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ABSTRACT 

This study reviews the application and effectiveness of various remote sensing (RS) indices for drought 

monitoring in Sub-Saharan Africa (SSA). Given the region’s diverse climatic zones and frequent drought 

occurrences, accurate and timely assessment tools are crucial. The study examines indices from different 

spectral regions, including optical, thermal infrared, and microwave bands, focusing on their spatial and 

temporal resolutions, data availability, strengths, and limitations. Optical indices such as the Normalized 

Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) are effective in 

semi-arid and sub-humid zones where vegetation density varies. Thermal infrared indices, including the 

Temperature Condition Index (TCI), the Vegetation Health Index (VHI), and the Temperature Vegetation 

Dryness Index (TVDI), provide insights into thermal anomalies and vegetation health, with TCI particularly 

suited for semi-arid zones and TVDI useful in both semi-arid and sub-humid zones. Microwave indices, such 

as the Normalized Backscatter Moisture Index (NBMI), Vegetation Optical Depth (VOD), and the Microwave 

Polarization Difference Index (MPDI), excel in capturing soil moisture and vegetation water content, proving 

useful in humid forest and semi-arid zones. The integration of these indices with other meteorological and 

hydrological data enhances drought monitoring and management strategies. Recommendations are made for 

the optimal use of these indices across different SSA agroecological zones.  

 

Keywords: Drought monitoring, Remote sensing indices, Sub-Saharan Africa (SSA), Vegetation health, Soil  

moisture 

 

INTRODUCTION 

In Sub-Saharan Africa (SSA), majority of the population 

relies mainly on rainfed agriculture for their sustenance. 

Because of that, any deficiency in rainfall availability will 

likely pose a significant threat to food security, social and 

economic stability of the region. According to studies, SSA is 

seen as the most susceptible region to the impacts of climate 

change, and in this region, climate change is projected to 

increase the frequency and severity of extreme weather events 

including drought events (Kotir, 2011; Lottering et al., 2021). 

Drought defined as a complex natural event marked by an 

extended period of insufficient rainfall, leading to notable 

water shortages that impact the environment and various 

human activities. It can be divided into several types: 

meteorological drought, which is defined by a lack of 

precipitation; agricultural drought, where water scarcity 

hampers crop production; hydrological drought, characterized 

by lower water levels in rivers, lakes, and groundwater; and 

socioeconomic drought, where the water shortage affects 

society and the economy as a whole. (Walia et al., 2024). 

Drought can pose serious adverse effects on crop yield as well 

as the ecosystem thus increasing the tendency for food 

insecurity and poverty across a region. This is why proper 

strategy is needed to ensure effective monitoring of drought 

events so as to mitigate their impacts. 

In-situ-based drought indices such as the Standardized 

Precipitation Index (SPI) and Standardized Precipitation 

Evapo-transpiration Index (SPEI) have been used to monitor 

drought and is able to provide high accuracy at certain 

measurement points. However, they are not able to offer 

coverage over large area (Hazaymeh & Hassan, 2016) 

The advent of remote sensing (RS) technologies has 

facilitated the development of various techniques/indices 

used for monitoring or evaluating drought as documented in 

various research articles over the years. These indices are 

mostly derived from satellite data and allows for the 

monitoring of large spatial areas over a long temporal period 

(Bhaga et al., 2020; Frantzova, 2023a; Hazaymeh & Hassan, 

2016; Jiao et al., 2021; Lottering et al., 2021; Mishra & Singh, 

2011) 

According to Hazaymeh & Hassan (2016), RS-based 

agricultural drought monitoring indices can be categorized as 

either optical, thermal, microwave or a combination of these 

categories. Optical remote sensing indices include the 

Normalized Difference Vegetation Index (NDVI), the 

Normalized Difference Water Index (NDWI), the Vegetation 

Condition Index (VCI), the short wave infra-Red 

Perpendicular Water Stress Index (SWIR-PWSI), the 

Vegetation Water Stress Index (VWSI) etc. Thermal remote 

sensing indices includes the Apparent Thermal Inertia (ATI), 

the Temperature Condition Index (TCI), and the Temperature 

Vegetation Dryness Index (TVDI), etc. Microwave remote 

sensing indices include the Microwave Polarization 

Difference Index (MPDI), the Vegetation Optical Depth 

(VOD), the Normalized Backscatter Moisture Index (NBMI) 

etc. Finally, the combined remote sensing methods includes 

the Normalized Difference Drought Index (NDDI), the 

Vegetation Health Index (VHI), the Vegetation Temperature 

Condition Index (VTCI), Temperature-Vegetation Dryness 

Index (TVDI)etc. 

