide sub-model of this family corresponding to the baseline Exponential (Ex) distribution to show the 

flexibility of the new family.  

 

Kumaraswamy Type II Generalized Topp-Leone Exponential Distribution (KwT2GTLEx) 

Let us consider the Exponential distribution which is the baseline distribution with parameter 𝛿with cumulative distribution 

and probability density functions given, respectively by; 

𝐻𝐸𝑥(𝑡; 𝛿) = 1 − 𝑒−𝛿𝑡               (30) 

and  

ℎ𝐸𝑥(𝑡; 𝛿) = 𝛿𝑒−𝛿𝑡                (31) 

Where 𝑡 > 0, 𝛿 > 0 

Then the cdf and pdf of the proposed KwT2GTLEx distribution with five parameters are obtained by inserting equation (30) 

into equation (8) and are respectively given as  

𝐹𝐾𝑤𝑇2𝐺𝑇𝐿𝐸𝑥(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝛿) = 1 − [1 − [1 − [1 − [1 − 𝑒−𝛿𝑡]2𝛽]𝛼]
𝜆
]
𝜃

     (32) 

And 

𝑓𝐾𝑤𝑇2𝐺𝑇𝐿𝐸𝑥(𝑡; 𝛽, 𝛼, 𝜃, 𝜆, 𝛿) = 2𝛽𝛼𝜃𝜆𝛿𝑒−𝛿𝑡[1 − 𝑒−𝛿𝑡]
2𝛽−1

[1 − [1 − 𝑒−𝛿𝑡]
2𝛽

]
𝛼−1

[1 − [1 − [1 − 𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆−1

 

[1 − [1 − [1 − [1 − 𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

𝜃−1

        (33) 

Where𝑡 > 0, 𝛼, 𝜃, 𝛽, 𝜆 > 0 are shape paremeters 𝑎𝑛𝑑. 𝛿 > 0, 𝑖𝑠 scale parameter 

Furthermore, the following are the reliability function, hazard rate function and the quantile function respectively 
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𝑅(𝑡; 𝛼, 𝛽, 𝜃, 𝜆, 𝛿) = 1 − [1 − [1 − [1 − [1 − [1 − 𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

𝜃

]     (34)

  

𝑟(𝑡) =

2𝛽𝛼𝜃𝛿𝜆𝑒−𝛿𝑡[1−𝑒−𝛿𝑡]
2𝛽−1

[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼−1

[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆−1

[1−[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

𝜃−1

1−[1−[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

𝜃

  (35) 

𝑡 = 𝑄(𝑈) =
1

𝛿

[
 
 
 
 

− 𝑙𝑜𝑔

[
 
 
 
 

1 − [1 − [1 − [1 − [1 − 𝑈]
1

𝜃]

1

𝜆
]

1

𝛼

]

1

2𝛽

]
 
 
 
 

]
 
 
 
 

     (36) 

 
 

  
Figure 1: Plots of Pdf of the KwT2GTLEx distribution for different parameters values that shows the shape of the distribution 

at different parameter values which indicates that the KwT2GTLEx distribution can be used to model highly skewed data. 

 

  
Figure 2: Plots of Hazard function of the KwT2GTLEx distribution for different parameters values which show different shapes 

of hazard function of the distribution. It can be deduced from the plot that the distribution has an increasing, and decreasing 

shapes which makes it a good distribution for modeling biomedical data and engineering data
 

 

Parameter Estimation  

In this work, Maximum Likelihood Estimate is used to estimate the unknown parameter of KwT2GTL-G family for a complete 

data. Let 𝑡1, 𝑡2. . . 𝑡𝑛be a random sample of size 𝑛 from the  

KwT2GTL-G family. Then, the likelihood function based on observed sample for the vector 𝛷 of parameter (𝛼, 𝛽, 𝜃, 𝜆, 𝛿)𝑇 is 

given by; 

2 2

1 1 1 1

2

log 2 log log log log log

(2 1) log 1 ( 1) log 1 1 ( 1) log 1 1 1

( 1) log 1 1 1 1

t t t

i

i i i i

t

LogL n n n n n n

t e e e

e

   



