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ABSTRACT 

This research paper pioneers an innovative extensions of antimultigroup theory by seemingly integrating the 

concept of cuts and comultiset, thereby revolutionizing the field. Notably, we demonstrate that the root sets of 

antimultigroup sums and differences are subgroups, uncovering a profound connection. Furthermore, we 

establish that if 𝐻 is a complete sub-antimultigroup of 𝐺  such that all the counts in 𝐻 are factors of their 

corresponding counts in 𝐺 . Then |𝐻|/|𝐺| . Finally, we prove that the cuts of antimultigroup unions and 

intersections also form subgroups, further enriching our understanding of these complex structures.  
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INTRODUCTION 

George Cantor developed the foundational ideas of set theory, 

which became the basis for group theory (Kleiner, 1986). 

Cantor assumed in his set theory that it is not permissible for 

objects in a set to be repeated; nevertheless, this does not align 

with ideas in practical situations. Cantorian set theory served 

as the foundation for group theory's development, and several 

findings and deductions pertaining to group theory based on 

classical set theory have been made. With the advancement of 

study and mathematical development, some algebraists 

realized that Cantor's premise needed to be addressed. To 

address the limitation in Cantor's assumption, the idea of 

multiset was developed. DeBruijn originally proposed the 

word "multiset" to Knuth in a private correspondence as a 

generalization of Cantor's crisp set theory (Knuth, 1981). In 

contrast to Cantorian set theory, a multiset is an unorganized 

arrangement of objects where repetition of elements is 

permitted. Due to its practicality and wide range of 

applications in biological systems, database systems, web 

information retrieval, membrane computing, etc., multiset has 

become extremely significant. Multisets' origins and 

evolution are covered in (Blizard, 1991; Singh 1994; Singh et 

al., 2007 & 2008). Given that a multiset generalizes a set, it 

follows that the concept of group must also be generalized to 

include multigroups. Dresher and Ore (1938) defined 

multigroups as algebraic systems that satisfy all of the group 

theory axioms, with the exception that multiplication is 

multivalued. This definition is incompatible with the idea of 

a multiset and does not align with other non-classical groups, 

such as fuzzy groups, soft groups, intuitionistic fuzzy groups, 

fuzzy soft groups, etc. (Rosenfeld 1971; Aktas & Cagman, 

2007; Biswas, 1989; Nazmul & Samanta, 2011 & 2015; 

Shinoj et al., 2015; Shinoj & Sunil, 2015). 

The notion of a multigroup was presented by Nazmul et al. 

(2013) using multisets, and their structures were explained. 

This definition is more appealing since it incorporates the 

notion of multiplicities as count functions, is based on the 

multiset concept, and is consistent with the methodology used 

by other non-classical groups. Several group theory 

structures, such as submultigroup, normal submultigroup, 

comultisets, factor multigroup, and commutative multigroup, 

have been extended to multigroups using multisets in light of 

this notion. As an extension of the idea of a multigroup in 

reverse order, Ejegwa (2020) established the concept of 

antimultigroup and clarified some of its features.  

In this paper, we explain certain results and offer an extension 

on the topic of antimultigroup. The remainder of the paper is 

arranged as follows: materials and methods of approach are 

reported in section 2. In section 3, results and discussion are 

presented in relation to antimultigroup, and certain 

conclusions are drawn. Section 4 presents a conclusion and a 

few recommendations. 

 

Preliminaries And Basic Definitions 

This section provides an overview of relevant existing 

research, synthesizing key definitions and findings to 

establish a foundation for our work. Additionally, we augment 

this foundation with novel definitions and results that will be 

pivotal to our subsequent contributions, thereby extending the 

existing knowledgebase and paving way for our innovative 

approaches.  

 

Definition 1: (Singh et al. 2007): Suppose 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑗 , … } is a set. A multiset 𝐴 over 𝑋 is a function 

that maps each element of 𝑋 to a non-negative integer i.e., 𝐴 ∶
𝑋 ⟶ 𝑁 = {0,1,2, … } ∋ for 𝑥 ∈ 𝐷𝑜𝑚(𝐴), 𝐴(𝑥) is a cardinal 

and 𝐴(𝑥) = 𝑚𝐴(𝑥) > 0, where 𝑚𝐴(𝑥) is the frequency of 𝑥 

in the multiset 𝐴. The collection 𝑋 is referred to as the root set 

from which all possible multisets are derived and it is 

represented as 𝑀𝑆(𝑋). 

 

Definition 2: (Syropoulos, 2001): Let 𝐴  and 𝐵  be two 

multisubsets, 𝐴 is called an multisubset or a submultiset of 𝐵, 

written as 𝐴 ⊆ 𝐵 or 𝐵 ⊇ 𝐴 , if 𝑚𝐴(𝑥) ≤ 𝑚𝐵(𝑥) for all 𝑥 ∈ 𝐷 

∋ the root set of 𝐵 is 𝐷. Also, if 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵 then 𝐴 is a 

proper submultiset of 𝐵. 

 

Definition 3: (Nazmul et al. 2013): Consider 𝐴 ∈ 𝑀𝑆(𝑋). 

Accordingly, 𝐴∗  and 𝐴∗  are given as follows: 𝐴∗  = { 𝑥 ∈
𝑋 | 𝑚𝐴(𝑥) > 0 }  and  𝐴∗ = { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) =  𝑚𝐴(𝑒)} 

where 𝑋 has 𝑒 as its identity. 

