

KUMARASWAMY TYPE II GENERALIZED TOPP-LEONE-G FAMILY OF DISTRIBUTIONS WITH APPLICATIONS

*** ¹Kolawole Ismail Adekunle, ²Abubakar Yahaya, ²Sani Ibrahim Doguwa and ²Aliyu Yakubu**

¹Department of Mathematics and Statistics, Kaduna Polytechnic, Kaduna. ²Department of Statistics, Ahmadu Bello University, Zaria

*Corresponding authors' email: talktoismak@talktoismak.co.uk

ABSTRACT

In the field of reliability theory, practitioners have been working assiduously in recent years to propose new families of continuous probability distributions that extend the standard theoretical distribution that is currently in use. They have done this by hybridizing two or more probability models or by introducing one or more parameters to get more flexibility in fitting data from a variety of fields, including the environmental, economics, finance, and medical sciences. The T-X approach was used to establish the Kumaraswamy Type II Generalized Topp-Leone-G (KwT2GTL-G) family, which extends the Type II Generalized Topp-Leone-G family of distributions with extra shape parameters. A few statistical characteristics of the novel family were determined and examined. A sub-model emerged and MLE was used to estimate the model parameters. To demonstrate the value of the new family, two real-life data sets were used: a set that related to the relief times (in minutes) of patients taking an analgesic, and the other that related to the failure and service times for a windshield. The superior goodness-of-fits and empirical flexibility of the KwT2GTL-G distribution are demonstrated by comparisons with other distributions, including the Kumaraswamy Extension Exponential (KwEEx), Kumaraswamy Exponential (KEx), Exponential Generalized Exponentiated Exponential (EGEEx), and Exponentiated Weibull-Exponential (EWEx) distributions.. In the second dataset, the KwT2GTLEx distribution achieved an AIC value of 38.0489, outperforming the EGEEx distribution which had an AIC value of 39.6708 next to it. These findings highlight the KwT2GTL-G family's potential to enhance lifetime data modeling, which would have a substantial impact on engineering, medicine, and other domains.

Keywords: Kumaraswamy, MLE, TIIGTL-G, KwT2GTL-G

INTRODUCTION

Many problems abound in various field of human endeavor cannot be perfectly and adequately handled by most commonly known conventional probability distributions available for modeling lifetime data sets such as Normal, Weibull, Pareto, Gomepertz, Rayleigh, Exponential, e.t.c, (Yahaya and Doguwa (2021)). According to Adekunle *et al* (2022), Numerous statistical distributions have been used widely to describe and forecast current occurrences in a variety of fields, including biology, engineering, economics, geography, and many more. However, the data in many of these areas typically exhibit complex behavior and a variety of forms that are linked to varying levels of skewness and kurtosis. There is a clear need for an extended version of these classical distributions to enhance their capability while also improving their goodness of fit. Various strategies for changing existing classical distribution to make them more flexible or inventing new statistical distributions for modeling data sets from various fields of study have flooded the statistical archive in recent decades. Majority of the strategies are focused toward constructing heavy-tailed distributions, monotonic and non- monotonic failure rates, a tractable cumulative distribution function (CDF) for easy simulation, and modeling data with varying degrees of skewness and kurtosis.

The Exponentiated Type II Generalized Topp-Leone-G Family by Kolawole *et al* (2023), the Beta-G by Eugene *et al*. (2002), the Weibull-X family of distributions of Alzaatreh *et al*. (2013), the Exponentiated Generalized class of Cordeiro *et al*. (2013), the Logistics-G introduced by Torabi and Montzeri (2014), the Gamma-X family of Alzaatreh *et al*. (2014), the Odd Generalized Exponential-G of Tahir *et al*. (2015), the Type I half- logistic family of Cordeiro *et al.* (2016), the Kumaraswamy-Weibull-Generated family of Hassan and Elgarhy (2016), the New Weibull-G family of Tahir *et al*. (2016), the Generalized Transmuted-G of Nofal *et al*. (2017), the New Generalized family of distributions of Ahmad *et al* (2018), the Topp-Leone Kumaraswamy- G family of distributions by Ibrahim *et al*. (2020), *Rayleigh*-Exponentiated Odd Generalized-*X* Family by Yahaya and Doguwa (2021), Type I Half Logistic Exponentiated-G family by Bello *et al.* (2021) are some well- known modified families of distributions in the literature proposed by different researchers to improve the standard theoretical distribution

The Generalized distribution can be used effectively in fitting lifetime datasets because it can accommodate monotonic and non-monotonic data characteristics.

Hence, this study proposed, Kumaraswamy Type II Generalized Topp-Leone-G family of distribution capable of modeling with monotonic and non- monotonic hazard functions that can provide better fits to medical and engineering data.

In this work, we define another new class of generalized family of distribution called Kumarasawamy Type II Generalized Topp-Leone-G family (KwT2GTL-G) from the Cumulative Distribution Function of Kumaraswamy-G (Kw-G)family defined by Cordeiro and de Castro (2011) as;

$$
F_{kw}(x; \lambda, \theta, \xi) = 1 - [1 - G^{\lambda}(x; \xi)]^{\theta}
$$
 (1)
And pdf

$$
f_{Kw}(x; \lambda, \theta, \xi) = \theta \lambda g(x; \xi) G^{\lambda - 1}(x; \xi) \left[1 - G^{\lambda}(x; \xi)\right]^{\theta - 1}
$$
\n(2)

Where $\theta > 0$, and $\lambda > 0$ are two shape parameters belonging to set of positive real numbers.

