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ABSTRACT 

In quantum mechanics, the Schrödinger equation is fundamental for describing particle wave functions, 

traditionally within flat spacetime, ignoring gravitational effects. This paper introduces the Howusu Metric 

Tensor to extend the Schrödinger equation into spherical coordinates, accommodating gravitational fields that 

are regular and continuous with a reciprocal decrease at infinity. This leads to the derivation of the Riemannian 

Schrödinger equation, offering insights into quantum behavior in curved spacetime. Building on previous work 

integrating quantum mechanics with general relativity and Finsler geometry, our approach addresses the 

limitations in capturing gravitational subtleties. By incorporating the Howusu Metric Tensor, our model 

accounts for gravitational potential in spherical coordinates, providing a more precise description of quantum 

phenomena under gravity. The resulting Riemannian Schrödinger equation reveals new quantum behavior 

influenced by gravitational forces, opening new research possibilities in cosmology and astrophysics, where 

quantum-gravitational interactions are key. This study demonstrates the advantages of using the Howusu 

Metric Tensor over previous models, highlighting its potential to unify quantum mechanics with gravitational 

effects more coherently and comprehensively.  
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INTRODUCTION 

A fundamental aspect of knowledge in quantum physics is 

Schrödinger's wave equation, which provides deep insights 

into the behavior of particles at the microscopic level. 

However, the effect of gravity is frequently disregarded in the 

traditional versions of this equation. Yet, integration with 

gravitational effects is necessary for a thorough understanding 

of the quantum behavior of particles. To address this gap, a 

novel framework to connect the worlds of quantum physics 

and well-behaved gravitational settings is introduced by the 

Howusu Metric Tensor (Obaje, 2023), which is argued to be 

valid for gravitational fields that show regularity, continuity, 

and reciprocal decrease at infinite distances. The Howusu 

Metric Tensor provides a distinct viewpoint on the 

gravitational-quantum interaction, asserting its validity for 

gravitational fields with certain characteristics. Inspired by 

seminal research in general relativity (Nashie, 2023; Marek, 

2012; Ord, 1983; Ord, 2003; Daniel, 2012; Crux and Nieto, 

2007; Naschie, 1993; Naschie, 2001; He, 2011), this metric 

tensor aims to expand the application of quantum mechanics 

to situations where gravitational fields satisfy specific 

conditions. 

With this approach, insights into quantum systems in settings 

where gravitational potentials vary smoothly can be gained. 

Given the fundamental disparities in scale and behavior 

between the quantum and classical worlds, the historical path 

of combining quantum mechanics with general relativity has 

not been easy. Efforts to establish a quantum theory of gravity 

and the development of quantum field theory are examples of 

pioneering endeavors (Weinberg, 1972; Hawking & Ellis, 

1973). The investigation of wave equation solutions through 

Finsler geometry, which elucidated a metric tensor as a 

function of both position and momentum variables (Bracken, 

2008; Rund, 1959; Chern & Shen, 2005; Novello & Falciano, 

2011; Chem & Lam, 1999; Novello, Salim & Falciano, 2011; 

Tavernelli, 2016; Bracken, 2003; Messiah, 1999; Landau & 

Lifshitz, 1977; Bohm, 1951; Wheeler, 1990), relativistic 

quantum field theory with an external electric potential 

present in a general curved spacetime (Manasse & Minser, 

1963; Blau, Frank & Weiss, 2006; Minser, Thorne & 

Wheeler, 1973; Hu & Yu, 2021; Claudel, Virbhadra, 2021; 

Claudel, Virbhadra & Ellis, 2001; Qasem & Ebrahim, 2022), 

and the analytical solution of the Schrödinger Equation for the 

Ring-Shaped Multi-Parameter Exponential-Type Potential 

(Nyam, 2017; Martin, 1961; Chibueze & Akpan, 2017; Ewa, 

Howusu & Lumbi, 2019) have laid the groundwork for this 

interdisciplinary exploration. 