These RS-Based Drought Monitoring indices mentioned 

across different categories offer various characteristics (i.e. 

strength, limitations, as well as applicability across different 

agroecological zones). Knowledge and understanding of these 

characteristics are of paramount importance to researchers 

and policy makers for proper decision making (Hazaymeh & 

Hassan, 2016; Jiao et al., 2021).  

The main objective of this paper is to review various RS-

based drought indices to identify their strengths and 
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limitations and recommend their applicability across the 

different agroecological zones of Sub-Saharan Africa. 

This research is justified as it addresses the urgent need for 

improved drought monitoring in Sub-Saharan Africa (SSA), 

a region highly vulnerable to droughts due to its diverse 

climates and ecological zones. Remote sensing (RS) indices 

are valuable tools for tracking environmental changes, but 

their effectiveness varies across different agroecological 

zones. The research provides practical recommendations for 

enhancing drought monitoring and management, contributing 

to better decision-making and risk mitigation in SSA. 

 

Overview of RS Techniques 

Remote sensing (RS) is the acquisition of information about 

an object or phenomenon without making physical contact 

with it. Various remote sensing techniques are employed 

depending on the application and the type of data required. 

According to the literature, Optical RS, Thermal Infrared RS, 

and Microwave RS are some of the techniques extensively 

used for drought monitoring. These techniques can be used 

independently or in combination for monitoring drought 

conditions. 

 

Optical Remote Sensing 

Optical remote sensing involves using sensors on satellites or 

aircraft to collect data about the earth's surface by detecting 

reflected or emitted light, primarily in the visible (0.38–0.76 

μm), near-infrared (NIR) (0.76μm to 1.3μm), and shortwave 

infrared (SWIR) (1.3μm to 3μm) regions of the 

electromagnetic spectrum. The above-mentioned spectral 

range are most frequently used due to their distinct responses 

to drought, effectively being able to indicate both vegetation 

greenness and wetness conditions(Hazaymeh& K. Hassan, 

2016). Optical remote sensing plays a crucial role in drought 

monitoring by providing valuable data through vegetation 

indices like Normalized Difference Vegetation Index 

(NDVI), Vegetation Condition Index (VCI), Enhanced 

Vegetation Index (EVI), and Normalized Difference Water 

Index (NDWI), which help assess vegetation health and 

drought severity (Ejaz et al., 2023; Frantzova, 2023b; 

Hazaymeh& K. Hassan, 2016; Saravahidi et al., 2023) 

Optical remote sensing offers detailed, high-resolution data 

essential for monitoring vegetation health and land surface 

changes, which are critical in assessing drought impacts. The 

broad availability of satellite data from platforms like 

Landsat, MODIS, and Sentinel ensures consistent, long-term 

datasets for comprehensive drought monitoring. This 

technology supports the calculation of vegetation indices such 

as NDVI and EVI, which are key indicators of vegetation 

health and drought conditions. Additionally, optical remote 

sensing is cost-effective, covering large areas efficiently, thus 

providing a comprehensive view of drought impacts on both 

regional and global scales (Hazaymeh & Hassan, 2016; 

Sharma et al., 2022; Zhao et al., 2022).  

Despite its strengths, optical remote sensing is limited by its 

reliance on reflected sunlight, restricting its use during 

nighttime and in cloudy conditions. Atmospheric interference 

from haze and aerosols can degrade data quality, leading to 

potential inaccuracies. This technology primarily monitors 

surface-level conditions, making it less effective for assessing 

deeper soil moisture and groundwater levels, which are also 

critical for drought monitoring. Again, similarity in spectral 

signatures among different vegetation types and soil 

conditions can complicate data interpretation, posing 

challenges in accurately identifying drought-affected 

areas(Hazaymeh & Hassan, 2016; Sharma et al., 2022; Zhao 

et al., 2022). 

Thermal Infrared Remote Sensing (TIR) 

Thermal infrared remote sensing is a technique used to 

measure radiation emitted from ground objects. This radiation 

is captured using a thermal band sensor, which operates based 

on fundamental laws of thermal radiation (Payra et al., 2023). 

This type of remote sensing typically focuses on the infrared 

portion of the electromagnetic spectrum, particularly within 

the 3-5 µm and 8-14 µm wavelength ranges. Unlike optical 

remote sensing, which relies on reflected sunlight, thermal 

infrared remote sensing detects the naturally emitted thermal 

radiation from objects, making it effective for capturing 

temperature variations and thermal properties of the Earth's 

surface and atmosphere. 