 

Definition 4: (Nazmul et al. 2013): Consider a group 𝑋. A 

multiset 𝐴  over 𝑋  is said to be a multigroup of 𝑋  if its 

multiplicity function 𝑚𝐴 fulfill the conditions below: 

i. 𝑚𝐴(𝑥𝑦) ≥ 𝑚𝐴(𝑥) ∧ 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋 

ii. 𝑚𝐴(𝑥−1) ≥ 𝑚𝐴(𝑥) 

It follows immediately that,     
𝑚𝐴(𝑥−1) = 𝑚𝐴(𝑥) 

since from (ii), 

𝑚𝐴(𝑥) = 𝑚𝐴((𝑥−1)−1) ≥ 𝑚𝐴(𝑥−1) 

The collection of all multisets over 𝑋 that forms a multigroup 

is represented as 𝑀𝐺(𝑋). 
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Proposition 5 : (Nazmul et al. 2013): Consider 𝐴 ∈ 𝐴𝑀𝐺(𝑋). 

Thus  𝑋 contains 𝐴∗ and 𝐴∗ as its subgroups. 

 

Definition 6: (Nazmul et al., 2013):  Consider a group 𝑋. For 

any submultigroup 𝐴 of a multigroup 𝐺 of 𝑋, the submultiset 

𝑦𝐴 of 𝐺  for 𝑦 ∈  𝑋 given as 𝑚𝑦𝐴(𝑥) = 𝑚𝐴(𝑦−1𝑥) ∀ 𝑥 ∈ 𝐴∗ 

is referred as left comultiset of 𝐴. Also, the submultiset 𝐴𝑦 of 

𝐺  for 𝑦 ∈ 𝑋  given as 𝑚𝐴𝑦(𝑥) = 𝑚𝐴(𝑥𝑦−1) ∀ 𝑥 ∈ 𝐴∗  is 

referred as right comultiset of 𝐴. 

 

Definition 7: (Nazmul et al., 2013): Consider a group 𝑋 such 

that 𝐺 is multigroup of 𝑋. The cardinality of 𝐺 is equal to the 

sum of the multiplicities of each distinct element in 𝐺 , 

denoted as |𝐺| = ∑ 𝑚𝐺(𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋𝑛
𝑖=1 . 

 

Definition 8: (Ejegwa, 2020): A multiset 𝐴 of 𝑋 is said to be 

an antimultigroup if it fulfills the conditions below: 

i. 𝑚𝐴(𝑥𝑦) ≤ 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦) ∀𝑥, 𝑦 ∈ 𝑋 

ii. 𝑚𝐴(𝑥−1) ≤ 𝑚𝐴(𝑥)∀𝑥 ∈ 𝑋 

The collection containing all antimultigroup of 𝑋  is 

represented as 𝐴𝑀𝐺(𝑋). 

 

Definition 9: (Ejegwa, 2020): Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋) . The set 

𝐴[𝑛], defined as 𝐴[𝑛] = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) ≤ 𝑛, 𝑛 ∈ ℕ} is called 

the cut of 𝐴. 

 

Theorem 10: (Ejegwa, 2020): Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋) . Then 𝑋 

contains 𝐴[𝑛], 𝑛 ∈ ℕ  as a subgroup such that 𝑛 ≥ 𝑚𝐴(𝑒) , 

where 𝑋 has 𝑒 as its identity. 

 

Proposition 11: (Ejegwa, 2020): If 𝐴 ∈ 𝐴𝑀𝐺(𝑋) then ∀𝑥 ∈
𝑋, 𝑛 ∈ ℕ, the assertions below are valid: 

i. 𝑚𝐴(𝑒) ≤ 𝑚𝐴(𝑥) where 𝑋 has 𝑒 as its identity. 

ii. 𝑚𝐴(𝑥𝑛) ≤ 𝑚𝐴(𝑥) 

iii. 𝑚𝐴(𝑥−1) = 𝑚𝐴(𝑥). 

 

Definition 12: Consider 𝐴 ∈ 𝐴𝑀𝐺(𝑋). A submultiset 𝐵 of 𝐴 

is said to be a sub-antimultigroup of  𝐴 represented as 𝐵 ≤ 𝐴 

if 𝐵 forms an antimultigroup. A sub-antimultigroup 𝐵 of 𝐴 is 

a proper sub-antimultigroup represented as 𝐵 < 𝐴, if 𝐵 ≤ 𝐴 

and 𝐴 ≠ 𝐵. 

 

Example 13: Let 𝑋 = {𝑒, 𝑎, 𝑏, 𝑐, 𝑑} be a Klein 4-group and 

𝐴 = {𝑒6, 𝑎8, 𝑏7, 𝑐8} be an antimultigroup generated from 𝑋. 

Then 𝐴 = {𝑒6, 𝑎8, 𝑏7, 𝑐8}, 𝐵 = {𝑒5, 𝑎7, 𝑏6, 𝑐7} , 𝐶 =
{𝑒4, 𝑎6, 𝑏5, 𝑐6}, 𝐷 = {𝑒3, 𝑎5, 𝑏4, 𝑐5} are sub-antimultigroups 

of 𝐴 . But, 𝐵 = {𝑒5, 𝑎7, 𝑏6, 𝑐7} , 𝐶 = {𝑒4, 𝑎6, 𝑏5, 𝑐6}, 𝐷 =
{𝑒3, 𝑎5, 𝑏4, 𝑐5} are proper sub-antimultigroups of 𝐴 . 

 

Remark 14: If 𝐴 ∈ 𝐴𝑀𝐺(𝑋) ∋ 𝐵 ≤ 𝐴, thus 𝐵 ∈ 𝐴𝑀𝐺(𝑋). 