According to Alzaatreh *et al.* (2013), the cdf of the T-X family of distribution is given as

$$
F(x) = \int_{\beta_1}^{N[G(x)]} r(t)dt = R[N[G(x)]]
$$
 (3)

Where $N[G(x)]$ must be found to satisfy the following conditions

i. $N[G(x)] \in [\beta_1, \beta_2]$

ii. $N[G(x)]$ is differentiable and monotonically non-decreasing, and (4)

iii. $N[G(x)] \to \beta_1$ as $x \to -\infty$ and $N[G(x)] \to \beta_2$ as $x \to \infty$

Let $r(t)$ be the pdf of a random variable $T \in [\beta_1, \beta_2]$ for $-\infty \le \beta_1 < \beta_2 < \infty$ and $N[G(x)]$ be a function of the cdf of a random variable X .

Then the pdf corresponding to equation (3) is given by;

$$
f(x) = \left\{ \frac{d}{dx} N[G(x)] \right\} r\{N[G(x)]\} \tag{5}
$$

Let X be any arbitrary random variable with CDF: $G(x;\xi)$. Also, let $T \in (\beta_1, \beta_2)$ be a random variable with a PDF: $r(t)$. Furthermore, let our proposed link function be Type II Generalized Topp-Leone family of distribution, (Hassan *et al.*, 2019) and it is given as,

$$
F_{T_2GTL-G}(t; \beta, \alpha, \xi) = 1 - [1 - H^{2\beta}(t; \xi)]^{\alpha}
$$
\n(6)

And the Probability Density Function (pdf) is given as $f_{T_2GTL-G}(t; \beta, \alpha, \xi) = 2\alpha\beta h(t; \xi)H^{2\beta-1}(t; \xi)[1 - H^{2\beta}(t; \xi)]^{\alpha-1}$ (7) where $\beta > 0$, $\alpha > 0$; $t > 0$ and $F(t; \xi)$ and $f(t; \xi)$ are the cdf and pdf of the baseline distribution with parameter vectors.

MATERIALS AND METHODS

Kumaraswamy Type II Generalized Topp-Leone-G Family of Distribution (KwT2GTL-G) The CDF of K_wT_2GTL-G family of distribution is given by;

$$
F_{K_{w}T_{2}\text{GTL}-G}(t;\beta,\alpha,\theta,\lambda,\xi) = 1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t;\xi)\right]^{\alpha}\right]^{\lambda}\right]^{\theta}
$$
\n
$$
\text{Proof} \tag{8}
$$

Proof

From equation (2), we can write; $F_{K_w T_2 \text{GTL}-G}(t; \beta, \alpha, \theta, \xi) = \int_0^{F_{T_2 \text{GTL}-G}(t; \beta, \alpha, \xi)} f_{K_w}(x; \lambda, \theta, \xi) dx$ (9) $F_{K_w T_2 \text{GTL}-G}(t; \beta, \alpha, \theta, \lambda, \xi) = \int_{0}^{1} \left[\frac{1}{2} \frac{\partial f(x)}{\partial x} \cos \left(\frac{\partial f(x)}{\partial y} \right) + \frac{\partial f(x)}{\partial \theta} \right] d\theta \, dx$ $1-[1-H^{2\beta}(t;\xi)]^{\alpha}$ 0 Let $y = 1 - G^{\lambda}(x; \xi)$, when $x = 0$, $y = 1$, when $x = 1 - [1 - H^{2\beta}(t; \xi)]^{\alpha}$, $y = 1 - [1 - [1 - H^{2\beta}(t; \xi)]^{\alpha}]^{\lambda}$ $\frac{dy}{dx} = -\lambda g(x;\xi)G^{\lambda-1}(x;\xi), dx = \frac{dy}{-\lambda g(x;\xi)G}$ $-\lambda g(x;\xi)G^{\lambda-1}(x;\xi)$ $F_{K_wT_2GTL-G}(t;\beta,\alpha,\theta,\lambda,\xi) = \int_{-1}^{1} \int_{\mathbb{R}^3} \int_{\mathbb{$ $\lambda g(x; \xi) G^{\lambda-1}(x; \xi)$ 1 $1 - [1 - [1 - H^{2\beta}(t;\xi)]^{\alpha}]^{\lambda}$ $F_{K_w T_2 G T L - G}(t; \beta, \alpha, \theta, \lambda, \xi) = \int_{-1}^{1} \int_{\mathbb{R}^d} [F_{\alpha, \beta} \cos \theta \cos \theta] d\theta$ $1 - [1 - [1 - H^{2\beta}(t;\xi)]^{\alpha}]^{\lambda}$ $F_{K_w T_2 G T L - G}(t; \beta, \alpha, \theta, \lambda, \xi) = \theta \left[\frac{y^{\theta - 1 + 1}}{\theta - 1 + \lambda} \right]$ $\frac{1}{\theta-1+1}$ $1 - [1 - [1 - H^{2\beta}(t;\xi)]^{\alpha}]^{\lambda}$ 1 $F_{K_w T_2 G T L - G}(t; \beta, \alpha, \theta, \lambda, \xi) = \left[y^{\theta} \right]_{1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{\lambda}}^{1}$ The cdf of the new family is as follows $F_{K_w T_2 G T L - G}(t; \beta, \alpha, \theta, \lambda, \xi) = 1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{A}\right]$ θ