Thermal remote sensing offers several advantages for drought 

monitoring. It measures land surface temperature (LST), 

directly linked to evapotranspiration and soil moisture levels, 

making it effective for early drought detection (Anderson et 

al., 2016; Hazaymeh & Hassan, 2016). Unlike optical 

methods limited to daytime operations, thermal sensors can 

operate both day and night, providing continuous data 

collection unaffected by the diurnal solar cycle. This 

capability is crucial for comprehensive drought monitoring, 

allowing for timely and frequent updates (Schott et al., 2012). 

However, a significant challenge in thermal infrared remote 

sensing is atmospheric interference, particularly from water 

vapor and clouds, which can affect the accuracy of LST 

measurements and drought assessments (Li et al., 2013). In 

addition, thermal sensors often have lower spatial resolution 

compared to optical sensors, limiting the precision of data in 

heterogeneous landscapes (Ali et al., 2023). Interpreting 

thermal data can be complex, requiring advanced algorithms 

and models to accurately relate thermal signals to soil 

moisture and vegetation health (Alahacoon & Edirisinghe, 

2022; Anderson et al., 2016). Surface characteristics, such as 

vegetation cover, soil type, and land use, also influence the 

accuracy of thermal remote sensing, complicating data 

interpretation (Wan et al., 2002). 

 

Microwave Remote Sensing 

Microwave remote sensing exploits the longer wavelengths of 

microwaves, which range from 1 millimeter to 1 meter, 

enabling the penetration of clouds, rain, and even the surface 

of the Earth to some extent. These techniques utilize both 

active and passive sensors. Active microwave sensors, such 

as Synthetic Aperture Radar (SAR), emit microwave signals 

towards the Earth's surface and analyse the reflected signals. 

This method allows for detailed mapping of surface 

properties, including soil moisture, which is a direct indicator 

of drought conditions. The information obtained can be used 

to assess drought severity, duration, and spatial extent by 

measuring changes in soil moisture over time(Vreugdenhil et 

al., 2022).Passive microwave sensors detect natural 

microwave emissions from the Earth’s surface. These 

emissions vary with soil moisture content and vegetation 

water content, making passive microwave remote sensing an 

effective tool for monitoring drought. For instance, the SMOS 

(Soil Moisture and Ocean Salinity) satellite provides soil 

moisture data that can be correlated with drought indices such 

as the Standardized Precipitation Index (SPI) to identify 

drought patterns (Cheng et al., 2021).  

The primary strength of microwave remote sensing is its all-

weather capability, allowing for continuous monitoring 

without interference from cloud cover or darkness. This is 

particularly valuable in drought monitoring where consistent 

data collection is critical(Cheng et al., 2021). Microwave 

sensors can also provide high-resolution data (especially 

temporal), which is essential for continuous real-time drought 
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assessment. For example, the study by Lin et al., 

(2024)demonstrated the effective use of Sentinel-1 and 

Sentinel-2 satellites with a 12- and 10-day temporal resolution 

respectively, to retrieve surface soil moisture data., in another 

example, the CPC Morphing Technique (CMORPH) which 

uses (low orbiter satellite microwave observations),produces 

global precipitation analyses at very high temporal resolution 

(30 minutes) over a 20-year period of record from January 

1998 to present (NCEI-NOAA, 2024). This significantly 

improves the precision of drought monitoring and 

demonstrates the ability of microwave sensors to capture data 

at short intervals (daily or even multiple times per day) 

allowing for real-time drought monitoring and early warning 

systems. Again, Satellite-based microwave sensors offer 

extensive global coverage, making it possible to monitor 

drought conditions on a global scale. For example, the 

CMORPH product has a near total coverage of the globe 

covering between (60°N–60°S). This is particularly beneficial 

for regions with limited ground-based observation networks 

(Zhu et al., 2019). Another important strength of microwave 

remote sensing is its penetration ability. The L-band (1.4 

GHz) microwave sensors found on the SMOS and SMAP 

missions is ideal for measuring soil moisture because of its 

unique ability to penetrate deeper into the soil (as deep as ~5 

cm). This allows for the assessment of subsurface soil 

moisture, which is critical for understanding root-zone 

moisture and long-term drought impacts (Cheng et al., 2021) 

While passive microwave sensors provide valuable data, their 

spatial resolution is generally lower compared to optical 

sensors. This limitation can affect the ability to perform 

detailed local drought assessments and identify small-scale 

drought conditions(Lin et al., 2024). Also, interpreting 

microwave remote sensing data requires complex algorithms 

and models. The accuracy of drought monitoring depends 

heavily on the calibration and validation of these models, 

which can introduce uncertainties (Zhu et al., 2019). Another 

limitation pertains to the development, and maintenance costs 

of microwave remote sensing satellites and ground stations. 

