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ABSTRACT 

The study at hand is to delve into the analytical solution for the unsteady flow of dusty Bingham fluid between 

two parallel Riga plates with radiation effect. The plates, which includes the upper Riga plate and lower Riga 

plates are assumed to be immovable hence stationary. The velocity of the fluid is assumed to be identical as 

that of the velocity of the particle (dusty fluid). The governing equations for the problem is been modeled as 

dimensionless non-homogeneous PDE (partial differential equation) with non-homogeneous boundary 

condition. The equations are then solved analytically with the method of Eigenfunction expansion. The impacts 

of numerous relevant parameters for the velocity and temperature field are scrutinized in details with the use 

of graphs. Furthermore, graphical explanations are provided on the factors of the friction and the influence of 

the above parameters on the pattern of the flow together with the shear stress and Nusselt number. Finally, 

both quantitative and qualitative comparisons are presented.  

 

Keywords: Riga plates, Bingham dusty fluid, Non-homogeneous partial differential equation,  

Analytical method, Radiation effect, Eigenfunction expansion 

 

INTRODUCTION 

Bingham fluid can be best described as a non-Newtonian 

viscoplastic fluid which exist as a yield strength that must be 

transcend on before a fluid flow will take place. Bingham 

fluid is tagged to Bingham (1916) who introduced its 

mathematical method. One of its best examples is toothpaste 

which cannot be easily ejected unless a certain force is exerted 

on its tube or a peanut butter that cannot be removed from its 

case unless with the help of spoon most times before it can be 

removed.  

Bingham fluid is being utilized in different fields such as 

mechanical and geological materials aerospace engineering, 

mechanical engineering and definitely chemical engineering. 

Also, in the drilling engineering as a mathematical basis of 

mud flow, slurries, cement, grease, chocolate are all example 

of Bingham fluid.  

Also, dusty fluids can exists in fields like fluidization, 

environmental pollution, polymer, gas cooling system, 

combustion, petroleum, polluted soil, polluted air, polluted 

water, agriculture, purifying of crude oil and systems of dye. 

Some studies related to heat transfer and heat flow of dusty 

fluids between parallel plates are extremely useful in 

improving the design and operation of many industrial and 

engineering devices.  

More so, a Riga plate consists of electrode and permanent 

magnets i.e. it is a production of electromagnetic plane 

surface which exhibits hydrodynamic behavior in the flow of 

fluid instead of polarity and magnetization surface. Gailities 

and Leilausis (1961) can be said to be the founder of Riga 

plates, in order to regulate the fluid’s flow the plates creates a 

wall paralleled Lorentz force. The electromagnetic actuator 

device designed by Gailities and Lielausis to control fluid 

flow consists of permanent magnets and a series of aligned 

span wise alternating electrode. The plate is designed for 

minimizing both the the pressure drag of submarines and 

friction.  

Prasannakumara et. al (2019) made an investigation in the 

presence of convective boundary condition on the flow 

problem of MHD viscous two phase dusty flow and heat 

transfer over a permeable stretching isothermal Riga plate 

embedded into a porous medium. The problem was solved 

numerically using Runge-Kutta-Fehlberg-45 arrange strategy 

and shooting procedure such that each of the non-dimensional 

amounts are exposed to view graphically for all parameters of 

the liquid as well as both Nusselt numbers and contact factor 

which are explained and shown with the aid of graphs. The 

equation that govern unsteady laminar heat transfer dusty 

fluid flow passing through two parallel Riga plates was solved 

using finite difference method by Islam and Nasrin (2020) and 

the effect with the behavior of the flow properties were 

analyzed.  

Again, Islam and Nasrin (2021) carried out a study on the 

Unsteady couette flow of laminar heat transferable dusty fluid 

flow passing through two parallel Riga plates and used the 

explicit finite difference method to solved the govern 

equations. In their study, they are able to show the sequel of 

necessary parameters on both the temperature and velocity 

distribution together with the Nusselts number and shear 

stress. The investigation of unsteady viscous incompressible 

Bingham fluid flow within a parallel plate is solved with 

explicit forward difference method. This is to explain the 

dimensionless non-linear coupled PDE (partial differential 

equations) involved by Muhammad et. al (2019) with the 

result obtained discussed and illustrated graphically.  

Mollah (2019) discussed the EMHD Laminar flow of 

Bingham fluid flow between two parallel Riga plates with the 

use of Forward difference method together with MATLAB 

code whereby the effect of many parameters on the flow 

pattern, Nusselts number and local shear stress is presented. 

