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ABSTRACT 

In this paper, formulation of an efficient numerical schemes for the approximation first-order initial value 

problems (IVPs) of ordinary differential equations (ODE) is presented. The method is a block scheme for 

some k-step linear multi-step methods ( 1,2k  and 3 ) using the Hermite Polynomials a basis function. The 

continuous and discrete linear multi-step methods (LMM) are formulated through the technique of 

collocation and interpolation. Numerical examples of ODE have been examined and results obtained show 

that the proposed scheme can be efficient in solving initial value problems of first order ODE. 
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INTRODUCTION 
Numerous problems in Sciences and Engineering are modelled 

using ordinary differential equations (ODEs). Most of these 

differential equations do not have analytical solutions which 

makes numerical methods an option for solving these 

problems. There are two major discrete variable methods for 

approximating the solutions of ODEs, namely, one step and 

linear multi-step methods. 

In this paper, we proposed an efficient numerical scheme to 

solve numerically first order IVPs. The proposed method is a 

block scheme for some k-step linear multistep methods (for

1,2k   and 3 ) using Hermite polynomial as the basis 

functions. Also, we give the discrete methods used in block and 

implement it for solving some existing IVPs in the literature. In 

this paper, we consider the general form of the first order initial 

value problems.  

0 0( ) ( , ( ), ( )y x f x y x y x y                             (1) 

Many researchers had developed interest on improving the 

numerical solution of initial value problems (IVPs) of ordinary 

differential equation. Consequently, the development of a class 

of methods called block methods is one of the outcomes.  

Okunuga and Ehigie (2009) derived two-step continuous and 

discrete linear multistep methods using power series as a basis 

function. Akinfenwa et al. (2011) developed a four step 

continuous block hybrid method with four non-step points for 

the direct solution of first order initial value problem. Odekunle 

et al. (2012) developed a continuous linear method using 

interpolation and collocation for the solution of first–order 

ODE with constant step size. James et al. (2013), proposed a 

continuous block method for the solution of second order IVPs 

with constant step size, the method was developed by 

interpolation and collocation of power series approximate 

solution to generate a continuous linear multistep method. A 

block procedure with linear multistep methods using Legendre 

polynomials was done by Abualnaja (2015). However, he did 

not include the block schemes. Okedayo et al. (2018) 

developed on modified Legendre collocation block method for 

solving   initial value problems of first order ODEs. Also, 

Okedayo et al. (2018), developed a continuous Laguerre 

collocation block method for solving initial value problems of 

first order ordinary differential equations. However, in this 

paper, Hermite polynomial is used as a basis function to derive 

some block methods for the solution of first order initial value 

problem (1). 
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FORMULATION OF THE METHODS 

We consider the approximate solution of the perturbed form of (1) in the power series below 

0

( ) ( ),
k

k i i n n k

i

y x c x x x x 



                             (2) 

where  

( ) , 0,1,2,...,i

i x x i k                                          (3) 

Substituting (2) into (1) and add ( )kH x  where  is the perturbed term and ( )kH x  is the Hermite polynomial of degree k

valid in 
n n kx x x    we have 

0

( ) ( , ) ( )
k

i i k

i

c x f x y H x 


                                  (4) 

We shall consider cases where 1,2k   and 3  in (2) and (3) 

The Hermite polynomial is given by ( ), 0,1,2,3Hi x i   

2 2

0 1 2 3( ) 1, ( ) 2 , ( ) 4 2, ( ) 8 12H x H x x H x x H x x x                                   (5) 

These polynomials are gotten from the Hermite Rodrigue’s formula 

2 2

( ) ( 1) ( )
n

x n x

n n

d
H x e e

dx
                               (6) 

In this paper, we are going to use the set of polynomials in (5) to formulate the block schemes. Using these polynomials in (5) in 

the interval[ , ]n n kx x  , we introduce the change of variable to define the Hermite polynomial as  

2 ( )
, 1,2,3

( )
n k n

n k n

x x x
x k

x x




 
 


                                                  (7) 

 Abualnaja (2015)   

 

For k =1, 

 

In this case, take
1( ) 2H x x , since k=1 and use equation (7). Collocate equation (7) at 

nx  and
1nx 

 and solve to obtain  

 