 

Proposition 15: Let 𝐴 ∈ 𝑀𝑆(𝑋).Then the following hold 

i. 𝐴∗ ∩ 𝐵∗ = (𝐴 ∩ 𝐵)∗ 

ii. 𝐴∗ ∪ 𝐵∗ = (𝐴 ∪ 𝐵)∗ 

Proof: 

i. Suppose 𝑥 ∈ 𝐴∗ ∩ 𝐵∗ ⟹ 𝑥 ∈ 𝐴∗ and 𝑥 ∈  𝐵∗ . Then by 

definition of 𝐴∗, we have  

𝐴∗ = { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) > 0 }  and also 𝐵∗ = { 𝑥 ∈
𝑋 | 𝑚𝐵(𝑥) > 0 }. Thus  

𝐴∗ ∩ 𝐵∗ = { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) > 0 } ∩ { 𝑥 ∈ 𝑋 | 𝑚𝐵(𝑥) > 0 } 

 ≤ { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) > 0 ∧  𝑚𝐵(𝑥) > 0} 

= { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) ∧ 𝑚𝐵(𝑥) > 0} 

= { 𝑥 ∈ 𝑋 | 𝑚𝐴∩𝐵(𝑥) > 0} 

= (𝐴 ∩ 𝐵)∗ 

On the other hand, suppose 𝑥 ∈ (𝐴 ∩ 𝐵)∗. Then we have 

(𝐴 ∩ 𝐵)∗ = { 𝑥 ∈ 𝑋 | 𝑚𝐴∩𝐵(𝑥) > 0} 

= { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) ∧ 𝑚𝐵(𝑥) > 0} 

≤ { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) > 0 ∧  𝑚𝐵(𝑥) > 0} 

= { 𝑥 ∈ 𝑋 | 𝑚𝐴(𝑥) > 0 } ∩ { 𝑥 ∈ 𝑋 | 𝑚𝐵(𝑥) > 0 } 

= 𝐴∗ ∩ 𝐵∗ 

ii. Follows immediately from i. 

 

RESULTS AND DISCUSSIONS 

This section introduces novel insights into the realm of 

antimultigroups, presenting new findings that expand our 

understanding of this mathematical concept. We contribute 

meaningfully to the existing body of knowledge, fostering a 

deeper comprehension of antimultigroup. 

 

Proposition 16: If  𝐴 ∈ 𝐴𝑀𝐺(𝑋) ⇔  𝐴−1 ∈ 𝐴𝑀𝐺(𝑋). 

Proof: Suppose  𝐴 ∈ 𝐴𝑀𝐺(𝑋). Then by definition of 𝐴, we 

have  𝑚𝐴(𝑥𝑦−1) ≤  𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦). 

⇒ 𝑚(𝐴−1)−1(𝑥𝑦−1) ≤ 𝑚(𝐴−1)−1(𝑥) ∨ 𝑚(𝐴−1)−1(𝑦) 

Since  𝑚𝐴(𝑥) = 𝑚𝐴(𝑥−1) = 𝑚𝐴−1(𝑥) ⇒ 𝑚(𝐴−1)−1(𝑥) =

𝑚𝐴−1(𝑥) 

⇒ 𝑚𝐴−1(𝑥𝑦−1) ≤ 𝑚𝐴−1(𝑥) ∨ 𝑚𝐴−1(𝑦) 

Hence, 𝐴−1 ∈ 𝐴𝑀𝐺(𝑋). 

On the other hand, suppose 𝐴−1 ∈ 𝐴𝑀𝐺(𝑋) and ∀𝑥, 𝑦 ∈ 𝑋, it 

follows that 

𝑚𝐴−1(𝑥𝑦−1) ≤ 𝑚𝐴−1(𝑥) ∨ 𝑚𝐴−1(𝑦) 

⇒ 𝑚𝐴([𝑥𝑦−1]−1) ≤ 𝑚𝐴(𝑥−1) ∨ 𝑚𝐴(𝑦−1) 

⇒ 𝑚𝐴(𝑥𝑦−1) ≤  𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦) 

Hence, 𝐴 ∈ 𝐴𝑀𝐺(𝑋). 

 

Proposition 17: Consider 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) such that 𝐴∗ = 𝐵∗, 

the assertions below holds 

i. 𝑋 contains (𝐴 + 𝐵)∗ as its subgroup. 

ii. 𝑋 contains (𝐴 + 𝐵)∗ as its subgroup. 

Proof. 

(i) Suppose 𝑥, 𝑦 ∈ (𝐴 + 𝐵)∗ . We have 𝑚𝐴+𝐵(𝑥) =
 𝑚𝐴+𝐵(𝑦) = 𝑚𝐴+𝐵(𝑒). Since 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋), then  

𝑚𝐴+𝐵(𝑥𝑦−1) = 𝑚𝐴(𝑥𝑦−1) + 𝑚𝐵(𝑥𝑦−1) 

≤ [( 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)) + ( 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴(𝑥) + 𝑚𝐵(𝑥)) ∨ ( 𝑚𝐴(𝑦) + 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴+𝐵(𝑥)) ∨ ( 𝑚𝐴+𝐵(𝑦))] 

= [( 𝑚𝐴+𝐵(𝑒)) ∨ ( 𝑚𝐴+𝐵(𝑒))] 

=  𝑚𝐴+𝐵(𝑒) 

Thus 𝑚𝐴+𝐵(𝑥𝑦−1) ≤  𝑚𝐴+𝐵(𝑒)  and also  𝑚𝐴+𝐵(𝑒) ≤
𝑚𝐴+𝐵(𝑥𝑦−1)  from proposition 2.11. So 𝑚𝐴+𝐵(𝑥𝑦−1) =
 𝑚𝐴+𝐵(𝑒) . Since 𝑥, 𝑦 ∈ (𝐴 + 𝐵)∗ ⇒  𝑥𝑦−1 ∈ (𝐴 + 𝐵)∗ . 