Gunawan and Van de Ven (2022) derived an asymptotic 

steady solution while studying a one-dimensional non-steady 

pressure-driven flow of a Bingham fluid in a channel filled 

with a uniform high-porosity medium called Darcy-Brinkman 

medium. The comparison of the semi-analytical and 

Numerical method to solve the problem of MHD flow of a 

third grade fluid between two parallel plate with the use of 

regular perturbation method (RPM) and finite difference 

method (FDM) was discussed by Lawal et al. (2021) and they 

discovered that the FDM is more reliable and efficient than 

HPM from the computational viewpoint.  

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 8 No. 4, August, 2024, pp 25 - 32 

DOI: https://doi.org/10.33003/fjs-2024-0804-2612    

mailto:waheedlawal207@yahoo.com
https://doi.org/10.33003/fjs-2024-0804-


THE ANALYTICAL SOLUTION TO UNSTEADY…     Lawal et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 4, August, 2024, pp 25– 32 26 

In alignment with the aforementioned point, it is noted that 

most of the researcher have not been using analytical methods 

especially the Eigenfunction expansion method to solve 

equations involving Riga plates, Bingham fluid and dusty 

fluid. Our intention is to solve these equations involving the 

unsteady flow of dusty Bingham fluid between two parallel 

Riga plates with radiation effects by using method of 

Eigenfuction expansion. Therefore, the mathematical 

formulation is discussed below which in turn is solved 

analytically. The result obtained from the solution is 

discussed as shown graphically. 

 

MATERIALS AND METHODS 

Problem formulation 

 The fluid we considered here is called laminar, 

incompressible and non-Newtonian Bingham fluid which has 

an unsteady flow passing through infinite but two parallel 

Riga plates. The plates are fixed at 𝑦 = ±ℎ plane and has its 

length starting with 𝑥 = 0  to ∞ and from 𝑧 = 0 to ∞. We 

should know that �̃� and �̃� are the velocity components and 

they are zero throughout the plate. Also, for the dusty 

particles, �̃�𝑝  and �̃�𝑝  are zero throughout the plate. The 

equation of continuity reduces to zero at the fluid phase 
𝑑𝑢

𝑑𝑥
=

0 which implies �̃� =  �̃�(𝑦,̃ �̃�) and for the dust phase 
𝜕𝑢𝑝

𝜕𝑥
= 0 

implies �̃�𝑝 =  �̃�𝑝(𝑦,̃ �̃�). The upper and lower part of the Riga 

plates are taken to be stationary, also the uniform velocity 

outside the boundary is 𝑈𝑜. The Riga plates, upper part and 

lower part had their temperature taken at two different 

constants which are 𝑇1 and 𝑇2 respectively such that  𝑇2 > 𝑇1. 

The constant pressure gradient 
𝑑𝑝

𝑑𝑥
 acts on the Bingham fluid 

in the  𝑥 direction. Hence, the fluid velocity vector is given as 

�̃� = �̃�𝒊 + �̃�𝒋.  
 

 
Figure 1: Physical model of the system 

 

The Riga plate has it’s volume density of a Lorentz force to 

be given as 𝐹 = 𝐽 ∧ 𝐵, also by Ohm’s law, the current density 

is defined as 𝐽 = 𝜎(𝐸 + 𝑞 ∧ 𝐵). The Bingham fluid has a very 

poor conducting capacity (𝜎 =
106𝑆

m
 )  or smaller then the 

current density 𝜎(𝐸 + 𝑞 ∧ 𝐵)  in small. Therefore, the term 

𝜎(𝐸 + 𝑞 ∧ 𝐵) in the equation above will be dismissed. Hence, 

for finding the flow, the Lorentz force which is the external 

magnetic field is used along the X – axis which is denoted by: 

𝐹 = 𝐽 ∧ 𝐵 ≈ 𝜎(𝑞 ∧ 𝐵) ,𝐹 = 𝐹𝑒𝑥  is the density force which 

conform with Grinberg 
𝐹

𝜌
. It is an averaged force along Z – 

axis, which can be equally expressed as an exponential 

function of y i.e 𝐹 =
𝜋

8𝜌
𝐽0𝑀0 𝑒

−
𝜋

𝑎
𝑦

. In light of the 

aforementioned considerations, the system of the coupled 

non-linear PDEs governs the equation related to the flow of 

dusty Bingham fluid between two Riga plates with Radiation 

effects. The momentum and energy equations for both the 

clean fluid and dusty particles are furnished as follows:  
∂𝑢

∂𝑡
= −

1

𝜌

𝑑𝑝

𝑑𝑥
+
1

𝜌

∂

∂𝑦
(𝜇

∂𝑢

∂𝑦
) +

𝜋

8𝜌
𝐽0𝑀0ℓ

−
𝜋

𝑎
𝑦 −

1

𝜌
𝐾𝑁(�̃� − �̃�𝑝)

 (1) 

𝑀𝑝
∂𝑢𝑝

∂𝑡
= 𝐾𝑁(�̃� − �̃�𝑝)