This financial barrier can limit the widespread adoption and 

continuous operation of these systems in some regions (Cheng 

et al., 2021) 

Recent advancements in microwave remote sensing involve 

integrating data from multiple sources to enhance drought 

monitoring accuracy. A good example is the improved 

Temperature-Vegetation-Soil Moisture Dryness Index 

(iTVMDI) which combines passive microwave data with 

optical and infrared data to monitor drought more effectively. 

This index has shown strong correlations with meteorological 

data, providing a reliable measure of drought conditions (Z. 

Wang et al., 2020).  Despite these Advancements, challenges 

still remain in integrating microwave data with other datasets 

due to differences in spatial and temporal resolutions. 

Research continues to address these issues by developing new 

algorithms and models that can better harmonize data from 

various sources to improve drought monitoring capabilities 

(Wei et al., 2021) 

 

Evaluation of various Remote Sensing Techniques used 

for Drought Monitoring in SSA 

Sub-Saharan Africa (SSA) encompasses the regions of Africa 

located south of the Sahara Desert, spanning an area 

characterized by diverse climates and landscapes. The region 

includes 46 countries, exhibiting a range of Agro-ecological 

zones (AEZs) that are critical for agricultural activities and 

food security. 

According to Winrock (1992) SSA can be divided into five 

(5) primary agroecological zones (AEZs). These are; the 

Humid Forest Zone characterized by high annual rainfall 

exceeding 1,500 mm and dense tropical rainforests, 

supporting crops such as cocoa, rubber, and oil palm; the Sub-

Humid Zone which has moderate rainfall between 1,000-

1,500 mm with mixed woodlands and savannas, suitable for 

cereals like maize and root crops such as cassava; the Semi-

Arid Zone which experiences lower rainfall of 500-1,000 mm, 

featuring open savannas and grasslands, and is suitable for 

drought-resistant crops like millet and sorghum; the Arid 

Zone which has very low rainfall under 500 mm with sparse 

vegetation, limited to nomadic pastoralism and sparse 

cropping; and the Highland Zone which varies climatically 

with cooler temperatures due to altitude, supporting high-

value crops like coffee and tea. 

 

Optical-Based RS Indices in SSA 

Optical remote sensing is a pivotal technology for drought 

monitoring, utilizing various indices to assess vegetation 

health, soil moisture, and overall drought conditions. Key 

indices include the Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), and the 

Normalized Difference Water Index (NDWI). NDVI, which 

measures vegetation greenness by comparing red and near-

infrared reflectance, is widely used due to its simplicity and 

effectiveness in indicating vegetation health and stress levels 

(Pettorelli, 2013). EVI improves upon NDVI by reducing 

atmospheric and soil background noise, providing a more 

accurate assessment of vegetation vigor in areas with dense 

canopies (Huete et al., 2002). NDWI, on the other hand, is 

effective for assessing water content in vegetation and soil, 

making it a crucial index for drought monitoring (Gao, 1996). 

 



EVALUATING REMOTE SENSING-BASED…      Bichi et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 4, August, 2024, pp 199– 209 

Table 1: Characteristics of Optical-Based Indices and their Applicability in SSA 

Index Spatial Resolution 
Temporal 

Resolution 

Data Availability 

for Sub-Saharan 

Africa 

Strengths Limitations References 
Recommendation for use 

in SSA 

NDVI (Normalized 

Difference 

Vegetation Index) 

>Landsat satellites 

provide 30-meter 

spatial resolution 

>MODIS at a range of 

250 meters to 1 KM 

and  

>AVHRR at 1–8-KM 

spatial resolution  

 

>MODIS and 

AVHRR provide 

daily NDVI data   

>Landsat, data is 

retrieved after every 

16 days. 

>MODIS is Freely 

available since 

2000. 

>Landsat Data is 

available from 1972 

to present. 

>AVHRR Data is 

available since 

1981. 

 

>Extensive spatial 

coverage 

>Long-term datasets 

from MODIS and 

AVHRR  

>Frequent data 

collection  

> Can be affected by 

cloud cover,  

> May not differentiate 

well between different 

types of vegetation,  

>Variations in soil 

colour and moisture 

can influence NDVI 

values,  

(Hazaymeh& K. 

Hassan, 2016) 

(Peng et al., 2020) 

(DEAfrica, 2021) 

(Safiétou et al., 

2022) 

 

>NDVI will be more suited 

to Monitoring Drought in 

the Semi-Arid Zonesof SSA 

NDWI (Normalized 

Difference Water 

Index) 

> Sentinel-2 provides 

10 m spatial 

resolution,  

> Landsat-8 offers 30 

m spatial resolution,. 

> MODIS and VIIRS 

data at 250 m to 1 km 

resolution  

>MODIS and 

VIIRS provide daily 

observations. 