Hence 𝑋 contains (𝐴 + 𝐵)∗ as its subgroup. 

(ii) Suppose 𝑥, 𝑦 ∈ (𝐴 + 𝐵)∗ . We have 𝑚𝐴+𝐵(𝑥) > 0  and 

𝑚𝐴+𝐵(𝑦) > 0. Since 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋), then  

𝑚𝐴+𝐵(𝑥𝑦−1) = [𝑚𝐴(𝑥𝑦−1) + 𝑚𝐵(𝑥𝑦−1)] 

≤ [( 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)) + ( 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴(𝑥) + 𝑚𝐵(𝑥)) ∨ ( 𝑚𝐴(𝑦) + 𝑚𝐵(𝑦))]

≤ [( 𝑚𝐴+𝐵(𝑥)) ∨ ( 𝑚𝐴+𝐵(𝑦))] > 0 

=  𝑚𝐴+𝐵(𝑥) > 0 ∨  𝑚𝐴+𝐵(𝑦) > 0 

Therefore, 𝑥, 𝑦 ∈ (𝐴 + 𝐵)∗ ⇒ 𝑥𝑦−1 ∈ (𝐴 + 𝐵)∗ . Hence  𝑋 

contains (𝐴 + 𝐵)∗ as its subgroup. 

 

Proposition 18: Let 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) such that 𝐵∗ ⊆ 𝐴∗, the 

assertions below holds. 

i. 𝑋 contains (𝐴 − 𝐵)∗ as its subgroup. 

ii. 𝑋 contains (𝐴 − 𝐵)∗ as its subgroup. 

Proof: Similar to theorem 3.2 

 

Proposition 19: Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋) and 𝐵 be a multiset of 𝐴. 

The assertions below are all equal such that ∀𝑥, 𝑦 ∈ 𝑋, 



AN EXPLORATION OF ANTIMULTIGROUP…     Peter et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 5, October, 2024, pp 269 – 273 271 

i. 𝐵 is a sub-antimultigroup of 𝐴. 

ii. 𝑚𝐵(𝑥𝑦) ≤ 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦) and 𝑚𝐵(𝑥−1) = 𝑚𝐵(𝑥) . 
iii. 𝑚𝐵(𝑥𝑦−1) ≤ 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦). 

Proof. 

(i) ⇒ (ii) If 𝐵 is a sub-antimultigroup of 𝐴. From remark 2.14, 

it follows that 𝐵 ∈ 𝐴𝑀𝐺(𝑋) . Thus,  𝑚𝐵(𝑥𝑦) ≤ 𝑚𝐵(𝑥) ∨
𝑚𝐵(𝑦) and 𝑚𝐵(𝑥−1) = 𝑚𝐵(𝑥). 

(ii) ⇒ (iii) Since 𝐵 ∈ 𝐴𝑀𝐺(𝑋) , then it follows that 

𝑚𝐵(𝑥𝑦−1) ≤ 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦). 

(iii) ⇒ (i) Since 𝐵 ⊆ 𝐴 and 𝐵 ∈ 𝐴𝑀𝐺(𝑋). Then 𝐵 is a sub-

antimultigroup of 𝐴. 

 

Comultisets of Antimultigroup 

This section builds on the established concept of comultiset 

and also pioneer an innovative extension to antimultigroup 

thereby providing results that significantly augment the 

existing mathematical knowledge in this domain. 

 

Definition 20: Suppose 𝑋  is a group. Then any sub-

antimultigroup 𝐴  of an antimultigroup 𝐺  of 𝑋 , the 

submultiset 𝑦𝐴  of 𝐺  for every 𝑦 ∈ 𝑋  given as 𝑚𝑦𝐴(𝑥) =

𝑚𝐴(𝑦−1𝑥) ∀𝑥 ∈ 𝐴∗  is referred to as left comultiset of 𝐴 . 

Also, the submultiset 𝐴𝑦  of 𝐺  for every 𝑦 ∈ 𝑋  given as 

𝑚𝐴𝑦(𝑥) = 𝑚𝐴(𝑥𝑦−1) ∀𝑥 ∈ 𝐴∗ is referred as right comultiset 

of 𝐴. 

 

Example 21: Let 𝑋 = {𝜌0, 𝜌1, 𝜌2, 𝜌3, 𝜌4, 𝜌5}  be a group of 

permutation on 𝑆 = {1,2,3}  ∋  𝜌0 = (1), 𝜌1 = (123), 𝜌2 =
(132), 𝜌3 = (23), 𝜌4 = (13), 𝜌5 = (12).  

Then 𝐺 = {𝜌0
3, 𝜌1

5, 𝜌2
3, 𝜌3

5, 𝜌4
3, 𝜌5

5}  is an antimultigroup 

of 𝑋 and 𝐻 = {𝜌0
2, 𝜌1

4, 𝜌2
2, 𝜌3

4, 𝜌4
2, 𝜌5

4} is a complete sub-

antimultigroup of 𝐺. 