 

  (2) 

∂�̃�

∂𝑡
=

𝑘

𝜌𝑐𝑝
(
∂2�̃�

∂𝑦2
) +

�̃�

𝜌𝑐𝑝
(
∂𝑢

∂𝑦
)
2
−

𝜌𝑝𝑐𝑠

𝜌𝑐𝑝𝛾𝑇
(�̃� − �̃�𝑝) +

1

𝜌𝑐𝑝

16𝛼*

3𝑘*
𝑇2
3 ∂

2�̃�

∂𝑦2
 (3) 

∂�̃�𝑝

∂𝑡
=

1

𝛾𝑇
(�̃� − �̃�𝑝)    (4) 

Obviously, the viscosity of the Bingham fluids is: 

𝜇 = 𝐾 +
𝜏0

(
∂�̃�

∂𝑦
)
    (5) 

Where the plastic viscosity of the Bingham fluid is denoted 

by K and 𝜏0 denotes the yield stress.  

Also, both the initial and boundary conditions corresponding 

to the equation (1) to (5) is written below: 

𝑡 ≤ 0, 𝑢 = 𝑢𝑝 = 0, 𝑇 = 𝑇𝑝 = 𝑇1
 
for all y ≥ 0 

𝑡 > 0 𝑢 = 𝑢𝑝 = 0, �̃� = 𝑇𝑝 = 𝑇1 at 𝑦 = −ℎ 

 

𝑢 = 𝑢𝑝 =
𝜋𝑣

𝑙
, �̃� = 𝑇𝑝 = 𝑇2 at 𝑦 = ℎ  (6) 

where, �̃�, 𝑣,̃ �̃�  are the clean fluid velocity components, 

�̃�𝑝, �̃�𝑝, �̃�𝑝  denotes the dusty particles components of the 

velocity, υ denotes the clean fluid’s kinematic viscosity  J = 

(𝐽𝑥, 𝐽𝑦𝐽𝑧) denotes the density of the current, B = (𝐵𝑥 , 𝐵𝑦𝐵𝑧) 

denotes the vector of the induced magnetic field, N denotes 

the number of dust particles per unit volume, K denotes the 

Stokes constant which equals 6πρυa, T denotes the fluid’s 

temperature, 𝑇𝑃  denotes the dust particle’s temperature, k 

denotes the fluid’s thermal conductivity, a denotes the dust 

particle’s average radius, 𝑚𝑝  denotes the dust particle’s 

average mass, 𝜌𝑝 denotes the material density or mass per unit 

volume i.e mv-1 of dust particles, 𝑐𝑝 denotes the specific heat 

capacity at constant pressure, 𝑐𝑠 denotes the particle’s specific 

heat capacity, 𝛾𝑇 is the temperature relaxation time which can 

be defined as: 𝛾𝑇 = 
𝜌𝑝𝐶𝑠
4𝑘𝜋𝑎𝑁

 or 
3𝜌𝑣𝜌𝑝𝐶𝑠
2𝑘𝐾𝑁

 .  

Introducing the following non-dimensional parameters,  

=
𝑥

𝑙
, 𝑦 =

�̃�

𝑙
, 𝑢 =

𝑢

𝑢0
, 𝑣 =

𝑣

𝑣0
, 𝑃 =

𝑝

𝜌𝑢0
2 , 𝜏 =

𝑡𝑢0

ℎ
, 𝜇 =

�̃�

𝑘
  

𝜃 =
�̃�−𝑇1

𝑇2−𝑇1
 where 𝑣0 =

𝜋𝑣

𝑎
, ℎ =

𝑢0𝐿
2

𝑣
, 𝐿 =

𝑎

𝜋
 (7) 

The equations (1) to (6) in non-dimensional form are: 
∂𝑢

∂𝜏
= 𝛼 +

1

𝑅𝑒

∂

∂𝑦
(𝜇

∂𝑢

∂𝑦
) + 𝐻𝑟ℓ

−𝑦 − 𝑅(𝑢 − 𝑢𝑝) (8) 

∂𝑢𝑝

∂𝜏
=
1

𝐺
(𝑢 − 𝑢𝑝)    (9) 

∂𝜃

∂𝜏
=

1

𝑃𝑟

∂2𝜃

∂𝑦2
+ 𝐸𝑐𝜇 (

∂𝑢

∂𝑦
)
2
+
4

3
𝑅𝐷

∂2𝜃

∂𝑦2
−
2𝑅

3𝑃𝑟
(𝜃 − 𝜃𝑝) (10) 

∂𝜃𝑃

∂𝜏
= 𝐿0(𝜃 − 𝜃𝑝)    (11) 
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𝜇 = 1 +
𝜏𝐷

(
∂𝑢

∂𝑦
)
    (12) 