In light of Schrödinger's wave equation, the purpose of this 

work is to introduce and discuss the consequences of the 

Howusu Metric Tensor. Our goal is to understand the 

behavior of particles in gravitational fields that meet 

Howusu's criteria by incorporating this metric tensor into the 

quantum mechanical framework. The following sections will 

explore the mathematical formulation of the modified 

Schrödinger equation, discuss some of its possible 

applications in cosmology and astrophysics, and address the 

computational challenges associated with implementing it 

numerically. This work contributes to the larger effort to unify 

our understanding of the fundamental forces in the universe 
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and to the complex interactions between quantum mechanics 

and gravity in various astrophysical scenarios. 

The analytical framework of this paper revolves around 

leveraging the metric tensor in spherical coordinates to derive 

a new formulation of Schrödinger's wave equation. The 

approach involves: 1. Metric Tensor in Spherical Coordinates: 

The article introduces the metric tensor within the context of 

spherical coordinates as a foundational tool for the analysis. 

This is critical because the metric tensor provides a systematic 

way to account for the geometry of the space in which the 

wave function exists, leading to a more accurate and 

generalized form of the Schrödinger equation. 2. Derivation 

of the Schrödinger Equation: The core of the framework is the 

derivation of Schrödinger's wave equation using the metric 

tensor. The method adapts the conventional formulation of the 

Schrödinger equation by incorporating the metric tensor to 

accommodate non-Euclidean geometries, particularly 

focusing on spherically symmetric potentials. 

 3. Comparison with Existing Literature: The article contrasts 

this novel approach with traditional methods, highlighting the 

advantages in terms of precision and applicability to a broader 

range of physical scenarios. This includes potential 

applications to quantum systems where spherical symmetry 

plays a key role.  

4. Applications and Implications: The framework also 

explores potential applications, particularly in quantum 

mechanics where spherical coordinates are commonly used, 

such as in the study of atoms and molecules. The use of the 

metric tensor is shown to enhance the ability to solve the 

Schrödinger equation in these contexts, providing a more 

versatile and powerful tool for physicists. Overall, the article 

presents a significant advancement in the analytical treatment 

of Schrödinger's wave equation, offering a more 

comprehensive approach by incorporating the geometry of the 

space through the metric tensor.  

 

Mathematical Analysis 

According to the theory of tensor analysis, Riemannian 

Laplacian 𝛻𝑅
2  is given in all gravitational fields and all 

orthogonal curvilinear coordinates 𝑥𝜇  by (Ewa, Howusu & 

Lumbi, 2019) 

𝛻𝑅
2 =

1

√𝑔

𝜕

𝜕𝑥𝛼
[√𝑔𝑔𝛼𝛽

𝜕

𝜕𝑥𝛽
]    (1) 

Based upon the metric tensor in spherical coordinates, the 

Riemannian Laplacian Operator is given in Spherical 

coordinates by (Howusu, 2009) 

𝛻𝑅
2 =

1

√𝑔

𝜕

𝜕𝑥0
[√𝑔𝑔00

𝜕

𝜕𝑥0
] +

1

√𝑔

𝜕

𝜕𝑥1
[√𝑔𝑔11

𝜕

𝜕𝑥1
] 

+
1

√𝑔

𝜕

𝜕𝑥2
[√𝑔𝑔22

𝜕

𝜕𝑥2
] +

1

√𝑔

𝜕

𝜕𝑥3
[√𝑔𝑔33

𝜕

𝜕𝑥3
]   (2) 

Where 

𝑔𝜇𝑣  is the contravariant metric tensor and 𝑔  is the 

determinant of 𝑔𝜇𝜈 

The metric tensor in spherical coordinates that is used in this 

paper, is the Howusu metric tensor (Obaje, 2023) given as: 

𝑔00 = −𝑒𝑥𝑝( 2

𝑐2
𝑓)    (3) 

𝑔11 = 𝑒𝑥𝑝(− 2

𝑐2
𝑓)    (4) 

𝑔22 = 𝑟2𝑒𝑥𝑝(− 2

𝑐2
𝑓)   (5) 

𝑔33 = 𝑟2𝑠𝑖𝑛2𝜃𝑒𝑥𝑝(− 2

𝑐2
𝑓)   (6) 