    

   



   
− − −

= = = =

−

= + + + + + −

         + − − + − − − + − − − − +             

    − − − − −        

   

1i



=



 (37) 

Differentiating the log-likelihood with respect to 𝛼, 𝛽, 𝜃, 𝛿, 𝜆and equate the result to zero, we have 
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𝜕(𝑙𝑜𝑔 𝐿)

𝜕𝛼
=

𝑛

𝛼
+ ∑𝑙𝑜𝑔 [1 − [1 − 𝑒−𝛿𝑡]

2𝛽
] − (𝜆 − 1)∑

[1 − [1 − 𝑒−𝛿𝑡]
2𝛽

]
𝛼

𝑙𝑜𝑔 [1 − [1 − 𝑒−𝛿𝑡]
2𝛽

]

[1 − [1 − [1 − 𝑒−𝛿𝑡]2𝛽]𝛼]

∞

𝑖=1

∞

𝑖=1

+ 

(𝜃 − 1)𝜆 ∑
[1−[1−[1−𝑒−𝛿𝑡]

2𝛽
]
𝛼

]
𝜆−1

[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

𝑙𝑜𝑔[1−[1−𝑒−𝛿𝑡]
2𝛽

]

[1−[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

∞
𝑖=1

     (38) 

𝜕(𝑙𝑜𝑔 𝐿)

𝜕𝛽
=

𝑛

𝛽
+ 2∑𝑙𝑜𝑔[1 − 𝑒−𝛿𝑡]

∞

𝑖=1

− 

(𝛼 − 1)∑
[1 − 𝑒−𝛿𝑡]

2𝛽
𝑙𝑜𝑔[1 − 𝑒−𝛿𝑡]

2

[1 − [1 − 𝑒−𝛿𝑡]2𝛽]

∞

𝑖=1

+ (𝜆 − 1)𝛼 ∑
[1 − [1 − 𝑒−𝛿𝑡]

2𝛽
]
𝛼−1

[1 − 𝑒−𝛿𝑡]
2𝛽

𝑙𝑜𝑔[1 − 𝑒−𝛿𝑡]
2

[1 − [1 − [1 − 𝑒−𝛿𝑡]2𝛽]𝛼]

∞

𝑖=1

+ 

(𝜃 − 1)𝛼𝜆 ∑
[1−[1−[1−𝑒−𝛿𝑡]

2𝛽
]
𝛼

]
𝜆−1

[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼−1

[1−𝑒−𝛿𝑡]
2𝛽

𝑙𝑜𝑔[1−𝑒−𝛿𝑡]
2

[1−[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

∞
𝑖=0

    (39) 

𝜕(𝑙𝑜𝑔 𝐿)

𝜕𝜃
=

𝑛

𝜃
+ ∑ 𝑙𝑜𝑔 [1 − [1 − [1 − [1 − 𝑒−𝛿𝑡]

2𝛽
]
𝛼

]
𝜆

]∞
𝑖=1

      (40) 

𝜕(𝑙𝑜𝑔 𝐿)

𝜕𝛿
=

𝑛

𝛿
− ∑𝑡𝑖 − (2𝛽 − 1)∑[

𝑒−𝛿𝑡𝑡𝑖
[1 − 𝑒−𝛿𝑡]

]

∞

𝑖=1

∞

𝑖=1

+ (𝛼 − 1)∑[
2𝛽[1 − 𝑒−𝛿𝑡]

2𝛽−1
𝑡𝑖𝑒

−𝛿𝑡

[1 − [1 − 𝑒−𝛿𝑡]2𝛽]
] −

∞

𝑖=1

 

(𝜆 − 1)∑[
𝛼 [1 − [1 − 𝑒−𝛿𝑡]

2𝛽
]
𝛼−1

2𝛽[1 − 𝑒−𝛿𝑡]
2𝛽−1

𝑡𝑖𝑒
−𝛿𝑡

[1 − [1 − [1 − 𝑒−𝛿𝑡]2𝛽]𝛼]
]

