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ABSTRACT 

Typhoid fever is a disease of a major concern in the developing world because it adversely affects on health 

and finance of a large chunk of people in this part of the world. This paper is aim to develop an extend and 

improve the optimal control model of typhoid transmission dynamics that can select the best cost-effective 

strategy for some interventions. Thus, an optimal control model for typhoid, incorporating control functions 

representing measures of personal hygiene and sanitation, diagnosis and treatment, and vaccination, was 

formulated. The corresponding optimality system was characterized via the Pontryagin’s maximum principle. 

The optimality system was numerically simulated for all possible strategies using Runge-Kutta method of 

order four. For cost-effectiveness analysis, the method of incremental cost-effectiveness ratio (ICER) was 

employed. The results show that the model is able to select the most cost-effective strategy for any given set 

of parameter values and initial conditions. 

  

Keywords: Optimal control, Pontryagin’s maximum principle, cost-effectiveness, Runge-Kutta (RK4), cost-effectiveness ratio 

(ICER). 

 

INTRODUCTION 
Typhoid fever is a systemic infection caused by Salmonella Typhi 

through ingestion of food or water contaminated with the faeces of 

infected persons. The acute illness is characterized by prolong 

headache, fever, nausea, loss of appetite, constipation and 

sometimes diarrhea. According to the most recent estimates, 

between 11 and 21 million cases of typhoid and 128,000 to 161,000 

typhoid related-deaths occur annually worldwide (WHO, 2019; 

Browne et al., 2020; Espinoza et al., 2019). 

Globally, 10.9, 12.5, 26, 22 and 25.9 million new cases of typhoid 

fever; and 116.8, 149, 190, 210 and 181 thousand typhoid-related 

deaths in 2017, 2015, 2010, 2000 and 1990 respectively (Mather et 

al., 2019; Amicizia et al., 2019; Radhakrishnan et al., 2018; Buckle 

et al., 2012; Mukhopadhyay et al., 2019; Deksissa et al., 2019; 

Ohanu et al., 2019). A bulk of these burdens is borne  by the 

developing sub-Saharan African countries. 

 

Mathematical models are veritable tools for studying the dynamics 

of infectious diseases. See, for example, Anderson and May (1991). 

Optimal control techniques have been used to determine best control 

strategies for infectious diseases such as malaria, Ebola, Influenza, 

tuberculosis, hepatitis B, tungiasis, to mention a few. See [Khamis 

et al. (2018); Otieno et al. (2016); Lashari et al. (2012); Nwanga et 

al. (2014); Ebenezer et al. (2016); Kahuru et al. (2017);  Hattaf et al. 

(2009); Silver et al.(2014); Athithan and Gosh (2016); Tchuenche et 

al. (2011)]. Mathematical models for typhoid transmission dynamics 

are scanty (Tilahun et al., 2017). Tilahum et al. (2017) presented a 

deterministic mathematical model to investigate the dynamics of 

typhoid fever with optimal control strategies. However we noticed a 

flaw in the associated system of differential equations emanating 

from their model descriptions. Thus the current study improves and 

extended the Tilahun et al. (2017) by incorporating the dynamics of 

vaccinated individuals. Further, this paper extended and improved 

optimal control model for typhoid transmission dynamics that can 

select the best strategy for some interventions, analytically 

characterize and numerically explore the corresponding optimality 

system.  

 

The paper is organized as follows. Brief introduction on Typhoid 

fever was presented in section 1, the basic Typhoid fever model is 

presented and an optimal control model is designed in section 2, 

analysis of the optimal control model is done in section 3, and 

numerical simulations are performed and the results are presented in 

section 4. Cost-effectiveness analysis is carried out in section 5. 

Discussion of results and the conclusive remarks are passed in 

section 6 

 

Model Formulation 
The model by Tilahun et al, (2017) incorporates human and 

pathogen populations. The human population is partitioned into 

susceptible, carriers, symptomatically infectious persons and 

recovered individuals denoted 𝑆, 𝐼, 𝐶, 𝑎𝑛𝑑 𝑅 respectively. So that, 

𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑅   
The pathogen population is represented by 𝐵𝑐 . 
 