𝜏 ≤ 0,    𝑢(𝑦, 0) = 𝑢𝑝(𝑦, 0) = 0,  𝜃(𝑦, 0) =

𝜃𝑝(𝑦, 0) = 0    

𝜏 > 0,    𝑢(−1, 𝜏) = 𝑢𝑝(−1, 𝜏) = 0, 𝑢(1, 𝜏) = 𝑢𝑝(1, 𝜏) = 0

     (13) 

 𝜃(−1, 𝜏) = 𝜃𝑝(−1, 𝜏) = 0 𝜃(1, 𝜏) = 𝜃𝑝(1, 𝜏) = 1 

where; 

𝛼 = −
𝐿2𝑃

𝜌𝑣2𝜋2
 is Pressure parameter, 𝑅𝑒 =

𝜌𝑣0𝑙

𝐾
 is Remolds 

number, 𝐻𝑟 =
𝛼2

8𝜌𝑢0𝑣𝜋
𝐽0𝑀0  is Modified Hartman number, 

𝑅 =
𝐾𝑁𝐿2

𝜌𝑣𝑢0
 is Fluid concentration parameter, 𝐺 =

ℎ𝐾𝑁

𝑚𝑝𝑢0
2  is 

Particle mass number, 𝑃𝑟 =
𝜌𝑐𝑝𝑢0𝐿

2

𝐾ℎ
 is Prandtl number, 𝐸𝑐 =

𝑢0𝐾ℎ

𝑝𝑐𝑝𝐿
2(𝑇2−𝑇1)

   is Eckert number, 𝑅𝐷 =
4𝜎*

𝑘𝑘*
𝑇2
3  is Radiation 

parameter, 𝜏𝐷 =
𝜏0ℎ

𝐾𝑢0
 is Bingham number or dimension yield 

stress, 𝐿0 =
𝐿2

𝑣𝜋2𝛾𝑇
 is the temperature relaxation time 

parameter.  

Theorem: If the functions ∝, 𝛽 𝑎𝑛𝑑 𝑓 are sufficiently smooth 

to ensure that 𝑢,
∂𝑢

∂𝑡
,
∂𝑢

∂𝑦
,
∂2𝑢

∂𝑦2
 are continuous in G and up to the 

boundary of G (𝑦, 𝑡)  including two corner point where 

G[(𝑦, 𝑡) : − 𝐿 < 𝑦 < 𝐿, 𝑡 > 0] then the equation above with 

it’s initial and boundary conditions has at most one solution.  

Proof: 

If the equation above has two solutions say 

𝑢1 𝑎𝑛𝑑 𝑢2 because of linearity we say 𝑢 = 𝑢1 − 𝑢2 is the 

solution of: 
∂𝑢

∂𝑡
=
1

𝜌
𝑘
∂2𝑢

∂𝑦2
    (14) 

Where 𝑡 > 0,    𝑢(−𝐿, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0 

𝑡 ≤ 0,    𝑢(𝑦, 0) = 𝑓(𝑦), −𝐿 < 𝑦 < 𝐿 (15) 

Multiply equation (14)  by 𝑢 and integrate over [−𝐿, 𝐿]  

0 = ∫ (𝑢
∂𝑢

∂𝑡
−
1

𝜌
𝑢𝑘

∂2𝑢

∂𝑦2
) 𝑑𝑦

𝐿

−𝐿
   (16) 

0 = ∫ (
1

2

∂

∂𝑡
(𝑢)2 +

1

𝜌
𝑘
∂

∂𝑦
(𝑢)2) 𝑑𝑦

𝐿

−𝐿
−
𝑘

𝜌
[𝑢

∂𝑢

∂𝑦
]
−𝐿

𝐿
  (17) 

Since   
𝑘

𝜌
[𝑢

∂𝑢

∂𝑦
]
−𝐿

𝐿
= 0   

0 = ∫ (
1

2

∂

∂𝑡
(𝑢)2 +

1

𝜌
𝑘
∂

∂𝑦
(𝑢)2) 𝑑𝑦

𝐿

−𝐿
  (18) 

1

2

∂

∂𝑡
∫ (𝑢)2𝑑𝑦
𝐿

−𝐿
= −

1

𝜌
𝑘 ∫ (

∂

∂𝑦
(𝑢)2)

𝐿

−𝐿
𝑑𝑦 ≤ 0 (19) 

Therefore, the function𝑤(𝑡) = ∫ 𝑢2(𝑦, 𝑡)𝑑𝑦
𝐿

−𝐿
, 0 < 𝑡 < 𝐴 is 

non-increasing. Since 𝑤(𝑡) ≤ 0  and 𝑤(0) = 0  (because of 

the initial condition satisfied by u), this is the only possible 

integrand in the direction of w above and the arbitraries of A 

> 0 , we then conclude that 𝑢 = 0 therefore, 𝑢1 = 𝑢2. 