𝑔𝜇𝜈 = 0, otherwise          (7) 

where  c is the speed of light in vacuum and f is the 

gravitational scalar potential given as −
𝐺𝑀

𝑟
 

Substituting for f,  

𝑔00 = −𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)    (8) 

𝑔11 = 𝑒𝑥𝑝(2𝐺𝑀
𝑐2𝑟
)    (9) 

𝑔22 = 𝑟2𝑒𝑥𝑝(2𝐺𝑀
𝑐2𝑟
)    (10) 

𝑔33 = 𝑟2𝑠𝑖𝑛2𝜃𝑒𝑥𝑝(2𝐺𝑀
𝑐2𝑟
)   (11) 

𝑔𝜇𝜈 = 0, otherwise       (12) 

It may be noted that the contravariant metric tensor is given 

as: 

𝑔00 = −𝑒𝑥𝑝(2𝐺𝑀
𝑐2𝑟
)    (13)    

𝑔11 = 𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)    (14)   

𝑔22 = 1

𝑟2
𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)   (15)   

𝑔33 = 1

𝑟2𝑠𝑖𝑛2𝜃
𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)   (16)  

𝑔𝜇𝜈 = 0, otherwise    (17) 

where 𝐺  is the universal constant of gravitation; 𝑀  is the 

mass of the object and r is the distance away from the object. 

The determinant is given by (Koffa et al, 2023): 

𝑔 = 𝑔00𝑔11𝑔22𝑔33    (18) 

Substituting eq. (3) into eq. (4), 

𝑔 = −𝑟4 sin2θ 𝑒𝑥𝑝 (
4𝐺𝑀

𝑐4𝑟2
)   (19) 

√𝑔 = 𝑖𝑟2𝑠𝑖𝑛𝜃exp (
2𝐺𝑀

𝑐2𝑟
)   (20) 

Substituting eq. (20) and eq. (13) to eq. (16) into eq. (2), it 

becomes 

𝛻𝑅
2 =

1

𝑖𝑟2𝑠𝑖𝑛𝜃exp(
2𝐺𝑀

𝑐2𝑟
)

𝜕

𝜕(𝑐𝑡)
[𝑖𝑟2𝑠𝑖𝑛𝜃exp (

2𝐺𝑀

𝑐2𝑟
) {−𝑒𝑥𝑝(2𝐺𝑀

𝑐2𝑟
)}

𝜕

𝜕(𝑐𝑡)
] +

1

𝑖𝑟2𝑠𝑖𝑛𝜃exp(
2𝐺𝑀

𝑐2𝑟
)

𝜕

𝜕𝑟
[𝑖𝑟2𝑠𝑖𝑛𝜃exp (

2𝐺𝑀

𝑐2𝑟
) {𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)}

𝜕

𝜕𝑟
] +

1

𝑖𝑟2𝑠𝑖𝑛𝜃exp(
2𝐺𝑀

𝑐2𝑟
)

𝜕

𝜕𝜃
[𝑖𝑟2𝑠𝑖𝑛𝜃exp (

2𝐺𝑀

𝑐2𝑟
) { 1

𝑟2
𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)}

𝜕

𝜕𝜃
] +

1

𝑖𝑟2𝑠𝑖𝑛𝜃exp(
2𝐺𝑀

𝑐2𝑟
)

𝜕

𝜕𝜙
[𝑖𝑟2𝑠𝑖𝑛𝜃exp (

2𝐺𝑀

𝑐2𝑟
) { 1

𝑟2𝑠𝑖𝑛2𝜃
𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)}

𝜕

𝜕𝜙
]     

            (21) 

where 𝑥0 = 𝑐𝑡 ; 𝑥1 = 𝑟; 𝑥2 = 𝜃 and 𝑥3 = 𝜙   

Differentiating, 

∇𝑅
2= −𝑒𝑥𝑝 (

2𝐺𝑀

𝑐2𝑟
)
1

𝑐2
𝜕2

𝜕𝑡2
+ 𝑒𝑥𝑝 (−

2𝐺𝑀

𝑐2𝑟
)
𝜕2

𝜕𝑟2
 

+
1

𝑟2
𝑒𝑥𝑝 (−

2𝐺𝑀

𝑐2𝑟
)