The left comultisets of 𝐻 are given by multiplying from the 

left every distinct member of 𝑋 with 𝐻, that is 

𝜌0𝐻 = [𝜌0
2, 𝜌1

4, 𝜌2
2, 𝜌3

4, 𝜌4
2, 𝜌5

4] 
𝜌1𝐻 = [𝜌2

2, 𝜌0
2, 𝜌1

4, 𝜌5
4, 𝜌3

4, 𝜌4
2] 

𝜌2𝐻 = [𝜌1
4, 𝜌2

2, 𝜌0
2, 𝜌4

2, 𝜌5
4, 𝜌3

4] 
𝜌3𝐻 = [𝜌3

4, 𝜌5
4, 𝜌4

2, 𝜌0
2, 𝜌2

2, 𝜌1
4] 

𝜌4𝐻 = [𝜌4
2, 𝜌3

4, 𝜌5
4, 𝜌1

4, 𝜌0
2, 𝜌2

2 ] 
𝜌5𝐻 = [𝜌5

4, 𝜌4
2, 𝜌3

4, 𝜌2
2, 𝜌1

4, 𝜌0
2 ] 

Similarly, the right comultisets of 𝐻 are given below 

𝐻𝜌0 = [𝜌0
2, 𝜌1

4, 𝜌2
2, 𝜌3

4, 𝜌4
2, 𝜌5

4] 
𝐻𝜌1 = [𝜌2

2, 𝜌0
2, 𝜌1

4, 𝜌4
2, 𝜌5

4, 𝜌3
4] 

𝐻𝜌2 = [𝜌1
4, 𝜌2

2, 𝜌0
2, 𝜌5

4, 𝜌3
4, 𝜌4

2] 
𝐻𝜌3 = [𝜌3

4, 𝜌4
2, 𝜌5

4, 𝜌0
2, 𝜌1

4, 𝜌2
2] 

𝐻𝜌4 = [𝜌4
2, 𝜌5

4, 𝜌3
4, 𝜌2

2, 𝜌0
2, 𝜌1

4 ] 
𝐻𝜌5 = [𝜌5

4, 𝜌3
4, 𝜌4

2, 𝜌1
4, 𝜌2

2, 𝜌0
2 ] 

 

Remark 22: By example 3.6, the sub-antimultigroup of an 

antimultigroup and its comultisets are the same since the 

multisets contain the same elements regardless of their order 

or arrangement. In essense, if 𝐴 is a sub-antimultigroup of 

𝐵 ∈ 𝐴𝑀𝐺(𝑋) , then 𝐴 = 𝑦𝐴 ∀ 𝑦 ∈ 𝑋 . Similarly, 𝐴 =
𝐴𝑦 ∀ 𝑦 ∈ 𝑋. 

 

Proposition 23: If 𝐴 is a sub-antimultigroup of 𝐺 ∈ 𝐴𝑀𝐺(𝑋), 

then , 𝑦𝐴 = 𝐴𝑦 ∀ 𝑦 ∈ 𝑋.  

Proof: If 𝐴  is a sub-antimultigroup of 𝐺 . Thus ∀ 𝑥 ∈ 𝐴∗  it 

follows that 

𝑚𝑦𝐴(𝑥) = 𝑚𝐴(𝑦−1𝑥) ≤ 𝑚𝐴(𝑦) ∨ 𝑚𝐴(𝑥) 

= 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦) 

= 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦−1) 

Suppose by hypothesis, 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦) = 𝑚𝐴(𝑥𝑦) . Then,  

𝑚𝑦𝐴(𝑥) ≤ 𝑚𝐴𝑦(𝑥) 

Similarly, 

𝑚𝐴𝑦(𝑥) = 𝑚𝐴(𝑥𝑦−1) ≤ 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦) 

= 𝑚𝐴(𝑦) ∨ 𝑚𝐴(𝑥) 

= 𝑚𝐴(𝑦−1) ∨ 𝑚𝐴(𝑥) 

Subsequently we have, 

𝑚𝐴𝑦(𝑥) ≤ 𝑚𝑦𝐴(𝑥) 

Hence, 𝑚𝑦𝐴(𝑥) = 𝑚𝐴𝑦(𝑥) which implies that, 𝑦𝐴 = 𝐴𝑦. 

 

Theorem 24: Let 𝐺 ∈ 𝐴𝑀𝐺(𝑋). Any sub-antimultigroup 𝐴 

of 𝐺 for every 𝑧 ∈ 𝑋, the submultiset 𝑧𝐴𝑧−1 ∋  𝑚𝑧𝐴𝑧−1(𝑥) =
𝑚𝐴(𝑧−1𝑥𝑧) for all 𝑥 ∈ 𝑋 is a sub-antimultigroup of 𝐺. 

Proof: Suppose 𝑥, 𝑦 ∈ 𝑋 and 𝐴 ≤ 𝐺. We show that  𝑧𝐴𝑧−1 ≤
𝐺 ∀ 𝑧 ∈ 𝑋. Thus, 

𝑚𝑧𝐴𝑧−1(𝑥𝑦−1) = 𝑚𝐴(𝑧−1𝑥𝑦−1𝑧) 

    = 𝑚𝐴(𝑧−1𝑥𝑧𝑧−1𝑦−1𝑧) 

    ≤  𝑚𝐴(𝑧−1𝑥𝑧) ∨ 𝑚𝐴(𝑧−1𝑦−1𝑧) 

    = 𝑚𝑧𝐴𝑧−1(𝑥) ∨ 𝑚𝑧𝐴𝑧−1(𝑦−1) 

    = 𝑚𝑧𝐴𝑧−1(𝑥) ∨ 𝑚𝑧𝐴𝑧−1(𝑦) ∀𝑧 ∈ 𝑋  

This implies that 𝑚𝑧𝐴𝑧−1(𝑥𝑦−1) ≤ 𝑚𝑧𝐴𝑧−1(𝑥) ∨ 𝑚𝑧𝐴𝑧−1(𝑦). 

Hence, 𝑧𝐴𝑧−1 is a sub-antimultigroup of 𝐺. 