1 1

1 1

2 ( ) 2 ( )
1n k n n n n n n

n k n n n n n

x x x x x x x x
x

x x x x x x
  

  

     
    

  
                       (8) 

Substitute the value of x  into  
1( ) 2H x x  and obtain

1( ) 2H x    

Also, following the same procedure for  
1nx 

 we have 

 

1 1 1

1 1

2 ( ) 2 ( )
1n k n n n n n n

n k n n n n n

x x x x x x x x
x

x x x x x x
   

  

    
   

  
                            (9) 

Hence 
1( ) 2H x   

 

From equation (2.2), we deduce that 0( ) 0x   and 
1( ) 1x  . Then substituting into (2.3), we have  

1 1( , ) ( )f x y c H x                                                                  (10) 

Thus collocate (10) at 1, 0,1nx i   and interpolate (2) at
nx x , we obtain a system of three equations with , ( 0,1)ic i 
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and parameter .The system of the equations are given as: 

 

0 1

1

1 1

2

2

n

n

n

y c c x

f c

f c





 

 

 

                                                                          (11) 

Solve (11) to obtain 

 

1 1 1 0 1

1 1
( ), ( ), ( )

4 2 2

n
n n n n n n n

x
f f c f f c y f f           

 

From (2) we obtain  

0 1y c c x                                   (12)                               

          

Now, the required numerical scheme of the proposed method for 
1ny 

will be obtain if we collocate (12) at 
1nx x   and 

substitute the value of 
0 1,c c and  . Hence, we obtain 

1 1( )
2

n n n n

h
y y f f                                                                              (13) 

Now for  2k   

In this case, 
2

2( ) 4 2H x x  , since 2k   and use equation (7), then collocate the equation at 
1,n nx x 

and 
2nx 

 and 

solve to obtain  

1 2 2

2 2

2 ( ) 2 ( )
1n k n n n n n n

n k n n n n n

x x x x x x x x
x

x x x x x x
   

  

     
    

  
                               (14) 

Substitute the value of x into 
2

2( ) 4 2H x x   and obtain Hence 
2( ) 2H x   

Using the same procedure for 
1nx 

 to have  

 

1 2

2

2 ( ) 2 ( )n k n n n n

n k n n n

x x x x x x
x

x x x x
  

 

   
 

 
                (15) 

Now, put 
1nx 

 to be 
nx h   and 

2nx 
 to be equal to 2nx h  in equation (15) to obtain 0x  . Thus, substitute x into 

2

2( ) 4 2H x x   to get 
2 1( ) 2nH x     

Also for
2nx 

, we have 

 

2 2 2

2 2

2 ( ) 2 ( )
1

( ) ( )
n k n n n n n n

n k n n n n n

x x x x x x x x
x

x x x x x x
   

  

    
   

  
                            (16) 

 

Hence, we substitute the value of x into
2

2( ) 4 2H x x  . Therefore 2 2( ) 2nH x    

From (3), we deduce that 
0 10, 1    and

2 2x   . Then equation (4) reduces to the form 

1 2 2( , ) 2 ( )f x y c xc H x                                                                (17) 

 

We now collocate (17) at , 0,1,2n ix i   and interpolate (2) at 
nx x to obtain a system of four equations with 

( 0,1,2)ic i   and parameter   
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2

0 1 2

1 2

1 1 2 1

2 1 2 2

2 2

2

2

n n n

n n

n n

n n

y c c x c x

f c x c

f c c x

f c c x







 

 

  

  

  

  

                                                                                        (18) 

 

Solving the system (18) results to  

   

1 2

2 2

1 1 2 2

2 2

1 2 2

1
(2 )

8

1
( )

4

1
(2 2 2 3 )

4

1
(4 2 3 )

4

n n n

n n

n n n n n n n

o n n n n n n n n n

f f f

c f f
h

c hf x f x f hf hf
h

c hy hx f hx f hx f x f x f
h

  



  

  

  

 

    

     

                                        (19) 

 

 From (2), we obtain 
2

0 1 2y c c x c x                          (20)  

The required numerical scheme is obtained if we collocate equation (19) at 1nx x  and substitute 0 1 2, ,c c c and   as 

1 2 1( 2 )
4

n n n n n

h
y y f f f                             (21)     

