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ABSTRACT 

Missing data is a common issue in experimental research that can undermine the statistical power and validity 

of results. Procedures for estimating statistical power for a two-sample t-test for incomplete data have been 

documented in the literature. This study extends the existing procedures to more than two samples. A power 

estimation formula is derived for a two-factor ANOVA model with missing values addressed through multiple 

imputation (MI). The within-imputation variance from Rubin’s rules was substituted into the power calculation 

formula. Experimental data on the antifungal properties of plant extracts was analyzed in a two-factor design 

using SPSS version 27. Statistical power was investigated at 8%, 16%, and 40% levels of missingness; 0.2, 

0.5, and 0.8 effect sizes and 20, 30, 40, and 100 number of imputations. The study reveals that the number of 

missing observations, the effect size, and the number of imputations have an impact on statistical power in a 

two-factor ANOVA design; as effect size and the number of imputations increase, statistical power increases 

but decreases with higher missingness. The power analysis presented in this study can be extended to higher 

ANOVA models.  
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INTRODUCTION 

In statistics, missing data or values that lead to incomplete 

data sets are a common phenomenon and this has become a 

common obstacle for balanced data analysis. Although 

methods to address data imbalance from missing values are 

now available, additional research is needed to examine the 

influence of missingness patterns and rates on the statistical 

power of experimental designs. 

Statistical power is the probability of rejecting the null 

hypothesis when it is false or it is the probability of avoiding 

a Type II error. It is denoted by 1 − β. A low statistical power 

is most unlikely to detect an effect in the study even when one 

does exist. However, if statistical power is high, then the 

probability of a significant effect being detected is most likely 

(Lakens, 2022, & Anderson et al., 2022). Statistical power or 

simply power helps to ensure that an effect is found when it 

actually exists (Chen, 2021; Darling, 2022; Balkin & 

Sheperis, 2011). The power of a test helps increase research 

efficiency, guide research design, and estimate the required 

sample size (Lakens, 2022, & Anderson et al., 2022). 

Studies have examined the impact of multiple imputation 

(MI) on statistical power. Rubin (1996) showed that multiple 

imputation could reduce the bias associated with missing data 

and improve Type I error rates; while Schafer and Graham 

(2002) showed that multiple imputation could increase the 

effective sample size, thereby increasing the power of 

statistical tests. Van Buuren et al. (1999) showed that MI 

increased power in linear regression models compared to 

complete case analysis and single imputation for datasets with 

up to 25% missing data. Similarly, White et al., (2011) 

demonstrated that MI improved power in hierarchical linear 

mixed models with missing data compared to single 

imputation methods. Also, Gagné, et al., (2017) reported that 

multiple imputation increases statistical power by reducing 

standard errors and increasing the precision of estimates.  

Unbalanced designs in which groups have unequal sample 

sizes, can be considered as a case of missing data (Van Ginkel 

& Kroonenberg, 2015). However, variations in the dependent 

variable due to overall main effects and interactions are only 

additive in balanced designs (Montgomery & Cahyono, 

2022). In unbalanced designs, additivity is lost. As a result, 

F-tests become less robust to unequal variances and lose 

power (Van Ginkel & Kroonenberg, 2015). 

Studies have been conducted on statistical power from MI for 

one and two-sample t-tests (Zha, 2018). The focus here was 

on the population mean, but it would also be of interest to 

extend these results to an analysis that lends itself to more than 

two samples, that is, for instance, a two-factor (ANOVA) 

analysis of variance, in particular, a two-factor analysis of 

variance (ANOVA).  

Zha and Harel (2019) developed statistical power analysis 

techniques for t-tests in the presence of missing data using 

multiple imputation. However, the problem of power analysis 

for more complex multiparameter models like ANOVA with 

missing values has not been addressed. This study intends to 

extend the work of Zha and Harel (2019) by deriving a power 

analysis framework for a two-factor design with incomplete 

data. The aim is to generalize their approach of integrating 

Rubin's multiple imputation rules into power calculation 

formulas. The research problems involve substituting the 

mean squared error from the two-factor design into the power 

calculation formula proposed by Zha and Harel (2019) and 

deriving an explicit expression for the within-imputation 

variance.  