 

Method of solution 

Let’s make the fluid’s velocity equals the particle’s velocity 

and temperature of the fluid the same as the particle (i.e. 𝑢 =
𝑢𝑝,    𝜃 = 𝜃𝑝 ). With this assumption, equation (8) to (13) 

becomes 
∂𝑢

∂𝜏
= 𝛼 +

1

𝑅𝑒

∂2𝑢

∂𝑦2
+𝐻𝑟ℓ

−𝑦   (20)  

∂𝜃

∂𝜏
= (

1

𝑃𝑟
+
4

3
𝑅𝐷)

∂2𝜃

∂𝑦2
+ 𝐸𝑐 ((

∂𝑢

∂𝑦
)
2
+ 𝜏𝐷 (

∂𝑢

∂𝑦
))  (21)  

𝜏 ≤ 0,  𝑢(𝑦, 0) = 0, 𝜃(𝑦, 0) = 0    

𝜏 > 0, 𝑢(−1, 𝜏) = 0, 𝑢(1, 𝜏) = 0 (22) 

𝜃(−1, 𝜏) = 0 𝜃(1, 𝜏) = 1   

Firstly to solve equation (20), we apply the method of 

Eigenfunction expansion and the procedures are as follows:  

Let 𝑞(𝑦, 𝜏) = 𝛼 + 𝐻𝑟ℓ
−𝑦  so that equation (20) becomes,  

∂𝑢

∂𝜏
=

1

𝑅𝑒

∂2𝑢

∂𝑦2
+ 𝑞(𝑦, 𝜏)   (23) 

which is non-homogeneous PDE with homogeneous initial 

and boundary conditions (22) 
∂𝑢

∂𝜏
=

1

𝑅𝑒

∂2𝑢

∂𝑦2
    (24) 

This is homogenous PDE and can be solve by using separation 

of variable method. The eigenvalues and eigenvectors of this 

corresponding homogeneous equation (24) are: 

𝜆𝑛 = (𝑛𝜋)
2, 𝑌𝑛(𝑦) = 𝑠𝑖𝑛 𝑛 𝜋𝑦, 𝑛 = 1,2,3, . .. (25) 

Since [𝑌𝑛]𝑛=1
∞  is a complete set, we considered the solution of 

the form 

𝑢(𝑦, 𝜏) = ∑ 𝐶𝑛(𝜏)𝑌𝑛(𝑦)
∞
𝑛−1    (26)  

Substituting equation (26) into equation (23) gives     

∑ [𝐶𝑛
' (𝜏) +

1

𝑅𝑒
𝜆𝑛𝐶𝑛(𝜏)]

∞
𝑛−1 𝑌𝑛(𝑦) = 𝑞(𝑦, 𝜏) (27) 

Multiplying equation (27) by 𝑌𝑚(𝑦), integrating from -1 to 1 

and consider the orthogonality of 𝑌𝑛(𝑦) to obtain 

[𝐶𝑚
' (𝜏) + 𝑘𝜆𝑚𝐶𝑚(𝜏)] ∫ 𝑌𝑚

2(𝑦)𝑑𝑦 =
1

−1 ∫ 𝑞(𝑦, 𝜏)𝑌𝑚(𝑦)𝑑𝑦
1

−1
 

     (28) 

Replacing m by n in equation (28) to yield 

[𝐶𝑛
' (𝜏) +

1

𝑅𝑒
𝜆𝑛𝐶𝑛(𝜏)] =

∫ 𝑞(𝑦,𝜏)𝑌𝑛(𝑦)𝑑𝑦
1

−1

∫ 𝑌𝑛
2(𝑦)𝑑𝑦

1

−1

 𝜏 > 0, 𝑛 = 1,2,3, . .. 

      (29) 

The boundary conditions are automatically satisfied since 

each of the 𝑌𝑛 in equation (26) satisfies them,  

From equation (26) and the initial condition in (22), we realize 

that,  

𝑢(𝑦, 0) = 0 = ∑ 𝐶𝑛(0)𝑌𝑛(𝑦)
∞
𝑛−1   (30) 

  the initial condition  becomes 

[𝐶𝑛(0)] =
∫ 0.𝑌𝑛(𝑦)𝑑𝑦
1

−1

∫ 𝑌𝑛
2(𝑦)𝑑𝑦

1

−1

 , 𝑛 = 1,2,3, . .. (31) 

Clearly, 𝑞(𝑦, 𝜏) = ∑ 𝑞𝑛(𝜏)𝑌𝑛(𝑦)
∞
𝑛−1 ,  0 = ∑ 𝑓𝑛𝑌𝑛(𝑦)

∞
𝑛−1 ,  

     (32) 

where the 𝑞𝑛(𝜏) 𝑎𝑛𝑑 𝑓𝑛  are given by equation (29) and  (31) 

respectively.  