 

Now consider 3k   

 

In this case, take 
3

2( ) 8 12 ,H x x x  since 3k  and use equation (7). Collocate this equation at 1 2, ,n n nx x x  and 3nx 

and solve to have 

3 3

3 3

2 ( ) 2 ( )
1

( )
n k n n n n n n

n k n n n n n

x x x x x x x x
x

x x x x x x
  

  

     
    

  
                                  (22) 

Thus substitute the value of x into 
3

3( ) 8 12H x x x  and obtain 3( ) 4H x   

Following the same process for 1nx   we have  

1 3

3

2 ( )n n n

n n

x x x
x

x x
 



 



 

Put 1n nx x h   , 3 3n nx x h    and obtain 

2( ) ( 3 ) 1

3 3
n n n

n n

x h x h x

x h x

   
 

 
. 

By substituting the value of x  into 
3

3( ) 8 12 ,H x x x   then 
3

100
( )

27
H x   

Follow the same procedure for 2nx  and have 

2 3

3

2 ( )n n n

n n

x x x
x

x x
 



 



. Putting 2 2n nx x h   , 3 3n nx x h    and substituting into the above equation to obtain  
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2( 2 ) ( 3 ) 1

3 3
n n n

n n

x h x h x

x h x

   


 
. Substituting the value of x  into 

3

3( ) 8 12 ,H x x x   then 
3

100
( )

27
H x    

Following the same procedure for 3nx  , we have 

3 3

3

2 ( ) 2 ( )
1

( )
n k n n n n

n k n n n

x x x x x x
x

x x x x
  

 

   
  

 
 

Thus, substitute the value of x  into 
3

3( ) 8 12 ,H x x x  and have 
3( ) 4H x    

Thus, from equation (3), we deduce that 
2

0 1 2 3( ) 0, ( ) 1, ( ) 2 , ( ) 3x x x x x x          . 

Equation (3) reduces to the form 
2

1 2 3 3( , ) 2 3 ( )f x y c xc x c H x                                                                                 (23) 

 

We now collocate (23) at  ( 0,1,2)n ix i   and interpolate (2) at nx x  to obtain a system of five equations with 

( 0,1,2,3)ic i  and parameter   as 

 
2 3

0 1 2 3

2

1 2 3

2

1 1 2 1 3 1

2

2 1 2 2 3 2

2

3 1 2 3 3 3

2 3 4

100
2 3

27

100
2 3

27

2 3 4

n n n n

n n n

n n n

n n n

n n n

y c c x c x c x

f c c x c x

f c c x c x

f c c x c x

f c c x c x









  

  

  

   

   

   

   

   

                                                                      (24) 

Solving the system (24) resulted to   

 

1 2 3

3 1 2 32

2 1 2 12

2 2 2 2

1 1 2 3 12

2

9
( 3 3 )

128

1
( )

12

1
(61 63 9 11 3 24 24 29 2 24 )

96

1
(123 81 81 27 122 126

96

18

n n n n

n n n n

n n n n n n n n n n n n

n n n n n n n n

n n

f f f f

c f f f f
h

c hf hf hf hf f x f x f x f x
h

c h f h f h f h f hf x hf x
h

hf x

   

  

  

   



   

   

          

       

 2 2 2 2

3 1 2

2 2 2 2 2

0 1 2 32

2 2 2 3 3 3 3

1 2 3 1 2 3

2

22 24 24 24 24 3 )

1
(123 81 81 27 61

96

63 9 11 8 8 8 8

96

n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n n n n n

n

f x f x f x f x fn x

c h f x h f x h f x h f x hf x
h

hf x hf x hf x f x f x f x f x

h y

  

  

     

    

      

      

 

Again, from (2) we have  
2 3

0 1 2 3y c c x c x c x                               (25) 

The required numerical scheme is then obtained if we collocate (25) at 1nx   and substituting for 0 1 2, ,c c c and 3c  as 
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1 1 2 3(35 13 41 15 )
48

n n n n n n

h
y y f f f f                                                   (26) 

Now we formulate the block schemes for the polynomials of cases 1,2k  and 3  

 For 1k  , collocate equation (12) at 1 2 3, ,n n nx x x x   to obtain  

1 1

2 1

3 1

( )
2

( )

