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ABSTRACT 

Probability distributions play a pivotal role in data analysis, providing insights into the likelihood of outcomes 

and forming the basis for statistical inference. This article explores the significance and application of various 

continuous probability distributions through a comprehensive comparative analysis. Using real-life data on 

maximum flood levels, we evaluate the efficacy of selected distributions including the Normal, Standard 

Normal, Cauchy, Chi-Square, and T distributions. Model selection criteria such as the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), and Schwarz Information Criterion (SIC) are employed 

to assess goodness of fit and predictive capabilities. The comparative analysis reveals insights into model 

selection efficiency, with AIC emerging as a top performer across distributions. Notably, the Chi-Square 

distribution demonstrates superior performance, highlighting its potential in diverse applications. In 

conclusion, , it's evident that AIC outshines both SIC and BIC across all distributions analyzed in this study, 

also, the paper underscores the importance of selecting appropriate distributions, providing valuable insights 

for statistical modeling and decision-making processes across disciplines.  
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INTRODUCTION 

Statistical distributions serve as the backbone of data analysis, 

providing invaluable insights into the spread of values across 

datasets and enabling informed predictions. These 

distributions are fundamental in understanding probability 

patterns, central tendencies, and variability across various 

events or observations. They play a pivotal role in decision-

making processes across fields, offering mathematical tools to 

gauge the likelihood of outcomes and model complex 

systems. 

The historical evolution of statistical theory has been marked 

by the contributions of luminaries such as Abraham De 

Moivre, Daniel Bernoulli, and Carl Friedrich Gauss. These 

pioneers refined the theory of probability and introduced 

innovative probability distributions to model a wide range of 

random phenomena. Gauss's introduction of the normal 

distribution in the early 1800s was a significant milestone, 

laying the groundwork for its extensive applications across 

diverse fields. The Poisson distribution, named after the 

French mathematician Siméon Denis Poisson, emerged in the 

19th century as a powerful tool for modeling the count of 

events occurring within a fixed period of time or space. 

Similarly, the binomial distribution, initially explored by 

Swiss mathematician Jakob Bernoulli, found applications in 

various domains, including psychology and medicine. In the 

20th century, pivotal probability distributions like the 

exponential and gamma distributions emerged, further 

enriching the statistical toolkit. These distributions play 

crucial roles in modeling time intervals between events and 

cumulative sums of independent exponential random 

variables, respectively.  

Probability distributions are fundamental in data analysis, 

providing mathematical insights into probability patterns and 

aiding in statistical inference. This article delves into the 

comparative analysis of continuous probability distributions, 

focusing on their role in modeling real-world phenomena. By 

evaluating selected distributions against real-life data, this 

study investigates the significance and application of 

continuous probability distributions, focusing on their role in 

statistical modeling and decision-making processes across 

diverse disciplines. However, the selection of an appropriate 

probability distribution remains a critical challenge, 

especially considering factors such as data characteristics, 

distributional assumptions, and practical relevance. To 

address this challenge, this work aims to compare selected 

continuous probability distributions, including the Normal, 

Standard Normal, Cauchy, Chi-Square, and T-distributions, 

across various criteria such as goodness of fit, parameter 

estimation accuracy, and predictive capabilities. 

 

Literature Review  

Abouammoh and Alshingiti (2009) showcased the versatility 

of the generalized inverted exponential distribution in 

capturing diverse failure rate shapes and aging criteria. Their 

work highlighted the advantages of this two-parameter 

generalization, providing insights into its statistical properties 

and dependability characteristics through methods like 

maximum likelihood and least squares estimation. Similarly, 

across various research domains, numerous innovative 

distribution families have been explored, each offering unique 

applications. Gupta et al. (1998) laid the foundation for the E-

G class, which has since found wide-ranging utility. Eugene 

et al. (2002) introduced the beta-G family, while Marshall and 

Olkin (1997) pioneered the Marshall-Olkin-G family. 

Zografos and Balakrishnan (2009) contributed to the 

development of the Gamma G distribution, and Cordeiro et al. 

(2010) made significant strides with the Kumaraswamy 

Weibull G family. Ristic and Balakrishnan (2011) presented 

the alternative Gamma G distribution, expanding the options 

for distribution modeling. Cordeiro and Castro (2011) 

introduced the Kumaraswamy G family, offering another 

avenue for statistical analysis. Additionally, Cordeiro et al. 