∞

𝑖=1

+ 

2𝛽𝜆𝛼(𝜃 − 1)∑ [
[1−[1−[1−𝑒−𝛿𝑡]

2𝛽
]
𝛼

]
𝜆−1

[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼−1

[1−𝑒−𝛿𝑡]
2𝛽−1

𝑡𝑖𝑒
−𝛿𝑡

[1−[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

]∞
𝑖=1

    (41) 

𝜕(𝑙𝑜𝑔 𝐿)

𝜕𝜆
=

𝑛

𝜆
+ ∑ [1 − [1 − 𝑒−𝛿𝑡]

2𝛽
]
𝛼

+∞
𝑖=1 (𝜃 − 1)∑

[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

𝑙𝑜𝑔[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]

[1−[1−[1−[1−𝑒−𝛿𝑡]
2𝛽

]
𝛼

]
𝜆

]

∞
𝑖=1   (42)

  
Equating and solving these equations simultaneously yields the MLEs. Equation (38), (39), (40), (41) and equation (42) cannot 

be solved analytically, and analytical software is required to solve them numerically. 

 

RESULTS AND DISCUSSION 

Simulation Study 

The quantile function of the KwT2GTLEx distribution was 

used to generate 1000 replicates with the sample size of 

n=20,50,100,250,500,1000 from the KwT2GTLEx 

distribution. From the 1000 replicates the estimates, bias and 

RMSE were computed, the result of which are presented in 

Table 1 showed the MLE parameter estimates, Bias and 

RMSE for the estimated parameters of KwT2GTLEx at the 

chosen values of 𝛿 = 0.44, 𝛼 = 1, 𝛽 = 0.52,𝜃 = 0.8 , 𝜆 =
0.6. The values of biases and RMSEs approach zero in the 

table, and the estimates tend to the true values as the sample 

size increases, indicating that the estimates are efficient and 

consistent; 

 

Table 1: Monte Carlo simulation results for some values of parameters 

N Actual Parameter Value Estimated Values Bias RMSE 

20 𝛿 = 0.44 

𝛼 = 1 

𝛽 = 0.52 

𝜃 = 0.8 

𝜆 = 0.6 

0.5258 

1.0162 

0.5876 

0.8266 

0.6243  

0.0858 0.016

2 0.0676 0.0

266 0.0243 

0.2366 0.201

8 0.2018 0.2

254 0.1315 

50 𝛿 = 0.44 

𝛼 = 1 

𝛽 = 0.52 

𝜃 = 0.8 

𝜆 = 0.6 

0.4715 

1.0079 

0.5418 

0.8246 

0.6095  

0.0315 0.007

9 0.0218 0.0

246 0.0095 

0.1391 0.151

3 0.1152 0.1

933 0.0801 

100 𝛿 = 0.44 

𝛼 = 1 

𝛽 = 0.52 

𝜃 = 0.8 

𝜆 = 0.6 

0.4419 

1.0125 

0.5320 

0.8313 

0.6062  

0.0019 0.012

5 0.0120 0.0

313 0.0062 

0.0917 0.128

0 0.0777 0.1

593 0.0603 

250 𝛿 = 0.44 

𝛼 = 1 

𝛽 = 0.52 

𝜃 = 0.8 

0.4355 

1.0217 

0.5212 

0.8080 

-0.0045  0.0

217  0.0012  

0.0080  0.00

54 

0.0554 0.093

2 0.0438 0.1

035 0.0407 
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𝜆 = 0.6 0.6054  
500 𝛿 = 0.44 

𝛼 = 1 

𝛽 = 0.52 

𝜃 = 0.8 

𝜆 = 0.6 

0.4307 

1.0240 

0.5207 

0.8052 

0.6014  

-0.0093  0.0

240  0.0007  

0.0052  0.00

14 

0.0340 0.076

7 0.0279 0.0

730 0.0322 

1000 𝛿 = 0.44 

𝛼 = 1 

𝛽 = 0.52 

𝜃 = 0.8 

𝜆 = 0.6 

0.4311 

1.0247 

0.5192 

0.8013 

0.6011 

-0.0089  0.0

247 -0.0008 

 0.0013  0.00

11 

0.0234 0.060

5 0.0193 0.0

503 0.0231 

 