Important Representation

The binomial expansion to expand cdf of K_wT_2GTL-G is given below as; $[1-t]^b = \sum_{i=0}^{\infty} (-1)^i {b \choose i}$ $\sum_{i=0}^{\infty}(-1)^{i}\binom{b}{i}t^{i}$

Using the series expansion in equation (10), then equation (8) becomes $[F(t)]^h$

$$
\left[1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^\alpha\right]^\beta\right]^\beta\right]^\beta = \sum_{i=0}^\infty (-1)^i \binom{h}{i} \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^\alpha\right]^\beta
$$
\nConsider;
\n
$$
\left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^\alpha\right]^\beta
$$

$$
\[1 - [1 - [1 - H^{2\beta}(t; \xi)]^{\alpha}\]^{4}\]^{6i} = \sum_{j=0}^{\infty} (-1)^{j} {6i \choose j} [1 - [1 - H^{2\beta}(t; \xi)]^{\alpha}\]
$$

$$
\[1 - [1 - H^{2\beta}(t; \xi)]^{\alpha}\]^{3j} = \sum_{k=0}^{\infty} (-1)^{k} {3i \choose k} [1 - H^{2\beta}(t; \xi)]^{\alpha k}
$$

$$
\[1 - H^{2\beta}(t; \xi)\]^{\alpha k} = \sum_{n=0}^{\infty} (-1)^{n} {(\alpha k) \choose n} H^{2\beta n}(t; \xi)
$$

Therefore,

(10)

$$
[F(t)]^h = \sum_{i,j,k,n=0}^{\infty} (-1)^{i+j+k+n} {h \choose i} {i \choose j} {i k \choose k} {i \choose n} H^{2\beta n}(t; \xi)
$$

\n
$$
[F(t)]^h = \sum_{i,j,k,n=0}^{\infty} \varphi_q H^{2\beta n}(t; \xi)
$$

\nWhere;
\n
$$
\varphi_q = (-1)^{i+j+k+n} {h \choose i} {i \choose j} {i k \choose k} {i k \choose n}
$$
\n(11)

Also we have expansion for pdf as; $f(t, \alpha, \beta, \theta, \lambda, \xi) = \sum_{k,l,m=0}^{\infty} \zeta_q h(t; \xi) H^{2\beta(m+1)-1}(t; \xi)$

Where;

$$
\zeta_q = 2\alpha \beta \theta \lambda (-1)^{k+l+m} {\theta - 1 \choose k} {\lambda (k+1) - 1 \choose l} {\alpha (l+1) - 1 \choose m}
$$

Statistical Properties of KwT2GTL-G Family of Distribution

In this section, some statistical properties of the KwT2GTL-G family of distributions were derived.

Moments

Since the moments are necessary and important in any statistical analysis, especially in applications. Therefore, r^{th} moment for the variable $T \sim K_w T_2 G T L - G$, says $\mu^1{}_r$ is derived as follows;

$$
\mu_r^1 = E(t^r) = \int_{-\infty}^{\infty} t^r f(t) dt
$$
\nBy using important representation in equation (12), we have\n
$$
= \int_0^1 t^r 2\alpha \beta \theta \lambda h(t; \xi) \sum_{k,l,m=0}^{\infty} (-1)^{k+l+m} {\theta - 1 \choose k} {\lambda(k+1) - 1 \choose l} {\alpha(l+1) - 1 \choose m} H^{2\beta(m+1)-1}(t; \xi) dt
$$
\n
$$
= \int_0^1 t^r \sum_{k,l,m=0}^{\infty} \zeta_q h(t; \xi) H^{2\beta(m+1)-1}(t; \xi) dt
$$
\n(14)

Moment Generating Function (MGF)

Probability Weighted Moments (PWM)

The class of moment used to describe inverse form estimators for the parameters and quantiles of a distribution is known as Probability Weighted Moments (PWMs) and was proposed by Greenwood *et al.*, (1979). The PWMs, represented by τr , scan be derived for a random variable T using the following relationship.