𝐶𝑛
' (𝜏) +

1

𝑅𝑒
(𝑛𝜋)2𝐶𝑛(𝜏) = 𝑞𝑛(𝜏) =

2

𝐿
∫ 𝑞𝑛 𝑠𝑖𝑛 𝑛 𝜋𝑦𝑑𝑦
1

−1
 

     (33) 

Solving equation (33) with initial condition we get (34) 

𝐶𝑛(0) = 𝑓𝑛 = 2∫ (0) 𝑠𝑖𝑛 𝑛 𝜋𝑦𝑑𝑦
1

−1
= 0  (34) 

Solving equation (33) normally we get,  

𝐶𝑛(𝜏) =

2ℓ
−
𝑛2𝜋2𝜏
𝑅𝑒 𝑅𝑒𝐻𝑟

𝑛2𝜋2(𝑛2𝜋2+1)

(

 
 
(
𝑐𝑜𝑠(𝑛𝜋) ℓ2𝑛𝜋 − 𝑛 𝑐𝑜𝑠(𝑛𝜋) 𝜋
− 𝑠𝑖𝑛(𝑛𝜋) − 𝑠𝑖𝑛(𝑛𝜋)

) ℓ
𝑛2𝜋2𝜏−𝑅𝑒

𝑅𝑒

−(
𝑐𝑜𝑠(𝑛𝜋) ℓ2𝑛𝜋 − 𝑛 𝑐𝑜𝑠(𝑛𝜋) 𝜋

−𝑠𝑖𝑛(𝑛𝜋) ℓ2 − 𝑠𝑖𝑛(𝑛𝜋) ℓ−1
)

)

 
 

 

     (35)  

Therefore equation (26) becomes  
𝑢(𝑦, 𝜏) =

∑ (
2ℓ
−
𝑛2𝜋2𝜏
𝑅𝑒 𝑅𝑒𝐻𝑟

𝑛2𝜋2(𝑛2𝜋2+1)
(((−1)

𝑛ℓ2𝑛𝜋 − 𝑛(−1)𝑛𝜋)ℓ
𝑛2𝜋2𝜏−𝑅𝑒

𝑅𝑒

−((−1)𝑛ℓ2𝑛𝜋 − 𝑛(−1)𝑛𝜋)ℓ−1
))∞

𝑛=1 𝑠𝑖𝑛 𝑛 𝜋𝑦

     (36) 

which gives the general solution of equation (20) with 

corresponding initial and boundary condition in (22). 

To solve non-homogeneous energy equation (21) with 

corresponding initial and non-homogeneous boundary 

condition in (22). We substitute equation (36) at n = 1 into 

equation (21) and assume a solution of the form: 

𝜃(𝑦, 𝜏) = 𝑣(𝑦, 𝜏) + 𝑤(𝑦, 𝜏)   (37) 

Also, let 𝑤(𝑦, 𝜏) =  𝑎1(𝜏) + 𝑎2(𝜏)𝑦  is a linear polynomial 

that satisfy the boundary condition in (22). 

Because of this,  

𝑤(𝑦, 𝜏) =
1

2
+
1

2
𝑦    (38) 
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Which made equation (37) to become 

𝜃(𝑦, 𝜏) = 𝑣(𝑦, 𝜏) +
1

2
+
1

2
𝑦   (39)  

Substituting equation (39) into equation (21) to gives 
∂𝑣

∂𝜏
= 𝑃

∂2𝑣

∂𝑦2
+ 𝑞𝑇(𝑦, 𝜏)   (40)  

By initial and boundary conditions in (22) becomes 

𝑣(𝑦, 0) = −
1

2
−
1

2
𝑦, 𝑣(−1, 𝜏) = 0, 𝑣(1, 𝜏) = 0 (41) 

With the above procedure, it is noted that the non-

homogenous boundary condition has turned to homogenous 

boundary condition.  

Therefore, equation (40) with (41) are solve with method of 

eigenfunction expansion to arrives at; 

𝑣(𝑦, 𝑡) = ∑
2((−1)𝑛)𝑒−𝑃𝑛

2𝜋2𝜏 𝑠𝑖𝑛(𝑛𝜋𝑦)

𝑛𝜋
∞
𝑛−1    (42) 

Putting equation (42) into equation (39) to obtain 

Then, 𝜃 =
1

2
+
1

2
𝑦 + ∑

2((−1)𝑛)𝑒−𝑃𝑛
2𝜋2𝜏 𝑠𝑖𝑛(𝑛𝜋𝑦)

𝑛𝜋
∞
𝑛−1  

     (43) 

 

Shear stress and Nusselt number 

According to the investigation of the study, the velocity of the 

clean particle is the same as the velocity of the dusty particle, 

so the shear stress of the fluid will only be investigated 

without the shear stress of the dusty particle. Also, the shear 

stress of both upper velocity profile and lower velocity profile 

is the same we are to just calculate one of it. Therefore, the 

local shear stress of the fluid at the lower plate is then given 

as the relation 𝜏𝐿 = 𝜇 (
𝜕𝑈

𝜕𝑌
)
𝑌=−1

. Furthermore, since the 

fluid’s temperature is the same as the particle’s temperature, 

also, the Nusselt number at both upper and lower temperature 

profile are the same, we therefore investigate the Local 

Nusselt number of the fluid and the shear stress at lower plate. 