𝜕2

𝜕𝜃2
+

1

𝑟2 sin2 𝜃
𝑒𝑥𝑝 (−

2𝐺𝑀

𝑐2𝑟
)

𝜕2

𝜕𝜙2
   (22) 

 

The well-known Laplacian operator is derived based on 

Euclidean geometry while equation (22) is derived based on 

the Riemannian geometry using the metric tensor in the 

spherical coordinate. This equation is further applied to the 

Schrodinger equation to obtain the Riemannian Schrodinger 

equation. 

 

Derivation of Riemannian Schrodinger Equation in 

Spherical Polar Coordinate 

The well-known Schrodinger equation based on the Euclidean 

geometry is given by (Nicoleta & Gheorghe, 2015). 

EΨ = −
ℏ2𝛻2

2mo
Ψ+ V(r)Ψ   (23) 

where E is the energy of the particle, m is the mass of the 

particle, ℏ  is the normalized Planck's constant, 𝛻2  is the 

Euclidean Laplacian of the system, V is the particle potential 

and Ψ is the wave function. 

Replacing the Euclidean Laplacian operator with the 

Riemannian Laplacian operator, equation (23) becomes: 

EΨ = −
ℏ2∇R

2

2mo
Ψ+ V(r)Ψ   (24) 

   

Then the Quantum mechanical wave equation for particles of 

non-zero masses in gravitational fields is given by (Prigogine 

et al, 1995) 

iℏ
∂

∂t
Ψ = −

ℏ2

2mo
∇R
2Ψ+ [

1

2
moc

2 −
1

2
moɡooẋ

0ẋ0]Ψ (25) 

Substituting eq. (22) into eq. (25), we have 
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iℏ
∂

∂t
Ψ(r,t) = −

ℏ2

2mo
[−exp (

2GM

c2r
)
1

c2

∂2

∂t2
+ exp (−

2GM

c2r
)

∂2

∂r2
+

1

r2
exp (−

2GM

c2r
)

∂2

∂θ2
+

1

r2sin2θ
exp (−

2GM

c2r
)

∂2

∂ϕ2
]Ψ(r,t) + [VR]Ψ(r,t) 

      (26) 

Where 

𝑉𝑅 =
1

2
𝑚0𝑐

2 − 1

2
𝑚0𝑔00�̇�

0�̇�0   (27) 

Multiply (26) by exp (
2GM

c2r
) 

exp (
2GM

c2r
) iℏ

∂

∂t
= −

ℏ2

2mo
[−exp(

4GM

c2r
)
1

c2

∂2

∂t2
+

∂2

∂r2
+

1

r2

∂2

∂θ2
+

1

r2sin2θ

∂2

∂ϕ2
]Ψ(r,t) + [VR]Ψ(r,t)exp (

2GM

c2r
)  (28) 

To separate the variables in (28), let us seek a solution of the 

form: 

Ψ(r,t) = Xrexp (
−iEt

ℏ
)   (29) 

[E − VR]X(r)exp (
2GM

c2r
) − exp (

4GM

c2r
)

1

2moc
2
E2 = 

−
ℏ2

2mo
[
∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2sin2θ

∂2

∂ϕ2
] X(r)  (30) 

By using the separation of variables to get the energy eigen 

functions, we calculated the spherical harmonics and the 

radial wave functions as follows; 
∂2Φ

∂ϕ2 +m2ϕ = 0     (31) 

the solution of the azimuthal angle gives 

Φ(ϕ) = Ae±imϕ    (32) 

For ϕ to be single valued Φ(ϕ) = ϕ(ϕ + 2π) 

Ae±imϕ = Ae±im(ϕ+2π)      (33) 

 

e±im2π = 1    (34) 

where m = 0,1,2, 3,…… 

Normalization condition is  

∫ 𝜙⋆∞

−∞
ϕdϕ = 1    (35) 