The variables and parameters used in the model by Tilahun et al 

(2017) are defined in Table 1. 
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Table 1: Variables and Parameters used in the model and their description 

Variable/Parameter  Description  
𝑆    The number of susceptible humans at time t 

    𝐶    The number of carrier at time t 

    𝐼   The number of infected humans at time t 

 𝑅    The number of recovered human at time t  

𝐵𝐶   The of bacteria at time t 

Λ    Recruitment rate 

𝛿    Waning of partial immunity to typhoid fever  rate  

𝐾    Concentration of salmonella bacteria in foods and waters 

𝑣     Ingestion of salmonella bacteria 

𝜌     The probability that an infected person becomes a carrier after infection 

𝜃     Rate at which carrier become symptomatic 

𝛽     Treatment rate 

𝜙    Natural immunity rate from the carrier class 

μ    Natural death rate of humans 

α   Disease-induced death rate 

σ1   The rate of shedding salmonella in foods and waters by carriers 

σ2   The rate of shedding salmonella in foods and waters by infectives 

μ𝑏   The death rate of salmonella bacteria 

 

 

 

The flow of all epidemiological and demographic processes 

involved is described as follows. Recruitment into the susceptible 

class which is either by birth or immigration occurs at the rate of  Λ. 

The recovered individuals lose partial immunity to typhoid fever to 

become susceptible at the rate of 𝛿. The force of infection in the 

model is 𝜆 =
𝐵𝑐𝑣

[𝑘+𝐵𝑐]
, where 𝑣 is ingestion rate, 𝑘 is the concentration 

of Salmonella bacteria in foods or waters, and 
𝐵𝑐

[𝑘+𝐵𝑐]
 is the 

probability of individuals in consuming foods or drinks 

contaminated with typhoid causing bacteria. Death occurs naturally 

at the rate of 𝜇.  𝜌 is the probability that an infected person becomes 

a carrier after infection. Carriers become symptomatic at the rate of  

𝜃 and acquire natural immunity at the rate of 𝜙. The 

symptomatically infected persons acquire natural immunity at the 

rate of 𝛽. Typhoid-related mortality occurs at the rate of 𝛼. Carriers 

and symptomatically infected individuals discharge Salmonella at 

the rates of σ1 and σ2 respectively. The net death rate of the 

pathogen is given by 𝜇𝑏 . 
 

From the above description of variables and parameters, the 

interactions and flow in the different compartments (Tilahun et al, 

2017) are as depicted in the schematic flow diagram (Figure 1) 

below.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow diagram of Tilahun etal (2017) model 
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From the above descriptions and flow diagram, Tilahun et al (2017) presented to the following system of ordinary differential equations: 

 
𝑑𝑆

𝑑𝑡
= Λ + 𝛿𝑅 − (𝜇 + 𝜆)𝑆                                                                               (1) 

   
𝑑𝐶

𝑑𝑡
 = 𝜌𝜆S − (𝜎1 + 𝜃 + 𝜙 + 𝜇)𝐶                                               (2) 

𝑑𝐼

𝑑𝑡
  = (1 − 𝜌)𝜆S + 𝜃C −  (𝜎2 +  𝛽 + 𝜇 +  𝛼)I     (3) 

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 + 𝜙𝐶 − (𝜇 + 𝛿)𝑅                                                                           (4) 

𝑑𝐵𝑐

𝑑𝑡
= 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐                                                                               (5) 

where  𝜆 =
𝐵𝑐𝑣

[𝑘+𝐵𝑐]
 

 

Modified Model Equation 

The parameters 𝜎1 and 𝜎2 as defined in Tilahun et al (2017) model 

and captured in the model equations  are flaws as the carriers and 

asymptotically infected individuals cannot themselves become 

bacteria as captured in their model (see Table1 and Equation (2) and 

Equation (3) above). Increasing the bacteria population in foods and 

waters does not decreased the population of carriers or infected 

individuals. 