 

Literature Review 

In statistical inference, hypotheses are formulated to make 

assertions about populations based on sample data, with the 

null hypothesis assuming no effect (Aberson, 2010; Field, 

2018). Researchers aim to avoid Type I errors, where a true 

null hypothesis is rejected, and Type II errors, where a false 

null hypothesis is accepted. Statistical power, denoted as 
(1 − β) , represents the probability of correctly rejecting a 

false null hypothesis (Travers, Cook & Cook, 2017; Paniagua, 

2019). 

Statistical power is influenced by factors such as sample size, 

effect size, significance level (α), and the desired power level 

(Cohen, 1988). Power analysis relies on understanding effect 

sizes, with highly powered experiments yielding more reliable 

results (Simmons et al., 2013; Schweinsberg et al., 2020). In 
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meta-analyses, highly powered studies lead to more precise 

effect size estimates (Seehorn et al., 2021). 

However, missing data can compromise statistical power and 

result in biased estimates (Kang, 2013). Missing data reduces 

sample size, thus diminishing the power to detect effects 

(Maxwell et al., 2008). Multiple imputation is a technique 

used to handle missing data, with its effectiveness in 

maintaining statistical power highlighted (Anderson & 

Williams, 2017; Smith & Johnson, 2018). 

Zha's work (2018) showed that MI can improve statistical 

power by recovering more information, with the number of 

imputations influencing power. Additionally, Zha and Harel 

(2019) derived formulas for calculating power when using 

MI.  

This study aims to assess statistical power when using MI to 

address missingness in a two-factor ANOVA. By 

understanding how MI affects power in a two-factor ANOVA 

design, researchers can better address missing data issues and 

improve the reliability of their analyses in such a design. 

 

MATERIALS AND METHODS 

Rubin's (1987) MI framework is reviewed. Power analysis 

techniques for two-sample t-tests are explained for both 

complete and incomplete data scenarios based on Zha & Harel 

(2019). This forms the basis for extending power calculations 

to a two-factor ANOVA model. 

A step-by-step derivation is then presented to adapt power 

formulas for a two-way ANOVA design. The mean squared 

error term substitutes the variance to account for multiple 

group comparisons in ANOVA, resulting in tailored power 

estimation equations for such models. 

 

Rubin’s Rule for Multiple Imputation 

Let θ =  estimand of interest  

θ̂ = estimator of θ with variance σ2.  
𝑌 =  (𝑌𝑜,  𝑌𝑚)be the complete data  

𝑌𝑜 = observed part of the data  

and 𝑌𝑚 represents the part of the data that is missing, with 𝑿 

as the covariate.  

Thus,  the distribution of θ can be represented as: 

(𝑃(𝜃|𝑋, 𝑌𝑜) = ∫𝑃(𝜃|𝑋, 𝑌𝑜, 𝑌𝑚) 𝑃(𝑌𝑚|𝑌𝑜)𝑑𝑌𝑚   (1) 

The consequences that follow from (1) lead to the combining 

rules of multiple imputation obtained by Rubin.  

 

Requirement for Reliable Inference Using MI 

To test the null hypothesis that a parameter θ is equal to a 

specific value θ0 , Rubin determined that the statistic 𝑡  in 

equation (2) can be employed (van Ginkel & Kroonenberg, 

2015; Zha & Harel, 2019): 

tv =
θ̅−θ

√σ̂2
     (2) 

which has a t distribution with v degrees of freedom. 

For MI to yield valid inferences, the imputation method must 

be proper and randomization valid. A multiple imputation 

procedure is randomization valid if the posterior distribution 

of θ is normally distributed and approximately given as 
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2  and θ̅k respectively as the number of imputations (m) 
becomes large. This allows one to make probability 

statements about the hypothesized values of θ. This suffices 

to say that the expectation of σ̂w
2
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σ̂wE
2 ,  σ̂bE

2  and θ̅kE  respectively. For MI to be valid, the 

complete data must also be randomization valid (Zha & Harel, 

2019; Abowd, 2005). 