 τr , $s = E[T^r F(t)^s] = \int_{-\infty}^{\infty} T^r f(t) (F(t))^s dt$ (18) The PMWs is derived by substituting equation (11) and (12) into equation (18) replacing h with s , we have $\tau r, s = \int^1 T^r 2\alpha \beta \theta \lambda h(t; \xi)$ | *T'*2αβθλh(t;ξ)*
⁰

$$
\sum_{i,j,k,n=0}^{s} \sum_{k,l,m=0}^{\infty} (-1)^{i+j+k+n} (-1)^{k+l+m} {\theta-1 \choose k} {\lambda(k+1)-1 \choose l} {\alpha(l+1)-1 \choose m} {h \choose i} {\theta i \choose j} {\lambda j \choose k} {\alpha k \choose n} H^{2\beta(m+n+1)-1}(t;\xi) dt
$$
\n(19)

$$
\tau r, s = \int_0^1 T^r \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \phi_q \zeta_q h(t; \xi) H^{2\beta(m+n+1)-1}(t; \xi) dt
$$
\n
$$
= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \phi_q \zeta_q \int_0^1 T^r h(t; \xi) H^{2\beta(m+n+1)-1}(t; \xi) dt
$$
\n(20)

$$
\tau r, s = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \varphi_q \zeta_q, \text{Tr}, 2\beta(m+n+1) - 1 \tag{22}
$$

Where;

0

$$
\tau r, 2\beta(m+n+1) - 1 = \int_0^1 T^r h(t; \xi) H^{2\beta(m+n+1)-1}(t; \xi) dt
$$

Quantile Function of KwT2GTL-G

The quantile function is an important tool to create random variables from any continuous probability distribution. As a result, it has a significant position in probability theory. For t, the quantile function is $F(t) = U$, where U is distributed as $U(0,1)$. The KwT2GTL-G family is easily simulated by inverting equation (8) which yields the Quantile function $Q(U)$ defined as

$$
Q(u) = H^{-1}(t; \xi) \left[1 - \left[1 - \left[1 - [1 - U] \right]^{\frac{1}{\theta}} \right]^{\frac{1}{\lambda}} \right]^{1-\frac{1}{\theta}} \tag{23}
$$

1

where $H(t;\xi)^{-1}$ is the quantile function of the baseline cdf $G(t;\xi)$. The first quartile, the median and the third quartile are obtained by seting $U = 0.25$, $U = 0.5$, $U = 0.75$, respectively in equation (23)

(12)

Where $t = Q^{-1}$ is the quantile function of the baseline distribution.

Survival Function

The Probability of an item not failing prior to some time is known as survival or reliability function and it is defined as; $R(t; \beta, \alpha, \theta, \lambda, \xi) = P(T > t) = 1 - F(t; \xi)$

$$
R(t; \beta, \alpha, \theta, \lambda, \xi) = P(T > t) = 1 - \left[1 - \left[1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^\alpha\right]^\lambda\right]^\beta\right]\right]
$$
\n(24)

\nHead Function

Hazard Function

The hazard function is the probability of an event of interest occurring within a relatively short time period and it is given as; $T(t; \beta, \alpha, \theta, \lambda, \xi) = \frac{f(t; \alpha, \beta, \theta, \xi)}{P(t; \alpha, \theta, \theta, \xi)}$

$$
T(t; \beta, \alpha, \theta, \lambda, \xi) = \frac{\left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{1-\alpha}\right]^{n-1}}{1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{n}}\right]^{n-1}} \tag{25}
$$

Distribution of Order Statistics

Order statistics have been extensively applied in many fields of statistics, such as reliability and life testing. Let T_1, T_2, \ldots, T_n be independent and identically distributed $(i.i.d)$ random variables with their corresponding continuous distribution function $F(t)$. Let $T_{1:n} < T_{2:n} < ... < T_{n:n}$ the corresponding ordered random sample from a population of size n. Let $F_{r,n}(t)$ and $f_{r,n}(t)$, $r = 1,2,3...$, ndenote the cdf and pdf of the r^{th} order statistics $T_{r,n}$ respectively. David (1970) gave the probability density function of $T_{r:n}$ as;

$$
f_{r:n}(t) = \frac{1}{B(r,n-r+1)} F^{r-1}(t) [1 - F(t)]^{n-r} f(t)
$$
\n(26)

By substituting equation (8) and equation (9) into equation (26), we have;

$$
f_{r:n}(t) = \frac{1}{B(r,n-r+1)} \left[1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t;\xi) \right]^\alpha \right]^\beta \right]^\beta \right]^{r-1} \left[1 - H^{2\beta}(t;\xi) \right]^\alpha \right]^\beta \right]^\beta \right]^\beta \right]^{r-1}
$$

 $2\beta\alpha\lambda\theta h(t;\xi)H^{2\beta-1}(t,\xi)\left[1-H^{2\beta}(t;\xi)\right]^{\alpha-1}\left[1-\left[1-H^{2\beta}(t;\xi)\right]^{\alpha}\right]^{\lambda-1}\left[1-\left[1-\left[1-H^{2\beta}(t;\xi)\right]^{\alpha}\right]^{\lambda}\right]$ (27) The pdf of the maximum order statistics is obtained by setting $r = n$ in equation (27) as; $f_{n:n}(t; \beta, \alpha, \theta, \lambda, \xi) =$ $2nβαλθh(t; ξ)H^{2β-1}(t, ξ) [1 - H^{2β}(t; ξ)]^{α-1} [1 - [1 - H^{2β}(t; ξ)]^α]^{λ-1}$

$$
\left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^\alpha\right]^\lambda\right]^{\theta - 1} \left[1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^\alpha\right]^\lambda\right]^\theta\right]^{r-1}
$$
\nAlso the pdf of the minimum order statistics is obtained by setting $r = 1$ in equation (27).