(2012) proposed the Kummer beta generalized family, adding 

further diversity to distribution choices. 

Alzaatreh et al. (2013) advanced methods for generating 

continuous distribution families, highlighting the ongoing 

innovation in this field. Alzaghal et al. (2013) introduced the 

T-X factor family, contributing to the expanding repertoire of 
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distribution options. Silva et al. (2014) presented the Weibull-

G family, while Cordeiro et al. (2014a) contributed to the 

Semi-logistic family, each offering distinct advantages in 

various statistical contexts. Torabi and Montazari (2014) 

explored the Lomax Generator and other distributions within 

the Lomax family, broadening the range of available models. 

Cordeiro et al. (2015) developed the Type I semi-logistic 

family, and Lizadeh et al. (2016) introduced the Beta 

Marshall-Olkin family, further enriching the landscape of 

distribution families. 

Continuing this trend, Ahmad et al. (2016) established the 

Weibull-G family, while Ibrahim et al. (2020b) proposed the 

Topp Leone Kumaraswamy-G distribution family, both 

contributing to the ever-expanding array of distribution 

families for diverse statistical applications. Theoretical and 

empirical reviews highlight the significance of continuous 

probability distributions in various fields. From the Normal 

and Cauchy distributions to innovative families like the Beta 

Marshall-Olkin and Weibull-G, researchers have explored 

diverse distribution families to model complex phenomena 

effectively. Theoretical frameworks and practical 

applications underscore the importance of understanding and 

comparing these distributions for statistical inference and 

decision-making. 

 

MATERIALS AND METHODS 

The research methodology involves the exploration of five 

distinct continuous probability distributions using real-life 

data on maximum flood levels. Model selection criteria such 

as AIC, BIC, and SIC are employed to assess goodness of fit 

and model complexity. The selected distributions include the 

Normal, Cauchy, Chi-Square, Standard Normal, and T 

distributions, each evaluated based on their performance in 

modeling the dataset. The probability density function of the 

distributions and the selection criterions are as given: 

 

The Selected Continuous Probability Distribution 

Normal distribution 

Gauss (1809) proposed normal distribution. The probability 

density function (PDF) of the normal distribution, also known 

as the Gaussian distribution, is given by: 

𝑓(𝑥|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2            (1) 

Where: 

𝑥 is the random variable. 

𝜇 (mu) is the mean of the distribution. 

(𝜎2). (Sigma squared) is the variance of the distribution. 

The parameters involved in the normal distribution are the 

mean (𝜇) and the variance (𝜎2). The standard deviation (𝜎)is 

often used instead of the variance, and it's simply the square 

root of the variance. The normal distribution is symmetric and 

bell-shaped, with the peak centered at the mean (𝜇 ). The 

spread of the distribution is determined by the standard 

deviation(𝜎).  The normal distribution is characterized by its 

property that about 68% of the data falls within one standard 

deviation of the mean, about 95% within two standard 

deviations, and about 99.7% within three standard deviations. 

 

Standard Normal Distribution 

The probability density function (PDF) of the Standard 

Normal Distribution, denoted as N(0,1), is given by: 

𝑓(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2           (2) 

Where: 

𝑥  is the random variable.  

2𝜋 is a constant that ensures the total area under the curve 

equals 1. 

𝑒 is the base of the natural logarithm (approximately equal to 

2.71828). 

  
1

√2𝜋
  is a normalization factor. 

𝑒−
𝑥2

2   is the exponential term which defines the bell-shaped 

curve around the mean of 0. 

 

Chi-Square Distribution 

Chi-square distribution was developed by Pearson in 1900. 

The probability density function (PDF) of the Chi-Square 

distribution with k degrees of freedom is given by: 

𝑓(𝑥; 𝑘) =
1

2
𝑘
2

Γ(
𝑘
2

)
𝑥

𝑘

2
−1𝑒−

𝑥

2        (3) 

Where: 

𝑥  is the random variable. 

𝑘  is the degrees of freedom parameter. 

𝛤(⋅) denotes the gamma function. 