 

Thus with descriptions and flow diagram (Table1 and Figure 1), we 

modify the model equations by Tilahun et al (2017) and present the 

following system of ordinary differential equations: 

 
𝑑𝑆

𝑑𝑡
= Λ + 𝛿𝑅 − (𝜇 + 𝜆)𝑆                                                                               (6) 

   
𝑑𝐶

𝑑𝑡
 = 𝜌𝜆S − (𝜃 + 𝜙 + 𝜇)𝐶                                               (7) 

𝑑𝐼

𝑑𝑡
  = (1 − 𝜌)𝜆S + 𝜃C −  ( 𝛽 + 𝜇 +  𝛼)I     (8) 

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 + 𝜙𝐶 − (𝜇 + 𝛿)𝑅                                                                           (9) 

𝑑𝐵𝑐

𝑑𝑡
= 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐                                                                                  (10) 

𝜆 =
𝐵𝑐𝑣

[𝑘 + 𝐵𝑐]
 

 

Basic Properties 
We obtain the invariant region in which the model solution is bounded. All the associated parameters and state variables are non-negatives 

for 𝑡 ≥ 0.  Consider the biological feasible region 

          Ζ = {(𝑆, 𝐶, 𝐼, 𝑅) ∈ ℝ4: 𝑁 ≤
Λ

𝜇
} 

Lemma 1: The closed set Ζ is positively and attracting with respect to the system of equations (6) – (9). 

Proof: 

Adding equations (6) – (9) gives the rate of change of the total population: 
𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − 𝛼𝐼   (11) 

It is clear from equation (11) that 
𝑑𝑁

𝑑𝑡
≤ Λ − 𝜇𝑁 

it follows that 
𝑑𝑁

𝑑𝑡
≤ 0 if 𝑁(𝑡) ≥

Λ

𝜇
 

Thus, by a standard comparison theorem (Lakshmikantham et al, 1989) can be used to show that 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
Λ

𝜇
(1 − 𝑒−𝜇𝑡) 

In particular 

𝑁(𝑡) ≤
Λ

𝜇
  if N(0) ≤

Λ

𝜇
. Thus the region Ω ispositively-invariant. However if N(t) ≤

Λ

𝜇
, then either the solution enters Ω in finite 

time, or N(t) approaches 
Λ

𝜇
 asymptotically. Hence the region Ζ attracts all solutions in ℝ4.  

 

Therefore, it is sufficient to consider the dynamics of the flow generated by equations (6) – (9) in Ζ, where the usual existence, uniqueness, 

continuation results hold for the system (6) – (9), that is the system is mathematically and epidemiological well-posed in Ζ. 
 

Optimal Control Model 

In this section, we modify and extend the existing optimal control model of Tilahun et al (2017) by incorporating the compartment of 

vaccinated individuals 𝑆𝑣,  so that  

𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑆𝑣 + 𝑅 

The efficacy of sanitation measure at killing the pathogen is 𝑟 and we define the parameter 𝛽 as the rate at which the symptomatically 

infected persons acquire immunity. 𝑏1, 𝑏2 𝑎𝑛𝑑 𝑤1 are weight constants; and 𝑢𝑖 are control variables. All other parameters retain their 
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descriptions as in the existing model which are depicted in Table 1 above. 