Also, the pdf of the minimum order statistics is obtained by setting $r = 1$ in equation (27)

$$
f_{1:n}(t; \beta, \alpha, \theta, \lambda, \xi) = 2n\beta\alpha\lambda\theta h(t; \xi)H^{2\beta-1}(t, \xi)\left[1 - H^{2\beta}(t; \xi)\right]^{\alpha-1}\left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{\lambda-1}
$$

$$
\left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{\lambda}\right]^{\beta-1}\left[1 - \left[1 - \left[1 - \left[1 - \left[1 - H^{2\beta}(t; \xi)\right]^{\alpha}\right]^{\lambda}\right]^{\beta}\right]^{n-r}
$$

Sub-Model

In this section, we provide sub-model of this family corresponding to the baseline Exponential (Ex) distribution to show the flexibility of the new family.

Kumaraswamy Type II Generalized Topp-Leone Exponential Distribution (KwT2GTLEx)

Let us consider the Exponential distribution which is the baseline distribution with parameter δ with cumulative distribution and probability density functions given, respectively by;

$$
H_{Ex}(t; \delta) = 1 - e^{-\delta t}
$$

and

$$
h_{Ex}(t; \delta) = \delta e^{-\delta t}
$$
 (30)

$$
ext{Where } t > 0, \delta > 0
$$

Then the cdf and pdf of the proposed K_wT₂GTLEx distribution with five parameters are obtained by inserting equation (30) into equation (8) and are respectively given as

$$
F_{K_{w}T_{2}GTLEx}(t; \beta, \alpha, \theta, \lambda, \delta) = 1 - \left[1 - \left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{\alpha}\right]^{4}\right]^{\theta}
$$
\n(32)

\nAnd

\n
$$
P_{K_{w}T_{2}GTLEx}(t; \beta, \alpha, \theta, \lambda, \delta) = 1 - \left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{\alpha}\right]^{4}
$$

2(; , , , ,) = 2 −[1 − −] [1 − [1 − −] 2 −1] [1 − [1 − [1 − −] 2 −1]] [1 − [1 − [1 − [1 − −] 2]]] −1 (33)

Where $t > 0$, α , θ , β , $\lambda > 0$ are shape paremeters and. $\delta > 0$, is scale parameter

Furthermore, the following are the reliability function, hazard rate function and the quantile function respectively

 $n-r$

Figure 1: Plots of Pdf of the KwT2GTLEx distribution for different parameters values that shows the shape of the distribution at different parameter values which indicates that the KwT2GTLEx distribution can be used to model highly skewed data.

Figure 2: Plots of Hazard function of the K_wT₂GTLEx distribution for different parameters values which show different shapes of hazard function of the distribution. It can be deduced from the plot that the distribution has an increasing, and decreasing shapes which makes it a good distribution for modeling biomedical data and engineering data

Parameter Estimation

In this work, Maximum Likelihood Estimate is used to estimate the unknown parameter of K_wT_2GTL-G family for a complete data. Let t_1, t_2, \ldots, t_n be a random sample of size n from the

 K_wT_2GTL-G family. Then, the likelihood function based on observed sample for the vector Φ of parameter $(\alpha, \beta, \theta, \lambda, \delta)^T$ is given by;

$$
Log L = n \log 2 + n \log \beta + n \log \alpha + n \log \theta + n \log \delta + n \log \lambda -
$$

$$
\delta \sum_{i=1}^{\infty} t_i + (2\beta - 1) \sum_{i=1}^{\infty} \log \left[1 - e^{-\delta t} \right] + (\alpha - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right] + (\lambda - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right] +
$$
\n
$$
(\theta - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n
$$
(0 - 1) \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{2\alpha} \right]
$$
\n<math display="</math>

Differentiating the log-likelihood with respect to α , β , θ , δ , λ and equate the result to zero, we have

$$
\frac{\partial(\log L)}{\partial \alpha} = \frac{n}{\alpha} + \sum_{l=1}^{\infty} \log \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right] - (\lambda - 1) \sum_{l=1}^{\infty} \frac{\left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{\alpha} \log \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]}{\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{\alpha} \right]} + \left(\theta - 1\right) \lambda \sum_{i=1}^{\infty} \frac{\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{\alpha} \log \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]}{\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{\alpha} \log \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]} \right]} \right] + \left(\theta - 1\right) \lambda \sum_{i=1}^{\infty} \frac{\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{\alpha} \log \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]}{\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{\alpha} \right]} \right] \tag{38}
$$

$$
\frac{\partial(\log L)}{\partial \beta} = \frac{n}{\beta} + 2 \sum_{i=1}^{\infty} \log[1 - e^{-\delta t}] -
$$
\n
$$
(\alpha - 1) \sum_{i=1}^{\infty} \frac{\left[1 - e^{-\delta t}\right]^{2\beta} \log\left[1 - e^{-\delta t}\right]^2}{\left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]} + (\lambda - 1)\alpha \sum_{i=1}^{\infty} \frac{\left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{\alpha - 1}\left[1 - e^{-\delta t}\right]^{2\beta} \log\left[1 - e^{-\delta t}\right]^2}{\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right] \alpha}\right]} +
$$
\n
$$
(\theta - 1)\alpha \lambda \sum_{i=0}^{\infty} \frac{\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{2\alpha - 1}\left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right] \alpha - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right] \alpha\right]}{\left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]} + \frac{\alpha \lambda}{\left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]} \tag{20}
$$