>Sentinel-2 and 

Landsat-8 have 

revisit periods of 5-

16 days,  

>> Older Landsat 

missions and similar 

sensors have 16-day 

revisit times  

Data from Sentinel-

2, Landsat-8, and 

MODIS are readily 

available and 

extensively used for 

monitoring 

environmental 

conditions, 

including drought in 

Sub-Saharan Africa 

>High sapatial 

resolution 

>Facilitates near-real-

time monitoring, 

crucial for timely 

drought response and 

management. 

>Effective in regions 

with dense vegetation. 

>Optical sensors like 

Sentinel-2 and 

Landsat-8 can be 

hindered by cloud 

cover, affecting data 

quality. 

>Lower revisit times 

can lead to gaps in 

continuous monitoring, 

especially in older 

missions of Landsat 

 

(Moser et al., 2014) 

(Bhaga et al., 2020) 

(Bhaga et al., 2021) 

(IyinoluwaOjumu, 

2023) 

 

>Highly recommended for 

use in Sub-Humid Zone of 

SSA 

>Could also be effective in 

Humid Forest Zones and the 

Semi-Arid Zones of SSA 

SWIR-PWSI (Short 

wave infra-Red 

Perpendicular Water 

Stress Index) 

>Sentinel-2 provides a 

spatial resolution of 

10 meters. 

>Landsat offers 30 

meters resolution for 

its SWIR bands 

>MODIS provides a 

coarser spatial 

resolution of 500 

meters for SWIR 

bands 

>MODIS offers 1-2 

days revisit times 

>Sentinel-2 has a 

revisit time of 5 

days at the equator, 

and 

> Landsat has a 

revisit time of 16 

days, offering lower 

temporal resolution 

Data availability for 

Sub-Saharan Africa 

is supported by 

several satellite 

missions like 

MODIS, Sentinel-2 

and Landsat. 

> Highly sensitive to 

vegetation water 

content 

> The index can be 

derived from various 

satellite platforms,  

> SWIR bands can 

penetrate through thin 

clouds,  

>Dense cloud cover 

can still create data 

gaps. 

> Variations in sensor 

calibration across 

different platforms can 

affect the consistency 

of SWIR-PWSI data. 

>Accurate computation 

of SWIR-PWSI relies 

on multispectral data, 

which may not always 

be available or may 

come at higher costs 

(Fensholt & 

Sandholt, 2003) 

(Feng et al., 2013) 

(Bhaga et al., 2020) 

(Wu & Li, 2021) 

(Bhushan et al., 

2024) 

(Komi et al., 2024) 

>Highly recommended for 

use in the Humid Forest 

Zone with dense vegetation 

>it could also be effective 

for use in the Highland zone 

and Subhumid zones of SSA 
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Thermal Infrared-Based RS Indices in SSA 

Thermal infrared remote sensing-based drought-monitoring 

indices are crucial tools for assessing and managing drought 

conditions by capturing surface temperature variations and 

evapotranspiration rates. These indices, such as the 

Temperature Condition Index (TCI), Vegetation Health Index 

(VHI), and the Temperature Vegetation Dryness Index 

(TVDI), utilize thermal infrared data to monitor the thermal 

state of the surface and its vegetation. TCI, for instance, 

reflects the thermal state of the vegetation and is derived from 

the land surface temperature (LST) measurements, providing 

an insight into the severity of drought by comparing current 

LST to historical values (Karnieli et al., 2010). Similarly, VHI 

combines TCI with the Normalized Difference Vegetation 

Index (NDVI) to detect drought stress on vegetation (Rojas et 

al., 2011). TVDI, on the other hand, utilizes the relationship 

between LST and NDVI to estimate soil moisture content and 

drought severity (A. Chen et al., 2023; J. Chen et al., 2011) 

These indices have been validated and applied in various 

regions worldwide, demonstrating their effectiveness in early 

drought detection and mitigation strategies. For instance, a 

study on the application of these indices in the African Sahel 

region showed a strong correlation between TVDI and 

ground-based drought measurements, highlighting the utility 

of thermal infrared remote sensing in areas with limited in-

situ data (Sandholt et al., 2002). By integrating these indices 

with other meteorological and hydrological data, a more 

comprehensive and timely assessment of drought conditions 

can be achieved, aiding in better decision-making for drought 

management. 

 

Microwave-Based RS Indices in SSA 

Microwave remote sensing has emerged as a crucial tool for 

drought monitoring, leveraging its sensitivity to soil moisture 

and vegetation conditions. The Soil Moisture Active and 

Passive (SMAP) satellite, for example, provides critical data 

for assessing soil moisture, which is essential for 

understanding agricultural drought. In a study focusing on 

Henan Province, China, a random forest model using SMAP 

data achieved high accuracy in detecting drought conditions, 

illustrating the potential of microwave remote sensing for 

agricultural applications (Tian & Zhu, 2024).  Similarly, in 

northeastern China, the Soil Moisture and Ocean Salinity 

(SMOS) satellite demonstrated effectiveness in capturing 

drought patterns, showing high correlation with traditional 

meteorological indices like the Standardized Precipitation 

Index (SPI) (Cheng et al., 2021). 