The dimension is also given as the relation 𝑁𝑢𝐿 =

−𝜇 (
𝜕𝜃

𝜕𝑌
)
𝑌=−1

. 

 

Validation of results for Local shear stress and Local 

Nusselts number 

The table below shows the impact of different variables on 

Local shear stress and Local Nusselts number at the lower 

Riga plate. 𝛼 = −2,𝑅𝐷 = 0.05, 𝜏𝐷 = 0.001, 𝐸𝐶 = 0.01, 𝜏 =
0.5    

 

Table 1: Impact of different variables on Local shear stress and Local Nusselts number at the lower Riga plate 

Effect of parameters Profiles 

𝑯𝒓 𝑷𝒓 𝝁 𝑹𝒆 𝝉𝑳 𝑵𝒖𝑳 

1 2.5 0.1 2 0.139815 -0.070014 

2 2.5 0.1 2 0.279631 -0.070014 

3 2.5 0.1 2 0.419446 -0.070014 

4 2.5 0.1 2 0.559262 -0.070014 

      

2 1.5 0.1 2 0.279631 -0.055363 

2 2.5 0.1 2 0.279631 -0.070014 

2 5.0 0.1 2 0.279631 -0.104681 

2 7.5 0.1 2 0.279631 -0.128429 

      

2 2.5 0.1 2 0.279631 -0.070014 

2 2.5 0.2 2 0.559262 -0.140027 

2 2.5 0.3 2 0.838892 -0.210041 

2 2.5 0.4 2 1.118523 -0.280054 

      

2 2.5 0.1 1 0.146529 -0.070014 

2 2.5 0.1 2 0.279631 -0.070014 

2 2.5 0.1 5 0.572325 -0.070014 

2 2.5 0.1 10 0.909952 -0.070014 

 

RESULTS AND DISCUSSION 

Due to the developed mathematical model, in order to 

investigate the physical characteristics of the unsteady-state 

of the fluid, using the method of Eigenfunction expansion, 

analytical solution has been established after the primary 

velocity and the temperature field between the equation’s 

boundary layer. The influences of different parameter are 

being considered to validate our solution. Examples of such 

parameters are Bingham number(𝜏𝐷), Prandtl number (𝑃𝑟), 
Eckert number (𝐸𝑐) , Reynolds number (𝑅𝑒) , Radiation 

number (𝑅𝐷) and Modified Hartman number (𝐻𝑟).  
 Reynolds number is a dimensionless quantity which is used 

to ascertain the flow pattern as either laminar flow or turbulent 

flow while flowing through a region. In figure 2 increase in 

Reynolds number increases the velocity of the flow at the 

lower plate but decreases the flow towards the upper plate. 

This is due to the fact that the higher the Reynolds number 

results in the sluggishness of viscous forces which is the force 

that is known to oppose the motion of the fluid. Also, when 

the Reynolds number is reducing, it will happen that the 

influence of the viscous forces will surpass the inertial forces, 

hence it causes the fluid to be sluggish while reducing the 

velocity of the flow. Also the higher the Reynolds number 

causes the primary velocity profile to increase. Despite the 

fluid being unsteady and considering the range at which it is 

moving between the two Riga plates, the flow still moves in 

an increasing manner.  
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Figure 2: Effects of various values of 𝑅𝑒on the velocity profile when 𝛼 = −2,𝐻𝑟 = 1.0, 

𝑃𝑟 = 2.5, 𝑅𝐷 = 0.05, 𝜏𝐷 = 0.001, 𝐸𝑐 = 0.01, 𝜏 = 0.5 

 

In Figure 3, it has been seen that a higher Reynolds number 

causes the temperature profile to rise. An increase in velocity 

causes more fluid particles to collide, which causes heat to 

dissolve in the boundary layer region hence raises the 

temperature as a result. Reynolds number is a measure of the 

ratio of the inertial forces to the viscosity forces; therefore, an 

increase in Reynolds number causes the viscous force to 

decrease. Viscous forces, which are known to oppose the 

fluid’s motion in turn leads to the increase in both velocity 

and temperature.  