Application to Real-Life Dataset 

This section discusses real-life applications to data sets. For 

illustrative purposes, a comparison study with the fits of the 

Kumaraswamy Extension Exponential (KwEEx) distribution 

by Elbatal, et al., (2018).Kumaraswamy Exponential 

(KwEx)distribution by Adepoju and Chukwu (2015), The 

Exponential Generalized Exponentiated Exponential 

(EGEEx) distribution by Bukoye and Oyeyemi, (2018), The 

Exponentiated Weibull-Exponential (EWEx) distribution by 

Elgarhy, et al. (2017). The versatility of the new distribution 

in empirically portraying real-life data was demonstrated in 

this application. All of the calculations are performed using 

the Adequacy Model package in R software." 

 

The Comparators of KwT2GTLEx 

The pdf of the comparators considered are: 

i. The KwEEx by Elbatal, et al., (2018) has probability density function given as: 

𝑓(𝑥) = 𝛿𝛽𝛼𝜆(1 + 𝜆𝑥)𝛼−1𝑒1−(1+𝜆𝑥)𝛼[1 − 𝑒1−(1+𝜆𝑥)𝛼
]
𝛿−1

[1 − [1 − 𝑒1−(1+𝜆𝑥)𝛼]
𝛿
]
𝛽−1

 
 ii. The KwEx by Adebayo and Chukwu (2015) has pdf defined as: 

𝑓(𝑥) = 𝛼𝛽𝜆𝑒−𝛽𝑥[1 − 𝑒−𝛽𝑥]
𝛼−1

[1 − [1 − 𝑒−𝛽𝑥]
𝛼
]
𝜆−1

    
 

iii. The EGEEx by Bukoye and Oyeyemi, (2018) has pdf defined as: 

𝑓(𝑥) =
𝛼𝛽𝜆

𝜃
𝑒−

𝑥

𝜃 [1 − 𝑒−
𝑥

𝜃]
𝜆−1

[1 − [1 − 𝑒−
𝑥

𝜃]
𝜆

]

𝛼−1

[1 − [1 − [1 − 𝑒−
𝑥

𝜃]
𝜆

]

𝛼

]

𝛽−1

 
 

And 

iv. The EWEx by Elgarhy, et al. (2017). has pdf given as: 

𝑓(𝑥) = 𝛼𝛿𝛽𝜆[𝑒𝜆𝑥 − 1]
𝛽−1

𝑒𝑥𝑝 [− [𝛼(𝑒𝜆𝑥 − 1)
𝛽

− 𝜆𝑥]] [1 − 𝑒𝑥𝑝 [−𝛼(𝑒𝜆𝑥 − 1)
𝛽
]]

𝛼−1

 

The two datasets that used as examples in the application demonstrate the new family of distributions’ flexibility and ‘best fit’ 

compared to the above comparator distributions in modeling the data sets experimentally. The R programming language is 

used to carry out all of the computations. 

 

Data Set 1 

The first data set shown below represents the failure times of 84 Aircraft Windshield, previously used by Tahir et al., (2015): 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 

2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 

1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 

2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 

1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 

 
Figure 3: Fitted pdfs for the KwT2GTLEx, EGEEx, KEx, KEEx,  

and EWEx distributions to the data set 1  
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Figure 4: Estimated density plots for data set 1 

 

Table 2: MLEs, Log-Likelihoods and Goodness of fits Statistics of the models based on the Data Sets 1 

Distribution 𝜷 𝜶 𝜽 𝝀 𝜹 𝑳𝑳 𝑨𝑰𝑪 

KwT2GTLEx 0.0027 0.0617 4.3889 6.1127 6.4959 -129.4194 268.8387 

EGEEx 5.2812 0.1066 0.1363 0.0728 -  -136.4105 280.8210 

KwEx 0.0216 2.4444 - 958.8999 -  -136.6001 279.2002 

KwEEx 6.4077 3.3169 -  0.0551 2.50991 -132.1957 272.3914 

EWEx 0.8353 0.0216 -  1.3342 0.6922 -132.2505 272.5010 

 

Table 2 presents the results of the MLE of the parameters of 

the proposed distribution and the four comparator 

distributions. The proposed distribution reported the lowest 

AIC value (268.8387) based on the goodness of fit measure; 

the visual inspection of the fit presented in figure 3 also 

confirms the superiority of the proposed distribution among 

its comparators; thus, the proposed distribution "best fit" the 

data sets among the range of distributions considered.  