Moreover, the development of the Standardized Vegetation 

Optical Depth Index (SVODI) combines data from multiple 

passive microwave sensors to monitor vegetation conditions, 

providing a reliable indicator of drought impacts on plant 

health (Moesinger et al., 2020). These indices are particularly 

advantageous due to their ability to operate under cloud cover 

and low light conditions, offering consistent data collection 

compared to optical sensors. However, challenges remain in 

integrating these data with other hydro-meteorological 

variables to refine drought monitoring models further 

(Vreugdenhil et al., 2022). 
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Table 2: Characteristics of Thermal Infrared-Based Indices and their Applicability in SSA 

Index 
Spatial 

Resolution 

Temporal 

Resolution 

Data 

Availability for 

Sub-Saharan 

Africa 

Strengths Limitations References 
Recommendation for 

use in SSA 

TCI (Temperature 

Condition Index) 

> Advanced Very 

High-Resolution 

Radiometer 

(AVHRR) can 

offer 1 km spatial 

resolution. 

> MODIS can 

provide data at 

250 m to 1 km 

MODIS data 

offers an 8-day 

temporal 

resolution,  

TCI data is 

accessible 

through platforms 

such as NASA's 

Earth Observing 

System Data and 

Information 

System 

(EOSDIS) and 

NOAA's National 

Environmental 

Satellite, Data, 

and Information 

Service 

(NESDIS). 

 

>sensitive to surface 

temperature changes, and 

effective in detecting 

thermal anomalies 

associated with drought. 

> Can be combined with 

vegetation indices like 

NDVI, and VCI to enhances 

the accuracy of drought 

assessments  

> Frequent updates provided 

by satellites like MODIS 

enable near-real-time 

monitoring. 

> Can be affected by dense cloud 

cover,  

> Accurate calibration and validation 

of TCI require extensive historical 

temperature data. 

> While high spatial resolution data 

is beneficial, it also requires 

significant computational resources 

and storage, which can be 

challenging for large-scale 

applications. 

(Kogan, 1995) 

(Patel et al., 2012) 

(Drought 

Management 

Info, 2016) 

(Mullapudi et al., 

2023) 

> Highly recommended 

for use in Semi-Arid 

Zone of SSA 

> Could also be 

effective in subhumid 

and arid Zones of SSA 

VHI (Vegetation 

Condition Index) 

> MODIS data 

offers a spatial 

resolution of 250 

meters to 1 km. 

> Advanced Very 

High-Resolution 

Radiometer 

(AVHRR) offers 

a resolution of 4 

km to 16 km, 

 

> VHI benefits 

from the high 

temporal 

resolution of 

AVHRR data, 

which is available 

on a daily basis 

VHI data can be 

accessible for 

SSA through 

platforms like 

AVHRR, NOAA 

STAR and the 

MODIS 

Terra/Aqu 

satellite products.  

>VHI combines information 

from both the Vegetation 

Condition Index (VCI) and 

the Temperature Condition 

Index (TCI) 

> Provides high temporal. 

>Has long-term data 

availability and established 

methodology  

> Accuracy of can be affected by 

cloud cover,  

> Coarser resolutions may miss 

finer-scale drought impacts. 

> Variations in data quality due to 

sensor differences and atmospheric 

conditions can affect the consistency 

of VHI data over time and space.  

(Rojas et al., 

2011) 

(Sheffield et al., 

2014) 

(TerwayetBayouli 

et al., 2023) 

(Gbaguidi et al., 

2024) 

(Bento et al., 

2018) 

> Highly recommended 

for use in the Semiarid 

and Sub-Humid Zones.  

 

TVDI 

(Temperature 

Vegetation 

Dryness Index) 

> MODIS 

provides data at 

250m to 1km 

resolution. 

> Landsat and 

Sentinel can offer 

higher spatial 

resolutions of 

30m to 10m 

respectively 

> MODIS 

provides daily 

and 8-day 

composites. 

> Landsat and 

Sentinel provide 

data with a 

temporal 

resolution of 16 

days and 5-10 

days respectively. 

Data for TVDI 

calculation are 

readily available 

for Sub-Saharan 

Africa through 

satellite platforms 

such as MODIS, 

Landsat, and 

Sentinel.  

> Integrates LST and 

vegetation indices providing 

a robust measure of soil 

moisture and drought 

conditions. 