According to Rubin (1987), MI statistics have the following 

distributions:  
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Power Calculation with MI 

Zha and Harel (2019) derived a general formula for 

calculating statistical power for the hypothesis: H0 : θ̂ = θ0 

versus H1: θ̂ = θ1:  

 

T-test for complete data  

T-test for complete data is derived as follows from (2) 

Power = 1 −  β 

= P(Rejecting HO/H1) 

= P (
θ0−θ1
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As the sample size becomes large the power can be 

approximated as 
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where σ̂wE
2  (expected value of the within imputation variance) 

approaches σ̂w
2  as the sample size becomes large. 

 

T-test for incomplete data 

The general formula  for calculating statistical power has been 

derived by Zha and Harel (2019) as: 

P(θ ∉ 𝐶|𝑿, 𝒀,  θ = θ0 ) 

= P(𝑧 <
θ0−θ1

(σ̂𝑤𝐸
2 (1+𝑟𝐸))

1
2

− 𝑧α
2
|𝑿, 𝒀) + P(𝑧 >

θ0−θ1

(σ̂𝑤𝐸
2 (1+𝑟𝐸))

1
2

+ 𝑧α
2
|𝑿, 𝒀)
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where rE =
(1+

1

m
)σ̂b
2

σ̂w
2    (the relative increase in 

variance due to missingness)   (8) 

This work extended Zha and Harel's (2019) derivation to a 

situation of multiple population means, that is analysis of 

variance. The Cohen’s D was used as an estimate of the effect 

between θ0 and θ1.  

 

Extension to ANOVA designs 

Let σ̂wE
2  denote the population expected value of the within 

imputation variance. Hansen et al. (1953) defined σ̂wE
2  to be: 

σ̂wE
2 = (

1

n1
−
1

N
) σ2      (9) 

where n1 is the number of complete cases and N is the total 

sample size. 

In a two-way ANOVA with factors A and B, the MSE is 

calculated as:  

MSE = SSresidual/(N − AB − 1) 

 =
∑∑(Yijk−μ̂)

2

(N−AB−1)
    (10) 

where: 

SSresidual  =  residual sum of squares 
A = number of levels of factor A 

B = number of levels of factor B 

To extend the power analysis formula to a two-factor 

ANOVA, we substituted equation (10) into equation (9) to 

get: 

σ̂wE
2 =  (

1

n1
−
1

N
)  * MSE   (11)
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Substituting equation (11), the within-imputation variance 

σ̂wE
2

 into the power calculation formula in equation (7) 

provides an estimate of power for a two-factor ANOVA with 

missing data handled via multiple imputation and it is given 

as: 
Power = 

P

(
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where θ0 and θ1 are the hypothesized means under the null 

and alternative hypotheses, z  is the standard normal 

distribution and α is the significance level. 

 

RESULTS AND DISCUSSION 

A two-factor experimental data with 60 observations on the 

antifungal properties of plant extracts is analyzed. 

Missingness is introduced at 8%, 16%, and 40% rates, and 

imputations are carried out at 20, 30, 40, and 100 imputations. 

Power is computed at the various levels of missingness and 

compared to that obtained from the complete data set. The 

data was analyzed using SPSS version 27. The estimates 

obtained are shown in Table 1 which are pivotal in computing 

the statistical power. 

 

Table 1: Estimations from a two-factor Design with various levels of Missing Data 

Number of Missing Observations Estimate 
Number of Imputations 

20 30 40 100 

5 (8%) 

𝛉 185.880 163.730 162.646 161.488 

𝛔𝒃𝟐 1160.56 125.745 185.446 97.337 

FMI 0.066 0.077 0.103 0.076 

RIV 0.070 0.083 0.114 0.082 

RE 0.997 0.997 0.997 0.999 

 

10 (16%) 

𝛉 158.942 157.517 157.583 154.997 

𝛔𝒃𝟐 234.134 222.381 149.505 156.014 

FMI 0.145 0.139 0.127 0.142 

RIV 0.167 0.160 0.144 0.0165 

RE 0.993 0.995 0.997 0.999 

 

24 (40%) 

𝛉 172.790 169.804 182.231 179.319 

𝛔𝒃𝟐 736.453 1008.78 1378.65 1129.122 

FMI 0.456 0.438 0.379 0.376 

RIV 0.803 0.756 0.599 0.597 

RE 0.978 0.986 0.991 0.996 

 

It can be seen from Table 1 that as the number of imputations 

increases from 20 to 40, the fraction of missing information 

(FMI) and the relative increase in variance  (RIV) increases 

for 8% missingness. However, for 16% and 40% missingness, 

FMI and RIV decreased. The results revealed an increase in 

relative efficiency for 20 to 100 imputations at 16% and 40% 

missingness. 