A =
1

√2𝜋
     (36) 

ϕ =
1

√2𝜋
𝑒±𝑖𝑚𝜙    (37) 

For the polar angle, we have 
∂2θ

∂θ2
− (

m2

𝑠𝑖𝑛2𝜃
− λ)θ = 0   (38)       

Let z = cosθ, dz = −sinθdθ 
𝑑

𝑑𝜃
=

𝑑𝑧

𝑑𝜃
.
𝑑

𝑑𝑧
= −sin 𝜃

𝑑

𝑑𝑧
= −(1 − 𝑧2)

1
2⁄
𝑑

𝑑𝑧
 (39) 

𝑑2𝜃

𝑑𝜃2
=

𝑑

𝑑𝜃
.
𝑑

𝑑𝜃
    (40) 

𝑑

𝑑𝜃
.
𝑑

𝑑𝜃
= −(1 − 𝑧2)

1
2⁄
𝑑

𝑑𝑧
. −(1 − 𝑧2)

1
2⁄
𝑑

𝑑𝑧
= (1 − 𝑧2)

𝑑2

𝑑𝑧2
    (41) 

Rewriting (38) as  

(1 − z2)
𝑑2

𝑑𝑧2
+ [𝜆 −

𝑚2

1−𝑧2
] 𝜃 = 0  (42) 

Is an associated Legendre equation with a pole of  z = ±1. If 

there is any physically acceptable solution, 𝜆 = 𝑙(𝑙 + 1) 
where 𝑙 = 0,1,2,3,…. and 𝑚 = 0,±1,±2,… . , ±𝑙 
The solution for (42) is the Legendre poly 𝑃𝑙(𝑧) for m=0 and 

associated Legendre polynomial if 𝑚 ≠ 0 

The normalized solution is 

𝜃 = 𝑁𝑙𝑚𝑃𝑙
|𝑚|(𝑧)    (43) 

Using normalization conditions, 

|𝑁𝑙𝑚|
2 ∫ 𝑃

+1

−1 𝑙

|𝑚|
(𝑧), 𝑃𝑙

|𝑚|(𝑧)𝑑𝑥 = 1  (44) 

We have an orthogonality relation for ALP  

|𝑁𝑙𝑚|
2 ∫ 𝑃

+1

−1 𝑙

|𝑚|
(𝑧), 𝑃𝑙

|𝑚|(𝑧)𝑑𝑥 =
2(𝑙+|𝑚|)!

2𝑙+1(𝑙−|𝑚|)!
𝛿𝑙𝑘 (45) 

Therefore 

|𝑁|2
2

2𝑙+1
.
(𝑙+|𝑚|)!

(𝑙−|𝑚|)!
𝛿𝑙𝑘 = 1   (46) 

𝑁 =∈ √
(2𝑙+1)(𝑙−|𝑚|)!

2(𝑙+|𝑚|)!
   (47) 

 Where ∈= (−𝑚)𝑚, 𝑚 > 0and ∈= 1,𝑚 < 0 

Θ(𝜃) =∈ √
(2𝑙+1)(𝑙−|𝑚|)!

2(𝑙+|𝑚|)!
 . 𝑃𝑙

|𝑚|(cos 𝜃)  (48) 

For the radial wave function 

Let 𝑅 =
𝑋

𝑟
,   𝑋(𝑟) = 𝑟𝑅(𝑟) 

∂2X

∂r2
+

2𝑚

ℏ2
([E − VR − VR

nɡ
]exp (

2GM

c2r
) − exp (

4GM

c2r
)

1

2mc2
E2 −

𝑙(𝑙+1)ℏ2

2𝑚𝑟2
) X = 0     (49) 

 

RESULTS AND DISCUSSION 

The mathematical result in formulating the Riemannian 

Laplacian in spherical polar coordinate based on the metric 

tensor is given by; 