Γ
𝑘

2
 is the gamma function evaluated at 

𝑘

2
 

𝑒 is the base of the natural logarithm (approximately equal to 

2.71828). 

In this distribution: 

The degrees of freedom (k) parameter defines the shape of the 

distribution. 

As k increases, the Chi-Square distribution approaches a 

normal distribution. 

The mean (μ) of the Chi-Square distribution is k. 

The variance (𝜎²) 𝑖𝑠 2𝑘. 
The Chi-Square distribution is commonly used in hypothesis 

testing, particularly in tests involving variances or standard 

deviations. It arises in various statistical tests such as the chi-

square test for independence, chi-square test for goodness of 

fit, and in the construction of confidence intervals for the 

variance of a normally distributed population. 

 

Cauchy Distribution 

The Cauchy distribution was named after the French 

mathematician Augustin-Louis Cauchy. The probability 

density function (PDF) of the Cauchy distribution is given by: 

𝑓(𝑥|𝑥0, 𝛾) =
1

𝜋𝛾[1+(
𝑥−𝑥0

𝛾
)

2
]
,    (4) 

where: 

𝑥0 is the location parameter (also known as the median of the 

distribution), 

𝛾 is the scale parameter (also known as the half-width at half-

maximum). 

This distribution has no mean or variance, but it does have a 

well-defined median at 𝑥0 

 

T- Distribution 

Student-t distribution was first derived by Helmert in 1876. 

However, it was popularized by William Sealy Gosset in 

1908. The probability density function (PDF) of the t-

distribution, also known as the Student's t-distribution, is a 

probability distribution that arises from the estimation of the 

mean of a normally distributed population when the sample 

size is small and the population standard deviation is 

unknown. The PDF of the t-distribution is given by: 

𝑓(𝑥|𝑣) =
Γ((𝑣+1)/2)

√𝑣𝜋Γ(𝑣/2)
(1 +

𝑥2

𝑣
)

−(𝑣+1)/2

      (5) 

Where: 

𝑥 is the random variable. 

𝜈 (𝑛𝑢) is the degrees of freedom parameter, which represents 

the sample size minus 1. 

𝛤(⋅) is the gamma function. 

The t-distribution is symmetric and bell-shaped, resembling 

the standard normal distribution, but with heavier tails. As the 
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degrees of freedom (𝜈) increase, the t-distribution approaches 

the standard normal distribution. The degrees of freedom 

parameter (𝜈) determines the shape of the t-distribution. For 

small values of 𝜈 , the t-distribution has more spread and 

thicker tails compared to the normal distribution. As 

𝜈 increases, the t-distribution approaches the normal 

distribution in shape. 

 

The Model Selection Criteria’s 

Akaike Information Criterion (AIC) 

𝐴𝐼𝐶 = −2𝑙𝑛(𝐿) + 2𝑘         (6) 

Where:   

L is the maximized value of the likelihood function of the 

model. 

k is the number of estimated parameters in the model. 

AIC is used for model selection, where lower values indicate 

a better fit while penalizing models with more parameters. 

 

Bayesian Information Criterion (BIC) 

𝐵𝐼𝐶=−2𝑙𝑛(𝐿) + 𝑘𝑙𝑛(𝑛)         (7) 

Where: 

𝐿 is the maximized value of the likelihood function of the 

model. 

𝑘 is the number of estimated parameters in the model. 

𝑛 is the sample size. 

BIC also penalizes model complexity, but more severely than 

AIC, by including a penalty term that depends on the sample 

size. 

 

Schwarz Information Criterion (SIC) 

𝑆𝐼𝐶 = 𝑙𝑛(𝑛)𝑘 − 2𝑙𝑛(𝐿)        (8) 

Where: 

𝐿 is the maximized value of the likelihood function of the 

model. 

𝑘 is the number of estimated parameters in the model. 

𝑛 is the sample size. 

Like AIC and BIC, SIC is used for model selection. It's similar 

to BIC but with a different penalty term. 

These criteria are often used in statistical model selection to 

balance goodness-of-fit with model complexity, helping to 

prevent overfitting. 