> TVDI does not depend on 

ancillary data like soil 

properties or precipitation 

> The use of vegetation 

indices allows TVDI to be 

sensitive to changes in 

vegetation health. 

> Accurate simulation of dry and wet 

edges in the LST-NDVI space can be 

challenging, affecting the precision 

of the TVDI, especially in areas with 

sparse vegetation. 

> NDVI can saturate in areas with 

dense vegetation. EVI can mitigate 

this issue to some extent but 

introduces its own set of challenges. 

>The presence of bare soil can affect 

the NDVI values, affecting the 

accuracy of the TVDI in areas with 

sparse vegetation  

(Du et al., 2017) 

(A. Chen et al., 

2023) 

(Guo et al., 2023) 

(Przeździecki et 

al., 2023) 

 

> Highly recommended 

for use in the Semiarid 

and Sub-Humid Zones.  

> Could also be 

effective in the Arid 

Zone 
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Table 3:  Characteristics of Microwave-Based Indices and their Applicability in SSA 

Index 
Spatial Resolution 

 

Temporal 

Resolution 

Data Availability 

for Sub-Saharan 

Africa 

Strengths Limitations References 
Recommendation 

for use in SSA 

NBMI (Normalized 

Backscatter 

Moisture Index) 

> Sentinel-1 offers data at 

10 meters spatial 

resolution 

 

>SMAP offers data at 36 

km  

>Sentinel-1 

revisits every 12 

days  

 

>SMAP 

revisitsevery 2-3 

days,  

Sentinel-1 and 

SMAP data are 

freely available on 

platforms such as 

the European 

Space Agency 

(ESA) and NASA. 

>NBMI derived from Sentinel-1 

provides detailed spatial 

information on soil moisture 

changes. 

 

> It is highly sensitive to changes 

in soil moisture. 

 

>Radar backscatter is not affected 

by cloud cover. 

 

>Radar data requires 

complex processing and 

calibration. 

>Variability in surface 

roughness can affect 

backscatter readings 

>Radar signals primarily 

capture moisture content 

only in the top few 

centimetres of the soil. 

(Shoshany et al., 

2000) 

(Q. Gao et al., 

2017) 

(Bormudoi et al., 

2023) 

(Tao et al., 2023) 

(Komi et al., 

2024) 

 

 

> Highly 

recommended for 

use in the 

Semiarid Zones.  

> Could also be 

effective in the 

Arid and Sub-

Humid Zones. 

 

VOD (Vegetation 

Optical Depth) 

>AMSR-E and AMSR-2 

have coarse spatial 

resolutions of about 25 

km.  

>Sentinel-1 can achieve 

spatial resolutions as high 

as 1 km. 

>AMSR-E and 

ASCAT provide 

data ranging from 

daily to every few 

days. 

> Sentinel-1 data, 

has a repeat cycle 

of approximately 

12 days,  

>VOD data is 

widely available 

on various satellite 

missions such as 

AMSR-E, AMSR-

2, SMOS, SMAP, 

and Sentinel-1.  

>Also available on 

VODCA 

(Vegetation 

Optical Depth 

Climate Archive),  

>VOD is directly sensitive to the 

water content in vegetation 

>Microwave-based VOD 

measurements can penetrate 

clouds 

>VOD products utilize multiple 

microwave frequencies, which 

captures different vegetation 

characteristics from leaf moisture 

to stem biomass. 

>VOD data, from older 

sensors, have coarse 

spatial resolutions  

>Combining data from 

multiple sensors with 

different frequencies and 

spatial resolutions can be 

challenging 

>High spatial resolution 

data like those from 

Sentinel-1 have limited 

temporal resolution  

 

(Moesinger et al., 

2020) 

(Vreugdenhil et 

al., 2020) 

(Zhou et al., 

2022) 

(Zotta et al., 

2024) 

 

> Highly 

recommended for 

use in the Humid 

Forest and Sub-

Humid Zones.  

> Moderately 

effective in the 

Semi-Arid and 

Highland Zones. 

 

MPDI (Microwave 

Polarization 

Difference Index) 

AMSR-E has a spatial 

resolution of about 25 

km.  

>SSMI (Special Sensor 

Microwave/Imager) data 

are available at  

>>25 km resolution for 

lower frequencies (19, 

22, 37 GHz)  

>>and 12.5 km for higher 

frequencies (85 GHz). 

>AMSR-E has 

typically 1-2 days 

temporal 

resolutions. 

 

>SSMI has about 

1-2 days as well. 

 

Data availability is 

generally good for 

SSA 

>MPDI is highly sensitive to soil 

moisture and vegetation water 

content. 

> Generally, has frequent revisit 

time ensuring near real-time 

monitoring. 