 
Figure 3: Effects of various values of 𝑅𝑒 on the temperature profile when 𝛼 =
−2,  𝐻𝑟 = 1.0, 𝑃𝑟 = 2.5, 𝑅𝐷 = 0.05, 𝜏𝐷 = 0.001, 𝐸𝑐 = 0.01, 𝜏 = 0.5 

 

In figure 4, it has been seen that a higher Prandtl number 

causes the temperature profile to rise at the two plates, this is 

because the Prandtl number’s intrinsic feature of the fluid is 

due to the fact that it is a dimensionless quantity. It correlates 

a fluid’s viscosity with it’s thermal conductivity. Therefore, 

the link between the momentum and thermal conductivity can 

be accessed by it. Free-flowing liquids that has it’s thermal 

conductivity to be high are those with a low Prandtl number. 

The ratio of viscous diffusion rate to thermal diffusion is 

known as Prandtl number. A rise in Prandtl number indicates 

that the thermal diffusivity of the fluid will decrease causing 

the fluid to expand and ha it’s molecule to separate with rise 

in temperature. Since it is an unsteady case, the fluid tends to 

change slightly, yet increasing with time.  
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Figure 4: Effects of various values of 𝑃𝑟 on the temperature profile when 

𝛼 = −2,𝐻𝑟 = 1.0, 𝑅𝐷 = 0.05, 𝜏𝐷 = 0.001, 𝐸𝑐 = 0.01, 𝜏 = 0.5, 𝑅𝑒 = 2 

 

In figure 5, it is seen that the fluid converges slowly to its 

starting point with the increase in Hartman number but the rise 

in Hartman number causes velocity profile at the lower plate 

to rise but decrease in temperature at the upper plate. Yet, at 

the upper plate, Hartman layers are formed at the interface 

with different electrical properties in the presence of magnetic 

fields. It is actually the ratio of electromagnetic force to that 

of the viscous force. In a Hartman layer of thickness, the 

Lorentz forces are in balance with the viscous forces.  

 

 
Figure 5: Effects of various values of 𝐻𝑟 on the velocity profile when 𝛼 = −2,𝑃𝑟 =
2.5, 𝑅𝐷 = 0.05, 𝜏𝐷 = 0.001,𝐸𝑐 = 0.01, 𝜏 = 0.5, 𝑅𝑒 = 2 

 

In figure 6 below, we see that the fluid converges with no 

Hartman number, Hartman number is the ratio of 

electromagnetic force to that of the viscous force, it occur 

mostly in fluid flow through magnetic fields. It is observed 

that the surface temperature induces surface flow and the 

temperature converges to an insignificant effect but it makes 

the viscosity of the fluid increases as the Hartman number 

increases with temperature.  
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Figure 6: Effects of various values of 𝐻𝑟 on the temperature profile when 𝛼 =
−2,𝑃𝑟 = 2.5, 𝑅𝐷 = 0.05, 𝜏𝐷 = 0.001, 𝐸𝑐 = 0.01, 𝜏 = 0.5, 𝑅𝑒 = 2 

 

In figure 7, it is observed that the Radiation parameter exists 

in the equation of the temperature profile. It defines relatively 

the contribution of conduction heat transfer to thermal heat 

transfer. It is noted that the temperature rises as the Radiation 

parameter rise.  

 

 
Figure 7: Effects of various values of 𝑅𝐷 on the temperature profile when 

𝛼 = −2,𝐻𝑟 = 2.0, 𝑃𝑟 = 2.5, 𝜏𝐷 = 0.001,𝐸𝑐 = 0.01, 𝜏 = 0.5, 𝑅𝑒 = 2 
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CONCLUSION 

In this study, the analytical solution of unsteady flow of dusty 

Bingham fluid between two parallel riga plate with radiation 

effect has been established by using the Eigenfunction 

expansion method. The results were discussed graphically on 

the velocity and temperature of the fluid, noting that the 

velocity of the clean fluid is same as the velocity of the dusty 

fluid and it is same as their temperature.  

The important discoveries on the investigation in this study 

are as follows: 

i. Reynolds number: A rise in Reynolds number leads to 

the rise of both velocity profile and temperature profile.  

ii. Prandtl number: As prandtl number has no visible effect 

on velocity, we saw that the rise in Prandtl number 

causes the temperature to rise.  

iii. Hartman number: The rise in Hartman number causes 

both velocity as well as the temperature to rise.  

iv. Radiation parameter: The increase in Radiation effect 

has a more effect on the temperature as it deals more 

with heat transfer and thermal conduction. It exists only 

in the temperature equation so it has no effect in the 

velocity profile.  

Note: The wake-like diagram of the graph is due to the 

boundary condition i.e from negative to positive. The 

increased flow at the negative part is the decreased flow at the 

positive part.  
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