Data set 2 

The second data set represents the lifetime data relating to 

relief times (in minutes) of patients receiving an analgesic. 

The data set was given by Gross and Clark (1975). The data 

set consists of twenty (20) observations and it is as follows: 

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 

1.4, 3, 1.7, 2.3, 1.6, 2. 

 
Figure 5: Fitted pdfs for the KwT2GTLEx, EGEEx, KEx, KEEx, 

and EWEx, distributions to the data set 2 
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Figure 6: Estimated density plots for data set 2 

 

Table 3: MLEs, Log-Likelihoods and Goodness of fits Statistics of the models based on the Data Sets 2 

Distribution 𝜷 𝜶 𝜽 𝝀 𝜹 𝑳𝑳 𝑨𝑰𝑪 

KwT2GTLEx 38.4562 0.0565 6.0995 0.4160 1.9616  -15.0245 38.0489 

EGEEx 13.4393 0.4599 0.2102 7.0755 -  -16.1561 40.3112 

KwEx 5.2384 918.4434 - 0.3021 -  -16.8354 39.6708 

KwEEx 1.0653 1.5201 -  0.7633 10.6729 -17.2540 42.5080 

EWEx 0.7742 54.9415 -  0.0248 99.8325 -15.9689 39.9378 

 

Table 3 presents the results of the Maximum Likelihood 

Estimation of the parameters of the proposed distribution and 

the four comparator distributions. Based on the goodness of 

fit measure, the proposed distribution reported the minimum 

AIC value (38.0489). The visual inspection of the fit 

presented in Figure 6, also confirms the superiority of the 

proposed distribution amongst its comparators. Thus the 

proposed distribution ‘best fit’ lifetime data relating to relief 

times (in minutes) of patients receiving an analgesic amongst 

the range of distributions considered. 

 

CONCLUSION 

In order to increase modeling flexibility for complex lifespan 

data sets, a novel family of continuous distributions known as 

the Kumaraswamy Type II Generalized Topp Leone-G 

(KwT2GTL-G) class has been introduced and examined in this 

paper. The KwT2GTL-G distribution integrates the cumulative 

distribution function of the Kumaraswamy-G family with a 

Type II Generalized Topp-Leone as a link function, resulting 

in a versatile model capable of representing both monotonic 

and non-monotonic hazard functions. The distribution of 

order statistics, quantile function, reliability function, hazard 

function, moments, moment generating function, probability 

weighted moments, and other important statistical features 

were all derived and thoroughly examined. A sub-model 

emerged known as KwT2GTLEx. Using the MLE method, the 

parameters of the KwT2GTLEx distribution were estimated 

using a package in R known as AdequacyModel and applied 

to real-life datasets; lifetime data relating to relief times (in 

minutes) of patients receiving an analgesic, and failure service 

times for a windshield and the results are presented in Table 

1 and Table 2 respectively. Monte Carlo simulation was 

carried out to see the performance of MLEs of the 

KwT2GTLEx distribution and as expected, the MSEs of the 

estimated parameters decrease as the sample size n increases 

which proves the consistency of the estimators. The 

comparative assessments revealed that the KwT2GTL-G 

distribution outperformed existing distributions considered in 

this paper, beacuse it reported lower Akaike Information 

Criterion (AIC) values, indicating a better fit for the two 

datasets considered. The findings highlight the potential of the 

KwT2GTL-G family to enhance the modeling of lifetime data, 

contributing significantly to fields like medical and 

engineering. Future research should focus on exploring the 

application of the KwT2GTL-G family to a broader range of 

datasets and investigating the potential for further extensions 

or modifications to improve its flexibility and applicability in 

other domains. 
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