$$
\left[1 - \left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 - e^{-\delta t}\right]^{2\beta}\right]^{d}\right]
$$
\n
$$
\left[1 - \left[1 - \left[1 -
$$

$$
\frac{\partial(\log L)}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{\infty} \log \left[1 - \left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{a} \right]^{a} \right]
$$
\n
$$
\frac{\partial(\log L)}{\partial \delta} = \frac{n}{\delta} - \sum_{i=1}^{\infty} t_i - (2\beta - 1) \sum_{i=1}^{\infty} \left[\frac{e^{-\delta t} t_i}{[1 - e^{-\delta t}]} \right] + (\alpha - 1) \sum_{i=1}^{\infty} \left[\frac{2\beta \left[1 - e^{-\delta t} \right]^{2\beta - 1} t_i e^{-\delta t}}{\left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]} \right]
$$
\n
$$
(1 - 1) \sum_{i=1}^{\infty} \left[\frac{\alpha \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{a-1} 2\beta \left[1 - e^{-\delta t} \right]^{2\beta - 1} t_i e^{-\delta t}}{\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{a} \right]} + \right]
$$
\n223. (2 - 1) \sum_{i=1}^{\infty} \left[\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{a^{-1}} \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta - 1} t_i e^{-\delta t} \right] \right]\n233. (3 - 1) \sum_{i=1}^{\infty} \left[\left[1 - \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta} \right]^{a^{-1}} \left[1 - \left[1 - e^{-\delta t} \right]^{2\beta - 1} t_i e^{-\delta t} \right] \right]\n(40)

$$
2\beta\lambda\alpha(\theta-1)\sum_{i=1}^{\infty} \left[\frac{1-\left[1-\left[1-\left[1-\left[1-(e^{-\delta t}\right]^{2\beta}\right]^{a}\right]\right]^{a}}{\left[1-\left[1-\left[1-(e^{-\delta t}\right]^{2\beta}\right]^{a}\right]^{a}}\right]^{a}\right]
$$
\n
$$
\frac{\partial(\log L)}{\partial\lambda} = \frac{n}{\lambda} + \sum_{i=1}^{\infty} \left[1-\left[1-e^{-\delta t}\right]^{2\beta}\right]^{a} + (\theta-1)\sum_{i=1}^{\infty} \frac{\left[1-\left[1-\left[1-e^{-\delta t}\right]^{2\beta}\right]^{a}\right]^{a}}{\left[1-\left[1-\left[1-e^{-\delta t}\right]^{2\beta}\right]^{a}\right]^{a}}\right]
$$
\n
$$
(42)
$$

Equating and solving these equations simultaneously yields the MLEs. Equation (38), (39), (40), (41) and equation (42) cannot be solved analytically, and analytical software is required to solve them numerically.

RESULTS AND DISCUSSION

Simulation Study

The quantile function of the KwT2GTLEx distribution was used to generate 1000 replicates with the sample size of n=20,50,100,250,500,1000 from the KwT2GTLEx distribution. From the 1000 replicates the estimates, bias and RMSE were computed, the result of which are presented in Table 1 showed the MLE parameter estimates, Bias and

RMSE for the estimated parameters of KwT2GTLEx at the chosen values of $\delta = 0.44$, $\alpha = 1$, $\beta = 0.52$, $\theta = 0.8$, $\lambda =$ 0.6. The values of biases and RMSEs approach zero in the table, and the estimates tend to the true values as the sample size increases, indicating that the estimates are efficient and consistent;

Table 1: Monte Carlo simulation results for some values of parameters

Application to Real-Life Dataset

This section discusses real-life applications to data sets. For illustrative purposes, a comparison study with the fits of the Kumaraswamy Extension Exponential (KwEEx) distribution by Elbatal, *et al*., (2018).Kumaraswamy Exponential (KwEx)distribution by Adepoju and Chukwu (2015), The Exponential Generalized Exponentiated Exponential

(EGEEx) distribution by Bukoye and Oyeyemi, (2018), The Exponentiated Weibull-Exponential (EWEx) distribution by Elgarhy, *et al*. (2017). The versatility of the new distribution in empirically portraying real-life data was demonstrated in this application. All of the calculations are performed using the Adequacy Model package in R software.