 

Lemma 25: Consider a group 𝑋. If 𝐵 is a sub-antimultigroup 

of a finite antimultigroup 𝐴 ∈ 𝐴𝑀𝐺(𝑋), we have that |𝐵| =
|𝑥𝐵| ∀𝑥 ∈ 𝑋. 

Proof: Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋). Given that 𝐴 is finite and 𝐵 ≤ 𝐴, 

then |𝐴| = 𝑝  and |𝐵| = 𝑞 ∋  𝑞 ≤ 𝑝 . It follows that |𝐵|  and 
|𝑥𝐵|  must be equal to 𝑞  by remark 3.7. Thus, |𝐵| =
|𝑥𝐵| ∀𝑥 ∈ 𝑋. 

 

Theorem 26: Suppose 𝐺 is a finite antimultigroup of a group 

𝑋 and let 𝐻 be a complete sub-antimultigroup of 𝐺 such that 

all the counts in 𝐻 are factors of their corresponding counts in 

𝐺. Then  |𝐻| ∕ |𝐺|. 
Proof: Suppose |𝐺| = 𝑝  and |𝐻| = 𝑞 , then 𝑞 ≤  𝑝  from 

lemma 4.5. We know that 𝐺  is finite and 𝐻  is a sub-

antimultigroup of 𝐺 , then 𝐻  is also finite and so 𝐺∗ = 𝐻∗ . 

Next, we show that 𝑞 is a factor of 𝑝. Since 𝐻 ≤ 𝐺, it follows 

that all the count in 𝐻  are factors of their corresponding 

counts in 𝐺. Thus 𝑞|𝑝 and hence the  proof. 

 

Extension on Cuts of Antimultigroup 

This section aims to build on the existing concept of cuts in 

antimultigroup setting and also to pioneer novel insights and 

results, thereby propelling the field forward with innovative 

perspectives and meaningful contributions. 

 

Definition 27: Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋). The sets 𝐴[𝑛] and 𝐴(𝑛) are 

defined accordingly, 𝐴[𝑛] = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) ≤ 𝑛, 𝑛 ∈ ℕ} and 

𝐴(𝑛) = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) < 𝑛, 𝑛 ∈ ℕ} are referred as strong and 

weak upper cuts of 𝐴. 

 

Example 28: Let 𝑋 = {𝑒, 𝑎, 𝑏, 𝑐}  be a group, then 𝐴 =
{𝑒2, 𝑎5, 𝑏4, 𝑐5} is an antimultigroup of 𝑋. Thus, 

𝐴[1] = ∅ 

𝐴[2] = {𝑒} 

𝐴[3] = {𝑒} 

𝐴[4] = {𝑒, 𝑏} 

𝐴[5] = {𝑒, 𝑎, 𝑏, 𝑐} 

and 

𝐴(1) = ∅ 

𝐴(2) = ∅ 

𝐴(3) = {𝑒} 

𝐴(4) = {𝑒} 

𝐴(5) = {𝑒, 𝑏} 
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Definition 29: Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋). The sets 𝐴[𝑛] and 𝐴(𝑛) are 

defined accordingly, 𝐴[𝑛] = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) ≥ 𝑛, 𝑛 ∈ ℕ} and 

𝐴(𝑛)  = {𝑥 ∈ 𝑋| 𝑚𝐴(𝑥) > 𝑛, 𝑛 ∈ ℕ}  are referred as strong 

and weak lower cuts of 𝐴. 

 

Proposition 30: Suppose  𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) ∋ 𝑚, 𝑛 ∈ ℕ. The 

assertions below are valid. 

i. 𝐴[𝑛] ⊆ 𝐴[𝑚] precisely if 𝑛 ≤ 𝑚. 

ii. 𝐴 ⊆ 𝐵 precisely if 𝐴[𝑛] ⊆ 𝐵[𝑛]. 

Proof. 

(i) Let 𝑥 ∈ 𝐴[𝑛] ⇒ 𝑚𝐴(𝑥) ≤ 𝑛 . Since 𝑛 ≤ 𝑚 ⇒ 𝑚𝐴(𝑥) ≤

𝑛 ≤ 𝑚. Hence, 𝐴[𝑛] ⊆ 𝐴[𝑚]. 

Conversely, if 𝐴[𝑛] ⊆ 𝐴[𝑚], we have 𝑛 ≤ 𝑚. Hence the proof. 

(ii) Suppose 𝐴 ⊆ 𝐵 , then 𝑚𝐴(𝑥) ≤ 𝑚𝐵(𝑥) ∀𝑥 ∈ 𝑋 . Since 

𝑥 ∈ 𝐴[𝑛] and 𝑥 ∈ 𝐵[𝑛] ⇒ 𝑚𝐴(𝑥) ≤ 𝑚𝐵(𝑥) ≤ 𝑛. This implies 

that 𝐴[𝑛] ⊆ 𝐵[𝑛].  

The converse follows since 𝐴[𝑛] ⊆ 𝐵[𝑛], then it implies that 

𝐴 ⊆ 𝐵. 

 

Remark 31: Let  𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) ∋   𝑚, 𝑛 ∈ ℕ . The 

assertions below are valid. 

i. 𝐴[𝑛] ⊆ 𝐴[𝑚] precisely if 𝑛 ≤ 𝑚. 

ii. 𝐴 ⊆ 𝐵 precisely if 𝐴[𝑛] ⊆ 𝐴[𝑚]. 