∇𝑅
2= −𝑒𝑥𝑝 (

2𝐺𝑀

𝑐2𝑟
)
1

𝑐2
𝜕2

𝜕𝑡2
+ 𝑒𝑥𝑝 (−

2𝐺𝑀

𝑐2𝑟
)
𝜕2

𝜕𝑟2
 

+
1

𝑟2
𝑒𝑥𝑝 (−

2𝐺𝑀

𝑐2𝑟
)

𝜕2

𝜕𝜃2
+

1

𝑟2 sin2 𝜃
𝑒𝑥𝑝 (−

2𝐺𝑀

𝑐2𝑟
)

𝜕2

𝜕𝜙2
 (50)  

Hence (50) was used to calculate the Howusu Quantum 

mechanical wave equation for particles of non-zero masses in 

gravitational fields as: 

iℏ
∂

∂t
Ψ(r,t) = −

ℏ2

2mo
[−exp (

2GM

c2r
)
1

c2
∂2

∂t2
+ exp (−

2GM

c2r
)
∂2

∂r2
+

1

r2
exp (−

2GM

c2r
)

∂2

∂θ2
+

1

r2sin2θ
exp (−

2GM

c2r
)

∂2

∂ϕ2
]Ψ(r,t) +

[VR]Ψ(r,t)     (51)  

which is subject to the condition of uniqueness and regularity 

everywhere continuity across all boundaries and 

normalization. 

Now, the solution of the Howusu Quantum mechanical wave 

equation for particles of non-zero masses in gravitational 

fields is given by: 

ϕ =
1

√2𝜋
𝑒±𝑖𝑚𝜙    (52) 

Θ(𝜃) =∈ √
(2𝑙+1)(𝑙−|𝑚|)!

2(𝑙+|𝑚|)!
 . 𝑃𝑙

|𝑚|(cos 𝜃)   (53) 

∂2X

∂r2
+

2𝑚

ℏ2
([E − VR − VR

nɡ
]exp (

2GM

c2r
) − exp (

4GM

c2r
)

1

2mc2
E2 −

𝑙(𝑙+1)ℏ2

2𝑚𝑟2
) X = 0        (54) 

 

Discussion 

The application of the Howusu Metric Tensor has 

demonstrated a significant impact on the Schrödinger wave 

equation when gravitational effects are incorporated. The 

resulting Riemannian Schrödinger equation reflects the 

influence of a gravitational field which is both regular and 

continuous on the quantum mechanical description of 

particles. 

The derived expressions (51), (52), (53) and (54) shows that 

the gravitational potential modifies both the time and spatial 

derivatives in the Schrödinger equation, revealing how 

gravity can affect the quantum state of particles. This 

modification aligns with the principles of general relativity, 

as the metric tensor encapsulates the gravitational field's 

influence on spacetime. 

The metric tensor's ability to simplify the interaction between 

gravity and quantum mechanics suggests its potential for 

more accurate modeling of quantum systems in strong 

gravitational fields. This advancement offers a promising 

avenue for future research in understanding quantum systems 

in curved spacetime. 

There are still difficulties, though, especially with the 

modified Schrödinger equation's numerical implementation. 

Translating theoretical advances into real-world applications 

requires the development of specialized computational 

algorithms capable of handling the peculiar features of the 

Howusu Metric Tensor. This line of inquiry has the potential 

to provide more details about the complex interplay between 

quantum physics and gravity as it develops. A major step 

towards a more thorough knowledge of the underlying forces 
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forming our existence is the incorporation of the Howusu 

Metric Tensor into quantum explanations of the universe. 

 

CONCLUSION 

The integration of the Howusu Metric Tensor into quantum 

mechanics represents a pivotal advancement in bridging the 

gap between quantum physics and general relativity. By 

adapting the Schrödinger equation to account for gravitational 

effects which is both regular and continuous, this approach 

introduces a novel framework for analyzing quantum systems 

in the presence of gravity. This integration emphasizes the 

necessity of including gravitational influences when 

examining quantum states, as the Howusu Metric Tensor 

modifies the conventional understanding of quantum 

mechanics. 