The Comparators of KwT2GTLEx

The pdf of the comparators considered are:

i. The K_wEEx by Elbatal, *et al.*, (2018) has probability density function given as:
 (1.25×10^{-16})

$$
f(x) = \delta \beta \alpha \lambda (1 + \lambda x)^{\alpha - 1} e^{1 - (1 + \lambda x)^{\alpha}} \left[1 - e^{1 - (1 + \lambda x)^{\alpha}} \right]^{\delta - 1} \left[1 - \left[1 - e^{1 - (1 + \lambda x)^{\alpha}} \right]^{\delta} \right]^{\beta - 1}
$$

ii. The K_wEx by Adebayo and Chukwu (2015) has pdf defined as:

$$
f(x) = \alpha \beta \lambda e^{-\beta x} \left[1 - e^{-\beta x} \right]^{\alpha - 1} \left[1 - \left[1 - e^{-\beta x} \right]^{\alpha} \right]^{1 - 1}
$$

iii. The EGEEx by Bukoye and Oyeyemi, (2018) has pdf defined as:

$$
f(x) = \frac{\alpha \beta \lambda}{\theta} e^{-\frac{x}{\theta}} \left[1 - e^{-\frac{x}{\theta}} \right]^{\lambda - 1} \left[1 - \left[1 - e^{-\frac{x}{\theta}} \right]^{\lambda} \right]^{\alpha - 1} \left[1 - \left[1 - \left[1 - e^{-\frac{x}{\theta}} \right]^{\lambda} \right]^{\alpha} \right]^{\beta - 1}
$$

And

iv. The EWEx by Elgarhy, *et al*. (2017). has pdf given as:

$$
f(x) = \alpha \delta \beta \lambda \left[e^{\lambda x} - 1\right]^{\beta - 1} \exp\left[-\left[\alpha \left(e^{\lambda x} - 1\right)^{\beta} - \lambda x\right]\right] \left[1 - \exp\left[-\alpha \left(e^{\lambda x} - 1\right)^{\beta}\right]\right]^{\alpha - 1}
$$

The two datasets that used as examples in the application demonstrate the new family of distributions' flexibility and 'best fit' compared to the above comparator distributions in modeling the data sets experimentally. The R programming language is used to carry out all of the computations.

Data Set 1

The first data set shown below represents the failure times of 84 Aircraft Windshield, previously used by Tahir *et al*., (2015): 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

Figure 3: Fitted pdfs for the K_wT_2GTLEx , EGEEx, KEx, KEEx, and EWEx distributions to the data set 1

Figure 4: Estimated density plots for data set 1

 $\overline{2}$

Data

3

Table 2: MLEs, Log-Likelihoods and Goodness of fits Statistics of the models based on the Data Sets 1

5

Table 2 presents the results of the MLE of the parameters of the proposed distribution and the four comparator distributions. The proposed distribution reported the lowest AIC value (268.8387) based on the goodness of fit measure; the visual inspection of the fit presented in figure 3 also confirms the superiority of the proposed distribution among its comparators; thus, the proposed distribution "best fit" the data sets among the range of distributions considered.

Data set 2

The second data set represents the lifetime data relating to relief times (in minutes) of patients receiving an analgesic. The data set was given by Gross and Clark (1975). The data set consists of twenty (20) observations and it is as follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

Figure 5: Fitted pdfs for the K_wT₂GTLEx, EGEEx, KEx, KEEx, and EWEx, distributions to the data set 2

Table 3: MLEs, Log-Likelihoods and Goodness of fits Statistics of the models based on the Data Sets 2

Table 3 presents the results of the Maximum Likelihood Estimation of the parameters of the proposed distribution and the four comparator distributions. Based on the goodness of fit measure, the proposed distribution reported the minimum AIC value (38.0489). The visual inspection of the fit presented in Figure 6, also confirms the superiority of the proposed distribution amongst its comparators. Thus the proposed distribution 'best fit' lifetime data relating to relief times (in minutes) of patients receiving an analgesic amongst the range of distributions considered.

CONCLUSION

In order to increase modeling flexibility for complex lifespan data sets, a novel family of continuous distributions known as the Kumaraswamy Type II Generalized Topp Leone-G (K_wT_2GTL-G) class has been introduced and examined in this paper. The KwT2GTL-G distribution integrates the cumulative distribution function of the Kumaraswamy-G family with a Type II Generalized Topp-Leone as a link function, resulting in a versatile model capable of representing both monotonic and non-monotonic hazard functions. The distribution of order statistics, quantile function, reliability function, hazard function, moments, moment generating function, probability weighted moments, and other important statistical features were all derived and thoroughly examined. A sub-model emerged known as KwT2GTLEx. Using the MLE method, the parameters of the KwT2GTLEx distribution were estimated using a package in *R* known as *AdequacyModel* and applied to real-life datasets; lifetime data relating to relief times (in minutes) of patients receiving an analgesic, and failure service times for a windshield and the results are presented in Table 1 and Table 2 respectively. Monte Carlo simulation was carried out to see the performance of MLEs of the KwT2GTLEx distribution and as expected, the MSEs of the estimated parameters decrease as the sample size *n* increases

which proves the consistency of the estimators. The comparative assessments revealed that the KwT2GTL-G distribution outperformed existing distributions considered in this paper, beacuse it reported lower Akaike Information Criterion (AIC) values, indicating a better fit for the two datasets considered. The findings highlight the potential of the KwT2GTL-G family to enhance the modeling of lifetime data, contributing significantly to fields like medical and engineering. Future research should focus on exploring the application of the K_wT_2GTL-G family to a broader range of datasets and investigating the potential for further extensions or modifications to improve its flexibility and applicability in other domains.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers who helped to improve the work in its current state by offering enlightening critiques and recommendations.