 

RESULTS AND DISCUSSION 

Data Analysis and Results 

This dataset comprises 20 observations documenting 

maximum flood levels. It's aimed at assessing the practical 

application of the five distribution under study. Sourced from 

Dumonceaux and Antle (2012), the dataset values are: 0.654, 

0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235, 

0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 

and 0.265. 

The analysis was carried out using R- statistical package. 

 

 
Figure 1: Fitted pdf for the Normal Distribution based on the data set for this study. 

 

Figure 1 illustrates the conformity, suitability, and alignment with the dataset under investigation. The probability distribution 

closely matches the characteristics of the dataset, indicating a strong fit. 
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Figure 2: Fitted pdf for the Cauchy Distribution based on the data set for this study 

 

Figure 2 illustrates the conformity, suitability, and alignment with the dataset under investigation. The probability distribution 

closely matches the characteristics of the dataset, indicating a strong fit. 

 

 
Figure 3: Fitted pdf for the Chi-Square Distribution based on the data set for this study 

 

Figure 3 illustrates the conformity, suitability, and alignment with the dataset under investigation. The probability distribution 

closely matches the characteristics of the dataset, indicating a strong fit. 

 

Cauchy Distribution

data

D
e

n
s
it
y

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

4

Chi-Square Distribution

data

D
e

n
s
it
y

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

4



COMPARATIVE ANALYSIS OF CONTIN…      Shobanke et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 4, August, 2024, pp 130– 135 134 

 
Figure 4: Fitted pdf for the Standard Normal Distribution based on the data set for this study 

 

Figure 4 illustrates the conformity, suitability, and alignment with the dataset under investigation. The probability distribution 

closely matches the characteristics of the dataset, indicating a strong fit. 

 

Table 1: Comparison of the Estimate of the selection Distributions under Study 

 AIC SIC BIC 

Normal Distribution -24.97489 -4.207901 -4.285386 

Standard Normal Distribution -26.9748 -26.03045 -26.03045 

Chi-Square Distribution -27.19781 28.14225 28.14225 

T- Distribution -26.9748 -20.14157 -20.14157 

Cauchy Distribution -25.42638 -23.5375 -23.5375 

 

In Table 1, it's evident that AIC outshines both SIC and BIC 

across all distributions analyzed in this study, consistently 

displaying the lowest values. Notably, the Chi-Square 

distribution emerges as the top performer, boasting the lowest 

AIC value of -27.1978 among the distributions examined. 

Following closely are the Standard Normal and T 

distributions, each sharing an AIC value of -26.9748, 

indicating strong performance. Conversely, the Normal 

distribution lags behind, demonstrating comparatively higher 

AIC values across the board. This underscores the Normal 

distribution's lesser efficiency relative to the other 

distributions in this study. Notably, it's worth highlighting that 

the efficiency of the Normal distribution tends to improve 

with larger sample sizes. 

 

Discussion of Findings  

The study analyzes a dataset comprising 20 observations of 

maximum flood levels. Each distribution is fitted to the data, 

and model selection criteria are applied to evaluate their 

performance. Results indicate that the Chi-Square distribution 

exhibits the lowest AIC value, suggesting superior fit among 

the distributions studied. The Standard Normal and T 

distributions also perform well, while the Cauchy distribution 

shows comparable efficiency. However, the Normal 

distribution lags behind in terms of model selection criteria. 

Model selection criteria consistently demonstrate the efficacy 

of AIC in evaluating goodness of fit and model complexity. 

Visualizations of fitted probability distributions illustrate 

their alignment with the dataset, highlighting their suitability 

for modeling real-world phenomena. 

 

CONCLUSION  

In conclusion, the comparative analysis of continuous 

probability distributions offers valuable insights into their 

suitability and performance in modeling real-world 

phenomena. By employing rigorous model selection criteria 

and analyzing real-life data, this study contributes to 

enhanced statistical modeling and decision-making processes 

across diverse disciplines. Understanding the strengths and 

limitations of each distribution enables practitioners to make 

informed decisions and improve predictive accuracy in 

complex systems. The findings indicate that the Chi-Square 

distribution exhibits the lowest AIC value, suggesting 

superior fit among the distributions studied. The Standard 

Normal and T distributions also perform well, while the 

Cauchy distribution shows comparable efficiency. However, 

the Normal distribution lags behind in terms of model 

selection criteria. 
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