The application of the Howusu Metric Tensor has revealed 

that gravitational fields impact quantum systems in a way that 

extends beyond traditional quantum mechanics. The modified 

Schrödinger equation, incorporating terms that account for 

gravitational effects, demonstrates how gravity alters both 

time and spatial components of quantum systems. This 

adjustment highlights the intricate relationship between 

gravity and quantum phenomena, suggesting that 

gravitational fields play a significant role in shaping quantum 

behavior. 

The results of this study indicate that gravitational fields must 

be considered in the analysis of quantum systems, particularly 

when dealing with a regular and continuous gravitational 

environments, paving the way for more comprehensive 

models that integrate gravitational effects into quantum 

theory. This framework opens up new avenues for exploring 

how gravity and quantum mechanics interact in various 

contexts. 

Future research should focus on extending the application of 

the Howusu Metric Tensor to different gravitational scenarios 

and a broader range of quantum systems. By examining other 

types of gravitational fields and quantum states, researchers 

can gain deeper insights into the nature of gravitational 

interactions with quantum phenomena. The continued 

exploration of the Howusu Metric Tensor and its implications 

for quantum systems will be essential in advancing theoretical 

physics and achieving a more comprehensive understanding 

of the fundamental forces governing the universe. 

 

REFERENCES 

Aldea, N., & Munteanu, G. (2015). A generalized 

Schrödinger equation via a complex Lagrangian of 

electrodynamics. Journal of Nonlinear Mathematical Physics, 

22(3), 361-373. 

https://doi.org/10.1080/14029251.2015.1056619 

 

Bes, D. R. (2012). Quantum mechanics: A modern and 

concise introductory course (3rd ed.). Springer. 

 

Blau, M., Frank, D., & Weiss, S. (2006). *Classical and 

Quantum Gravity, 23, 3993. https://arxiv.org/abs/hep-

th/0603109 

 

Bohm, D. (1951). Quantum mechanics. Routledge. 

 

Bracken, P. (2003). International Journal of Theoretical 

Physics, 42, 775. 

 

Bracken, P. (2008). Pacific Journal of Applied Mathematics, 

1, 77. 

 

Chern, S. S., Chen, W. H., & Lam, K. S. (1999). *Lectures on 

differential geometry. World Scientific. 

 

Chern, S. S., & Shen, Z. (2005). *Riemann-Finsler geometry. 

World Scientific. 

 

Claudel, C. M., Virbhadra, K. S., & Ellis, G. F. R. (2001). 

Journal of Mathematical Physics, 42, 818. 

https://arxiv.org/abs/gr-qc/0005050 

 

Cruz, Y., Cruz, S., Negro, J., & Nieto, L. M. (2007). Classical 

and quantum position-dependent mass harmonic oscillators. 

Physics Letters A, 369, 400-406. 

 

Daniel R. Bes. (2012). Quantum mechanics: A modern and 

concise introductory course (3rd ed.). Springer. 

 

Eisberg, R. M. (1961). Fundamentals of modern physics. John 

Wiley & Sons. 

 

El Naschie, M. S. (1993). On the universal behavior and 

statistical mechanics of multidimensional triadic Cantor sets. 

SAMS, 11, 217-225. 

 

El Naschie, M. S. (1998). Superstrings, knots and non-

commutative geometry in E-infinity space. *International 

Journal of Theoretical Physics, 37(12), 212-234. 

 

El Naschie, M. S. (2001). Quantum collapse of wave 

interference pattern in the two-slit experiment: A set 

theoretical resolution. Nonlinear Science Letters A, 2(1), 1-9. 

 

El Naschie, M. S. (2004a). A review of E-infinity theory and 

the mass spectrum of high energy particle physics. Chaos, 

Solitons & Fractals, 19, 209-236. 

 

El Naschie, M. S. (2004b). The concept of E-infinity: An 

elementary introduction to the Cantorian-fractal theory of 

quantum physics. Chaos, Solitons & Fractals, 22, 495-511. 

 

El Naschie, M. S. (2004c). Quantum gravity from descriptive 

set theory. Chaos, Solitons & Fractals, 19, 1339-1344. 