REFERENCES

Adepoju, K. A., &Chukwu, O. I. (2015). Maximum Likelihood Estimation of the Kumaraswamy Exponential Distribution with Applications, *Journal of Modern Applied Statistical Methods*, 14(1), 208-214.

Ahmad, Z., Elgarhy, M., &Hamedani, G. G. (2018). A new Weibull-X family of distributions: properties, characterizations and applications. *Journal of Statistical Distributions and Applications,* 5, 1-18.

Alzaatreh A. Famoye C. & Lee C. (2014). The Gamma-Normal distribution: Properties and Applications. *Computational Statistics & Data Analysis* 69, 67-80, *2014*. 163, *2014*.

Alzaatreh, A., Lee, C. &Famoye, F. (2013). A new method for generating families of continuous distributions. *Metron*, 71, 63-79.

Bello O.A., Doguwa S.I., Yahaya A. & Haruna M.J. (2021). A Type I Half Logistic Exponentiated - G family of distribution; properties and applications. *Communication in Physical sciences* 2020, 7(3): 147-163.

Bukoye, A., & Oyeyemi, G. M. (2018). On Development of Four-Parameters Exponentiated Generalized Exponential Distribution. *Pak. J. Statist*, *34*(4), 331-358.

Cordeiro, G. M. & de Castro, M. (2011). A new family of generalized distribution.*Journal of Statistical Computations and Simulation*, 81, 883-898.

Cordeiro, G. M., Saboor, A., Khan, M. N.,Ozel, G., &Pascoa, M. A. (2016). The Kumaraswamy Exponential{Weibull Distribution: Theory and Applications. *Hacettepe journal of mathematics and statistics,* 45(4): 1203-1229.

Elbatal, I., Louzada, F., &Granzotto, D. C. (2018). A new lifetime model: The Kumaraswamy Extension Exponential Distribution. *Biostatistics and Bioinformatics*, *2*, 1-9.

Elgarhy, M., Shakil, M., & Kibria, G. (2017). Exponentiated Weibull-Exponential Distribution with Applications. *Applications and Applied Mathematics Journal (AAM)*, *12*(2), 5.

Eugene, N., Lee, C. &Famoye, F. (2002). The beta-normal distribution and its applications. *Communications in Statistics Theory and Methods*, 31, 497- 512.

Greenwood, J. A., Landwehr, J.M., &Matalas, N.C.(1979). Probability weighted moments: Definitions and relations of parameters of several distributions expressible in inverse form. *Water Resources Research,* 15, 1049-1054.

Gross, A.J. and *Clark*, V.A. (*1975*) Survival Distributions Reliability Applications in the Biometrical Sciences. John Wiley, New York.

Hassan, A. S. & Elgarhy, M. (2016). Kumaraswamy Weibullgenerated family of distributions with applications. *Advances and Application in Statistics*, 48, 205-239.

©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license viewed via <https://creativecommons.org/licenses/by/4.0/> which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited appropriately.

Hassan, A. S., Elgarhy, M., & Ahmad, Z. (2019). Type II Generalized Topp-Leone Family of distributions: Properties and Applications. *Journal of data science*, *17*(4).

Ismail Kolawole Adekunle, Ibrahim Sule, & Olalekan Akanji Bello (2022). On The Properties of Topp-Leone Kumaraswamy Weibul Distribution with Applications To Biomedical Data. *FUDMA Journal of Sciences,* 6(5):169-179.

Ibrahim S, Doguwa S.I, Isah A & Haruna J.M.(2020). The Topp Leone Kumaraswamy-G Family of Distributions with Applications to Cancer Disease Data. *Journal of Biostatistics and Epidemiology* 6(1), 37-48.

Kolawole I.A., Abubakar Y., Sani I.D.& Aliyu Y. (2023). On the Exponentiated Type II Generalized Topp-Leone-G Family of Distribution: Properties and Applications. *Communication in Physical sciences*, 11(4):792-805.

Nofal, Z. M., Afify, A. Z., Yousof, H. M., & Cordeiro, G. M. (2017). The Generalized Transmuted-G Family of distributions. *Communications in Statistics-Theory and Methods*, *46*(8), 4119-4136.

Tahir, M.H., Zubair, M., Mansoor M., Cordeiro G. M., Alizadeh, M. &Hamedani, G. G. (2016). A New Weibull-G Family of Distributions. *Hacettepe Journal of Mathematics and Statistics*, Vol. 45, 2, 629-647.

Tahir, M. H., Cordeiro, G. M., Mansoor, M., & Zubair, M. (2015). The Weibull-Lomax distribution: Properties and applications. *Hacettepe Journal of Mathematics andStatistics*, 44, 461-480.

Torabi, H., and Montazari, N.H. (2014). The logistic-uniform distribution and its application. *Communications in Statistics Simulation and Computation* 43:25512569.

Yahaya A. & Doguwa S.I.S. (2021). On Theoretical Study of Rayleigh-Exponentiated Odd Generalized-X Family of Distributions.*Transactions of the Nigerian Association of Mathematical Physics.* (14),143 –154