3
( )

2

n n n n

n n n n

n n n n

h
y y f f

y y h f f

h
y y f f

 

 

 

  

  

  

                                                           (27) 

For 2k  , collocate equation (20) at 1 2 3, ,n n nx x x x   to obtain  

1 1 2

2 1 2

3 1 2

( 2 )
4

( 2 )
2

3
(6 2 )

4

n n n n n

n n n n n

n n n n n

h
y y f f f

h
y y f f f

h
y y f f f

  

  

  

   

   

   

                                          (28) 

For 3k  , collocate equation (25) at 1 2 3, ,n n nx x x x   to obtain 

1 1 2 3

2 1 2 3

3 1 2 3

(35 13 41 15 )
48

(33 13 67 17 )
48

3
( 3 3 )

8

n n n n n n

n n n n n n

n n n n n n

h
y y f f f f

h
y y f f f f

h
y y f f f f

   

   

   

    

    

    

                   (29)         

                                                      

 

ERORR ANALYSIS OF THE METHOD 
 

In this section, we discuss the order, the error constant and convergence of the proposed block schemes. The proposed schemes in 

this paper belong to the class of linear multi-step method (LMM) which is of the form 

0 0

( ) ( ) ( ) ( )
k k

j n j j n j

j j

x y x h x f x  

 

                    (30)  

According to Sastry (2008) and Lambert (1981), define the order and error constant associated with (30) to be the linear 

difference operator 


0

[ ( ); ] ( ) ( )
k

j j

j

y x h y x jh h y x jh 


                                              (31)     

Assuming that ( )y x  is continuously differentiable on the interval[ , ]a b , we can expand the terms in (31) as a Taylor series 

about the point x  to obtain the expansion 

2

0 1 2[ ( ); ] ( ) ( ) ( ) ... ( )q q

qy x h c y x c hy x c h y x c h y x                                                  (32) 

where the constant coefficients , 0,1,...qc q   are given as follows: 

1

0 1

0 0 0

1 1
, ( ), ..., , 2,3...

! ( 1)!

k k k
q q

j j j q j j

j j j

c c j c j j q
q q

    

  

 
      

 
             (33) 
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We say that the methods are said to be order p if 0 1 2 1... 0, 0p pc c c c c        

Therefore the 1pc   is the error constant. 

Hence, we establish that (27), (28) and (29) are of the following orders and error constants respectively. 

when 1k   , 1p   and 
1

1

4
pc    

when 2k  ,  2p   and 
1

1

6
pc     

when 3k   , 4p   and 
1

864

23040
pc     

 

NUMERICAL EXAMPLES 

In this section, two initial value problems were solved using 

the proposed method for 2k   and 3k  and compare the 

numerical results obtained with the exact solution and those 

obtained from using the method of Okedayo et al (2018) in 

order to test the efficiency of the schemes.  

    

Example 1 

Consider the following IVP  

( ) , (0) 1y x y y     

with the exact solution ( ) xy x e  

 

Example 2 
 Consider the IVP 

( ) , (0) 0y x x xy y     

With exact solution 

2

2( ) 1
x

y x e


   

Notations: BLS = Block schemes derived in this paper, LM = 

Method of Okedayo et al. (2018), Exact = Exact Solution, 

|Exact-BLS| = the absolute value of the exact solution minus 

computed solution of the method derived in this paper and 

|Exact-LM| = the absolute value of the exact solution minus 

computed solution of Okedayo et al. (2018). 

 

The numerical results of these examples are depicted in Tables 

1, 2 3 and 4 with 2k   and 3k   with constant step size of 

0.1h  respectively. In tables 1 and 3 we presented a 

comparison of the obtained numerical results using the 

proposed scheme with the exact solution and Table 2 and 4 

presents the comparison of the results obtained from proposed 

scheme, the exact solution and those numerical results obtained 

from Okedayo et al. (2018). 