 

Theorem 32: Let 𝐴 ∈ 𝐴𝑀𝐺(𝑋). Then  𝑋 contains 𝐴[𝑛], 𝑛 ∈ ℕ 

as a subgroup such that  𝑛 ≤ 𝑚𝐴(𝑒), where 𝑋  has 𝑒  as its 

identity. 

Proof: Let 𝑥, 𝑦 ∈ 𝐴[𝑛] , then 𝑚𝐴(𝑥) ≥ 𝑛  and 𝑚𝐴(𝑦) ≥ 𝑛 . 

Since 𝐴 ∈ 𝐴𝑀𝐺(𝑋), we have 

𝑚𝐴(𝑥𝑦−1) ≤ (𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)) ≥ 𝑛 

= 𝑚𝐴(𝑥) ≥ 𝑛 ∨ 𝑚𝐴(𝑦) ≥ 𝑛 

Thus, 𝑥𝑦−1 ∈ 𝐴[𝑛] . Hence, 𝑋  contains 𝐴[𝑛], 𝑛 ∈ ℕ  as a 

subgroup such that 𝑛 ≤ 𝑚𝐴(𝑒). Also  𝑋 contains 𝐴(𝑛), 𝑛 ∈ ℕ 

as a subgroup for all 𝑛 < 𝑚𝐴(𝑒). 

 

Theorem 33: Suppose {𝐴𝑖}𝑖∈𝐼 ∈ 𝐴𝑀𝐺(𝑋) , the following 

holds 

i. (⋂𝑖∈𝐼 𝐴𝑖)[𝑛] = ⋂𝑖∈𝐼( 𝐴𝑖)[𝑛] 

ii. (⋃𝑖∈𝐼 𝐴𝑖)[𝑛] = ⋃𝑖∈𝐼( 𝐴𝑖)[𝑛] 

iii. (⋂𝑖∈𝐼 𝐴𝑖)[𝑛] = ⋂𝑖∈𝐼( 𝐴𝑖)[𝑛] 

iv. (⋃𝑖∈𝐼 𝐴𝑖)[𝑛] = ⋃𝑖∈𝐼( 𝐴𝑖)[𝑛] 

 

Proof. (i) Suppose 𝐷 = ⋂𝑖∈𝐼 𝐴𝑖 , we have 𝑚𝐷(𝑥) =
⋀ 𝑚 𝐴𝑖

(𝑥)𝑖∈𝐼 . Then, 

𝐷[𝑛] = {𝑥 ∈ 𝑋 | 𝑚𝐷(𝑥) ≤ 𝑛} 

   = {𝑥 ∈ 𝑋 | (⋀ 𝑚 𝐴𝑖
(𝑥)𝑖∈𝐼 ) ≤ 𝑛} 

   = {𝑥 ∈ 𝑋 | ⋀ (𝑚 𝐴𝑖
(𝑥))𝑖∈𝐼 ≤ 𝑛 }   = ⋂( 𝐴𝑖)[𝑛]𝑖∈𝐼

 

Hence, (⋂𝑖∈𝐼 𝐴𝑖)[𝑛] = ⋂𝑖∈𝐼( 𝐴𝑖)[𝑛]. 

(ii) – (iv) follows similarly. 

 

Theorem 34: Let {𝐴𝑖}𝑖∈𝐼 be a class of antimultigroup of 𝑋. 

For 𝑛 ≥ 𝑚𝐴𝑖
(𝑒) 

i. 𝑋 contains ⋂𝑖∈𝐼 (𝐴𝑖)[𝑛] as subgroup. 

ii. 𝑋 contains ⋃𝑖∈𝐼 (𝐴𝑖)[𝑛] as subgroup if {𝐴𝑖}𝑖∈𝐼 have 

sup/inf assuming chain. 

Proof. (i) Suppose 𝐷 = ⋂𝑖∈𝐼(𝐴𝑖) , then 𝑚𝐷(𝑥) =
⋀ 𝑚𝐴𝑖

(𝑥)𝑖∈𝐼 . Let 𝑒 ∈ 𝐷[𝑛]  since 𝐷[𝑛] ≠ ∅ , it follows that 

𝑚𝐷(𝑒) = 𝑚𝐷(𝑥𝑥−1) = ⋀ 𝑚𝐴𝑖
(𝑥𝑥−1) ≤𝑖∈𝐼 ⋀ 𝑚𝐴𝑖

(𝑥) ≤𝑖∈𝐼 𝑛. 

Let 𝑥, 𝑦 ∈ 𝑋, then we have 

    𝑚𝐷(𝑥𝑦) = ⋀ 𝑚𝐴𝑖
(𝑥𝑦) ≤ 𝑛𝑖∈𝐼  

    ≤ ⋀ (𝑚𝐴𝑖
(𝑥) ∨ 𝑚𝐴𝑖

(𝑦)) ≤ 𝑛𝑖∈𝐼  

       = ⋀ 𝑚𝐴𝑖
(𝑥)𝑖∈𝐼 ≤ 𝑛 ∨ ⋀ 𝑚𝐴𝑖

(𝑦)𝑖∈𝐼 ≤ 𝑛  

        = (𝑚𝐷(𝑥) ∨ 𝑚𝐷(𝑦)) ≤ 𝑛 

implies that  𝑚𝐷(𝑥) ≤ 𝑛  and 𝑚𝐷(𝑦) ≤ 𝑛 . So 𝑥𝑦 ∈
(⋂𝑖∈𝐼 𝐴𝑖)[𝑛]. 