 

El Naschie, M. S. (2006). Elementary prerequisites for E-

infinity (Recommended background readings in nonlinear 

dynamics, geometry, and topology). Chaos, Solitons & 

Fractals, 30, 579-605. 

 

Exirifard, Q., & Karimi, E. (2022). Schrödinger equation in a 

general curved spacetime geometry. International Journal of 

Modern Physics D, 31*(3). 

https://doi.org/10.1142/S0218271822500183 

 

Hawking, S. W., & Ellis, G. F. R. (1973). The large-scale 

structure of space-time. Cambridge University Press. 

 

He, J. H. (2011). Quantum golden mean entanglement test as 

the signature of the fractality of micro space-time. Nonlinear 

Science Letters B, 1(2), 45-50. 

 

Howusu, S. X. K. (2009). The metric tensors for gravitational 

fields and the mathematical principles of Riemannian 

theoretical physics. Jos University Press. 

 

Hu, J., & Yu, H. (2021). *European Physical Journal C, 81, 

470. https://arxiv.org/abs/2105.10642 

 



A NOVEL APPROACH TO SCHRÖD…      Obaje et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 5, October, 2024, pp 89 – 93 93 

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Koffa, D. J., Omonile, J. F., Oladimeji, E. O., Edogbanya, H. 

O., Eghaghe, O. S., Obaje, V. O., & Taofiq, I. T. (2023). A 

unique generalization of Einstein field equation: Pathway for 

continuous generation of gravitational waves. 

Communication in Physical Sciences, 10(1), 122-129. 

 

Landau, L. D., & Lifshitz, E. M. (1977). Quantum mechanics. 

Pergamon. 

 

Mauldin, R. D., & Williams, S. C. (1986). Random recursive 

construction. *Transactions of the American Mathematical 

Society, 295, 325-346. 

 

Marek-Crnjac, L. (2012). Quantum gravity in Cantorian 

space-time. In R. Sobreiro (Ed.), Quantum Gravity (pp. 87-

88). InTech. ISBN: 978-953-51-0089-8. 

 

Marek Crnjac, L. (2009). A Feynman path-like integral 

method for deriving the four dimensionalities of space-time 

from the first principle. Chaos, Solitons & Fractals, 41, 2471-

2473. 

 

Manasse, F. K., & Misner, C. W. (1963). Journal of 

Mathematical Physics, 4, 735. 

 

Messiah, A. (1999). *Quantum mechanics* (Vol. I & II). 

Dover. 

 

Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). 

*Gravitation. W. H. Freeman. 

 

Nyam, G. G. (2017). The generalized Riemannian 

Schrödinger wave equation for hydrogen atom. IOSR Journal 

of Applied Physics, 9(4), 32-34. 

https://doi.org/10.9790/4861-0904033234 

 

Obaje, V. O. (2023). A comparative study of the 

Schwarzschild metric tensor and the Howusu metric tensor 

using the radial distance parameter as a measuring index. 

Journal of Physics: Theoretical and Application, 7(2), 214-

222. 

 

Onyenegecha, C. P., & Ikot, A. N. (2017). Analytical solution 

of the Schrödinger equation for the ring-shaped multi-

parameter exponential type potential. Transaction of the 

Nigerian Association of Mathematical Physics, 3, 223-2. 

 

Ord, G. (1983). Fractal space-time. Journal of Physics A: 

Mathematical and General, 16, 18-69. 

 

Ord, G. (2003). Entwined paths, difference equations, and the 

Dirac equation. Physical Review A, 67, 0121XX3. 

Prigogine, I., Rössler, O., & El Naschie, M. S. (1995). 

Quantum mechanics, diffusion and chaotic fractals. 

Pergamon. ISBN: 0 08 04227 3. 

 

Rund, H. (1959). The differential geometry of Finsler spaces. 

Springer. 

 

Tavernelli, I. (2016). Annals of Physics, 371, 239. 

 

Weinberg, S. (1972). Gravitation and cosmology: Principles 

and applications of the general theory of relativity. John 

Wiley & Sons. 

 

Wheeler, J. (1990). Physical Review D, 41, 431–441. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/