The statistical power estimates are shown in Table 2. 

 

Table 2: Statistical Power Estimates for Two-factor Design 

Number of Missing Observations Effect Size 
Number of Imputations 

20 30 40 100 

5 (8%) 

0.2 0.065335 0.067219 0.066848 0.067476 

0.5 0.149095 0.161504 0.159059 0.163202 

0.8 0.307909 0.338722 0.332699 0.34289 

 

10 (16%) 

0.2 0.057439 0.057552 0.057655 0.057643 

0.5 0.097449 0.098182 0.098849 0.098768 

0.8 0.174399 0.176332 0.178092 0.177876 

 

24 (40%) 

0.2 0.051320 0.051380 0.051412 0.051437 

0.5 0.058309 0.058684 0.058890 0.059044 

0.8 0.071431 0.072403 0.072931 0.073338 

 

It can be observed from Table 2 that, power declines as the 

rate of missing data increases. With only 5 missing values 

(8% missingness), power remains high and close to the 

complete case scenario. However, with 24 missing values 
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(40% missingness), power substantially drops even when 

testing a large effect size of 0.8. 

It can also be observed that the number of imputations 

positively impacts power. As the number of imputations 

increases from 20 to 100, power also increases, though not to 

the level of complete data. This aligns with the concept that 

more imputations help recover information lost due to 

missingness. 

The effect size greatly influences power, with larger effects 

retaining higher power despite the percentage of missing data. 

At 40% missingness, power was still over 0.07 for a large 

effect size of 0.8, as against only 0.05 for a small effect size 

of 0.2. This highlights the importance of effect size in power 

analysis. 

Table 3 serves as a benchmark, offering power estimates for 

complete cases as a reference for the power formula. 

 

Table 3: Power estimates in two-factor and three-factor Designs for Complete Data 

Effect Size Two-Factor 

Small = 0.2 0.289462 

Medium = 0.5 0.811255 

Large = 0.8 0.990460 

The complete case power in Table 3 is notably high for the medium and large effect sizes, reaching 0.990460, a substantial 

effect size of 0.8.  

 

Findings 

The power estimation formula derived from this study as 

shown in equation (13) has been employed to assess the 

impact of factors like missing data rate, effect size, and the 

number of imputations on the statistical power in two-factor 

ANOVA designs. 

The study has revealed that for each percentage of 

missingness, statistical power increases with effect size as the 

number of imputations increases. However as the percentage 

of missing observations increases, statistical power reduces 

drastically irrespective of the number of imputations.  

The study has shown that the number of missing observations, 

effect size, and the number of imputations have an impact 

when evaluating statistical power in a two-factor ANOVA 

design. 

 

CONCLUSION 

In this study, the investigation of Zha and Harel (2019) for 

computing statistical power in a two-sample t-test for 

incomplete data using MI has been extended to two-factor 

ANOVA with multiple sample means. 

Statistical power was investigated at 8%, 16%, and 40% 

levels of missingness; 0.2, 0.5, and 0.8 effect sizes and 20, 30, 

40, and 100 number of imputations, the findings reveal that 

all three factors have a positive impact on statistical power in 

a two-factor ANOVA design. 

Despite the benefits of multiple imputation in recovering 

some lost power when there are missing observations in a data 

set, significant declines in power are still noticeable at higher 

rates of missing data. It is worth noting that larger effect sizes 

demonstrate greater resilience against power reduction 

resulting from missing values. This underscores the 

importance of considering effect size alongside missing data 

when evaluating statistical power in a two-factor ANOVA 

design. 

A valuable insight into optimizing statistical power while 

dealing with missing data in two-factor designs has been 

discussed. It may be beneficial for future studies to expand 

this power analysis framework to encompass higher-order 

ANOVA models. 
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