Consequently, 

 𝑚𝐷(𝑥𝑦−1) = ⋀ 𝑚𝐴𝑖
(𝑥𝑦−1) ≤ 𝑛𝑖∈𝐼  

      ≤ ⋀ (𝑚𝐴𝑖
(𝑥) ∨ 𝑚𝐴𝑖

(𝑦)) ≤ 𝑛𝑖∈𝐼  

      = (𝑚𝐷(𝑥) ∨ 𝑚𝐷(𝑦)) ≤ 𝑛 

So, 𝑥𝑦−1 ∈ (⋂𝑖∈𝐼 𝐴𝑖)[𝑛] . Hence,  𝑋  contains (⋂𝑖∈𝐼 𝐴𝑖)[𝑛]  as 

subgroup which follows that 𝑋  contains ⋂𝑖∈𝐼 (𝐴𝑖)[𝑛]  as 

subgroup of by proposition 5.6. 

(ii) Proof follows from (i) 

 

Corollary 35: Let {𝐴𝑖}𝑖∈𝐼 be a class of antimultigroup of 𝑋. 

For 𝑛 ≤ 𝑚𝐴𝑖
(𝑒) 

i.  𝑋 contains ⋃𝑖∈𝐼(𝐴𝑖)[𝑛] as subgroup. 

ii. 𝑋  contains ⋃𝑖∈𝐼(𝐴𝑖)[𝑛]  as subgroup of if {𝐴𝑖}𝑖∈𝐼 

have sup/inf assuming chain. 

 

Proposition 36: Let 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋). Thus 𝑋 contains (𝐴 +
𝐵)[𝑛], 𝑛 ∈ ℕ as subgroup ∀ 𝑛 ≥ 𝑚𝐴(𝑒), where 𝑋 has 𝑒 as its 

identity element. 

Proof: Let 𝑥, 𝑦 ∈ (𝐴 + 𝐵)[𝑛] ⇒ 𝑚𝐴+𝐵(𝑥) ≤ 𝑛  and 

𝑚𝐴+𝐵(𝑦) ≤ 𝑛. If 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) then 

𝑚𝐴+𝐵(𝑥𝑦−1) = [𝑚𝐴(𝑥𝑦−1) + 𝑚𝐵(𝑥𝑦−1)] 

≤ [( 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)) + ( 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴(𝑥) + 𝑚𝐵(𝑥)) ∨ ( 𝑚𝐴(𝑦) + 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴+𝐵(𝑥)) ∨ ( 𝑚𝐴+𝐵(𝑦))] ≤ 𝑛 

=  𝑚𝐴+𝐵(𝑥) ≤ 𝑛 ∨  𝑚𝐴+𝐵(𝑦) ≤ 𝑛 

Thus, 𝑥, 𝑦 ∈ (𝐴 + 𝐵)[𝑛] ⇒ 𝑥𝑦−1 ∈ (𝐴 + 𝐵)[𝑛] . Hence 𝑋 

contains (𝐴 + 𝐵)[𝑛] as subgroup. 

 

Corollary 37: Let 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) . Thus 𝑋  contains (𝐴 +

𝐵)[𝑛], 𝑛 ∈ ℕ as subgroup ∀ 𝑛 ≤ 𝑚𝐴(𝑒), where 𝑋 has 𝑒 as its 

identity element. 

 

Proposition 38: Consider 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) such that 𝐵 ⊆ 𝐴. 

Then  𝑋  contains (𝐴 − 𝐵)[𝑛], 𝑛 ∈ ℕ  as subgroup ∀  𝑛 ≥

𝑚𝐴(𝑒), where 𝑋 has 𝑒 as its identity element. 

Proof: Let 𝑥, 𝑦 ∈ (𝐴 − 𝐵)[𝑛] ⇒ 𝑚𝐴−𝐵(𝑥) ≤ 𝑛  and 

𝑚𝐴−𝐵(𝑦) ≤ 𝑛. If 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) then 

𝑚𝐴−𝐵(𝑥𝑦−1) = [𝑚𝐴(𝑥𝑦−1) − 𝑚𝐵(𝑥𝑦−1)] 

≤ [( 𝑚𝐴(𝑥) ∨ 𝑚𝐴(𝑦)) − ( 𝑚𝐵(𝑥) ∨ 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴(𝑥) − 𝑚𝐵(𝑥)) ∨ ( 𝑚𝐴(𝑦) − 𝑚𝐵(𝑦))] 

≤ [( 𝑚𝐴−𝐵(𝑥)) ∨ ( 𝑚𝐴−𝐵(𝑦))] ≤ 𝑛 

=  𝑚𝐴−𝐵(𝑥) ≤ 𝑛 ∨  𝑚𝐴−𝐵(𝑦) ≤ 𝑛 

Thus, 𝑥, 𝑦 ∈ (𝐴 − 𝐵)[𝑛] ⇒ 𝑥𝑦−1 ∈ (𝐴 − 𝐵)[𝑛] . Hence, 𝑋 

contains (𝐴 − 𝐵)[𝑛] as subgroup. 

 

Corollary 39: Let 𝐴, 𝐵 ∈ 𝐴𝑀𝐺(𝑋) . Then  𝑋  contains (𝐴 −

𝐵)[𝑛], 𝑛 ∈ ℕ as subgroup ∀ 𝑛 ≤ 𝑚𝐴(𝑒), where 𝑋 has 𝑒 as its 

identity element. 

 

CONCLUSION 

This paper pushes the boundaries of antimultigroup by 

introducing a groundbreaking extension of comultiset to 

antimultigroup, unlocking new avenues for research. We 

delve into the uncharted territory of cuts in antimultigroup, 

uncovering novel insights and paving way for future 

exploration. Moreover we identify a promising direction for 

further investigation: the integration of normal submultigroup 
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concept into antimultigroup, holding potential for 

revolutionary breakthrough. 
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