 

Table 1: A comparison of numerical results of proposed 

Scheme at 2k   with exact solution for Example 1 

 

x-value BLS 

2k   

Exact |Exact-BLS| 

0.0 1.000000 1.000000 0.000000 

0.1 0.905090 0.904837 44.253 10  

0.2 0.818181 0.818730 45.49 10  

0.3 0.749092 0.740818 38.274 10  

0.4 0.675227 0.670320 34.907 10  

i0.5 0.608761 0.606531 32.23 10  

0.6 0.548760 0.548811 35.1 10  

0.7 0.504028 0.496585 37.443 10  

0.8 0.448139 0.449328 31.189 10  

0.9 0.416232 0.406569 39.663 10  

1.0 0.373893 0.367879 36.014 10  
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Table 2:  A comparison of numerical results of proposed scheme at 3k   with exact solution and LM for Example 1 

 

x-value BLS 

3k   

LM Exact  |Exact-BLS| |Exact-LM| 

0.0 1.000000 1.000000 1.000000 0.000000  0.000000  

0.1 0.904808 0.905953 0.904837 52.9 10  
31.116 10  

0.2 0.818705 0.820856 0.818730 5.0 10 5  
32.126 10  

0.3 0.740823 0.743857 0.740818 55.0 10  
33.039 10  

0.4 0.670304 0.674185 0.670320 51.6 10  
33.865 10  

0.5 0.606516 0.611143 0.606531 51.5 10  
34.612 10  

0.6 0.548820 0.554100 0.548811 69.0 10  
35.289 10  

0.7 0.496576 0.502486 0.496585 69.0 10  
35.901 10  

0.8 0.449321 0.455784 0.449328 67.0 10  
36.456 10  

0.9 0.406578 0.413527 0.406569 69.0 10  
36.958 10  

1.0 0.367876 0.375290 0.367879 63.0 10  
37.411 10  

Table 3: A comparison of numerical results of proposed 

scheme at 2k   with exact solution for Example 2 

 

x-value BLS 

2k   

Exact |Exact-BLS| 

0.0 0.000000 0.000000 0.000000 

0.1 0.005452 0.004785 46.67 10  

0.2 0.018904 0.018901 41.97 10  

0.3 0.042261 0.033013 39.218 10  

0.4 0.058942 0.056862 32.078 10  

0.5 0.117427 0.115602 31.825 10  

0.6 0.121342 0.166729 24.5387 10  

0.7 0.178557 0.216929 21.1828 10  

0.8 0.235772 0.255531 21.9758 10  

0.9 0.274301 0.292022 21.37121 10  

1.0 0.327572 0.353368 22.5706 10  
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Table 4:  A comparison of numerical results of proposed scheme at 3k   with exact solution and LM for Example 2 

 

x-value BLS 

3k   

LM Exact  |Exact-BLS| |Exact-LM| 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.005073 0.005892 0.004785 52.88 10  
41.027 10  

0.2 0.018214 0.020465 0.018901 46.87 10  
31.564 10  

0.3 0.039568 0.037475 0.033013 36.555 10  
34.402 10  

0.4 0.064584 0.078865 0.056862 37.222 10  
32.2003 10  

0.5 0.107592 0.120033 0.115602 38.01 10  
34.4431 10  

0.6 0.161899 0.159353 0.166729 34.83 10  
37.376 10  

0.7 0.212809 0.221055 0.216929 34.1214 10  
22.362 10  

0.8 0.250814 0.279245 0.255531 22.4716 10  
22.3715 10  

0.9 0.308725 0.328348 0.292022 21.6703 10  
23.6326 10  

1.0 0.384329 0.398478 0.353368 23.0961 10  
11.35202 10

 

 

Tables 1, 2, 3 and 4 shows that the proposed schemes approximate the solutions of initial value problems given in Examples 1 

and 2 as the absolute errors are convergent. Also, the absolute errors presented in Tables 2 and 4 show that the proposed schemes 

compared favourably with the method of Okedayo et al. (2015) applied to the given numerical examples.  

 

CONCLUSION 

In this research work, a class of three new block schemes for 

the approximation of initial value problems of first order 

ordinary differential equations using Hermite polynomial as a 

basis function has been obtained. The proposed method was 

used to solve numerically some initial value problems and the 

results compared with the exact solutions and the method of 

Okedayo et al. (2015). From the numerical results, it is 

observed that the new schemes were capable for solving first 

order IVPs as generated results compared favorably with the 

existing method and the exact solutions. The method is very 

simple to implement. 
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