>It can penetrate clouds and 

provide reliable data under various 

weather conditions. 

> It relativelyhas coarse 

spatial resolution 

compared to optical 

based indices. 

>Calibration and 

validation of MPDI data 

can be complex. 

>Different frequency 

channels provide 

different resolutions, 

which can complicate 

data integration and 

interpretation 

(Becker & 

Choudhury, 

1988) 

(Teng et al., 

1995) 

(Felde, 1998) 

(S. Wang et al., 

2010) 

(Meier et al., 

2021) 

> Highly 

recommended for 

use in the Humid 

Forest, Sub-

Humid, and Semi-

Arid Zones 
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Recommendations of RS-Based Indices in SSA 

NDVI will be more suited to Monitoring Drought in the Semi-

Arid Zone as it generally experiences less cloud cover 

compared to the Humid Forest Zone. Also, NDVI performs 

better in areas where vegetation is not overly dense and the 

semi-Arid Zone has a sparse vegetation compared to the lush 

vegetation of the Humid Forest Zone. 

For NDWI, which is most effective in areas with significant 

vegetation, the Sub-Humid Zone appears to be its best match 

as it has moderate vegetation cover with mixed woodlands 

and savannas where it can detect changes in water content and 

early stages of drought. However, it could also be effective in 

the Humid Forest and Semi-Arid Zones of SSA, though it may 

be affected by challenges related to cloud cover. 

The Short-Wave-Infra-Red of SWIR-PWSI has the ability to 

penetrate thin clouds which makes it suitable for assessment 

of the Humid Forest Zone with dense vegetation, and frequent 

cloud conditions. It could also be effective for use in the 

Highland zone and Subhumid zones of SSA. 

TCI which is Thermal infrared based will be highly suited for 

use in Semi-Arid Zone of SSA which has minimal cloud cover 

and is vulnerable to drought occurrence. TCI could also be 

effective in Sub-Humid and Arid Zones of SSA. However, 

challenges such as dense cloud conditions may result in data 

gap especially in Sub-Humid Zones. 

VHI is an effective tool for monitoring drought impacts on 

vegetation health and temperature stress. Hence, it will be 

well suited to monitoring the Semi-Arid and Sub-Humid 

Zones having sufficient vegetation cover to monitor any 

changes in vegetation health as well as temperature stress. 

TVDI is highly recommended for use in the Semiarid and 

Sub-Humid zones. The semi-arid zone is prone to drought and 

features moderate vegetation cover while the Sub-Humid 

zone experiences moderate rainfall and periods of drought. 

TVDI's sensitivity to vegetation health changes makes it 

valuable for monitoring and managing drought conditions 

these regions. TVDI could also be effective in the Arid zone. 

NBMI has high sensitivity to soil moisture changes which 

makes it an ideal tool for drought monitoring in the Semi-Arid 

zone of SSA which is highly susceptible to drought due to its 

lower rainfall. It could also be effective for use in Arid and 

Sub-Humid zones. However, radar signals which captures 

moisture content in only the top few centimeters of the soil 

may not fully reflect deeper soil moisture conditions during 

prolonged droughts common to the arid zones. 

For VOD, its ability to penetrate clouds ensures consistent 

data acquisition, making it highly suitable for monitoring 

vegetation health in Humid Forest and Sub-Humid zones 

having frequent cloud cover which can obstruct optical 

remote sensing methods. VOD may also be moderately 

suitable to the Semi-Arid and Highland Zones. 

Finally, MPDI also having the ability to penetrate clouds is 

highly suitable for monitoring soil moisture and vegetation 

water content in dense forest as well sparsely vegetated 

regions. Thus, it will be suited for monitoring the Humid 

Forest, Sub-Humid and the Semi-Arid zones of SSA. 

 

CONCLUSION 

In conclusion, remote sensing indices are essential tools for 

effective drought monitoring and management in Sub-

Saharan Africa, a region characterized by diverse climatic 

zones and varying levels of vegetation cover. Optical indices 

like NDVI and NDWI excel in areas with moderate to sparse 

vegetation but are challenged by cloud cover and dense 

vegetation. Thermal infrared indices, such as TCI and VHI, 

provide valuable information on temperature stress and 

vegetation health, with TCI being particularly suited for semi-

arid zones and VHI for semi-arid and sub-humid regions. 

Microwave-based indices, including NBMI, VOD, and 

MPDI, offer robust solutions for assessing soil moisture and 

vegetation water content, especially in regions with frequent 

cloud cover. The integration of these indices into a 

comprehensive drought monitoring framework can enhance 

early detection and response strategies. Future research 

should focus on improving data integration techniques and 

validating these indices with ground-based observations to 

refine drought management practices in SSA. 
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