Therefore, from our modified model (6) – (10), the extended optimal control equations for typhoid dynamics are presented as follows:   
𝑑𝑆

𝑑𝑡
= Λ + 𝛿𝑅 − (1 − 𝑢1)𝜆𝑆 − (𝜇 + 𝑢3)𝑆   (12) 

  
𝑑𝑐

𝑑𝑡
 = (1 −  𝑢1)𝜌𝜆S − (𝜃 + 𝜙 + 𝜇)𝐶                                                  (13) 

𝑑𝐼

𝑑𝑡
  = (1 − 𝑢1)(1 − 𝜌)𝜆S + 𝜃C − (𝑢2  +  𝛽)I −  (𝜇 +  𝛼)I          (14) 

𝑑𝑆𝑣

𝑑𝑡
= 𝑢3𝑆 − 𝜇𝑆𝑣                                                                              (15)    

𝑑𝑅

𝑑𝑡
= (𝑢2 + 𝛽)𝐼 + 𝜙𝐶 − (𝜇 + 𝛿)𝑅                                          (16)  

𝑑𝐵𝑐

𝑑𝑡
= 𝜎1𝐶 + 𝜎2𝐼 − (𝜇𝑏 + 𝑟𝑢1)𝐵𝑐        (17) 

where  𝜆 =
𝐵𝑐𝑣

[𝑘+𝐵𝑐]
 

The objective function is given by 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ [𝐴1𝑢1𝑆(𝑡) + 𝐴2𝑢2𝐼(𝑡) + 𝐴3𝑢3𝑆(𝑡) +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2) + 𝛼𝐶1𝐼(𝑡) + 𝐶2𝐼(𝑡)]𝑑𝑡
𝑡

0
     

      (18) 

where 𝐴1, 𝐴2 𝑎𝑛𝑑 𝐴3 represent the costs of hygiene and sanitation, vaccine and drugs per person respectively. 𝐵1, 𝐵2, 𝑎𝑛𝑑 𝐵3 represent the 

costs of implementation of control and 𝐶1 𝑎𝑛𝑑 𝐶2 represent average losses of wages due to a typhoid related death and illness respectively. 

𝑈 = (𝑢1, 𝑢2, 𝑢3) is a st of Lebesgue measurable functions.  

 

Optimal Control Analysis 

In this section, we define the Langagian and the Hamiltonian of our control system. The Langragian is given by  𝐿 = [𝐴1𝑢1𝑆(𝑡) +

𝐴2𝑢2𝐼(𝑡) + 𝐴3𝑢3𝑆(𝑡) +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2) + 𝛼𝐶1𝐼(𝑡) + 𝐶2𝐼(𝑡)] 

The Hamiltonian 𝐻 is the sum of 𝐿 and the inner product of the adjoint variables  

𝜆𝑖 = 1, … ,6  and the right hand sides of equations (12) - (17) 

That is 𝐻 =  𝐿 + ∑ 𝜆𝑖
6
𝑖=1 𝑓𝑖   are the right-hand side of (12) - (17) 

 = [𝐴1𝑢1𝑆(𝑡) + 𝐴2𝑢2𝐼(𝑡) + 𝐴3𝑢3𝑆(𝑡) +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2) + 𝛼𝐶1𝐼(𝑡) + 𝐶2𝐼(𝑡)] 

 +𝜆1[Λ + 𝛿𝑅 − (1 − 𝑢1)𝜆𝑆 − (𝜇 + 𝑢3)𝑆] + 𝜆2[(1 −  𝑢1)𝜌𝜆S − (𝜃 + 𝜙 + 𝜇)𝐶] 
+𝜆3[(1 − 𝑢1)(1 − 𝜌)𝜆S + 𝜃C − (𝑢2  +  𝛽)I −  (𝜇 +  𝛼)I] + 𝜆4[𝑢3𝑆 − 𝜇𝑆𝑣] 
+𝜆5[(𝑢2 + 𝛽)𝐼 + 𝜙𝐶 − (𝜇 + 𝛿)𝑅] + 𝜆6[𝜎1𝐶 + 𝜎2𝐼 − (𝜇𝑏 + 𝑟𝑢1)𝐵𝑐]   

 

The Optimality System 

Suppose  𝑈 = (𝑢1, 𝑢2, u3) is a control vector, 𝑥 = (𝑆, 𝐶, 𝐼, 𝑆𝑣, 𝑅, 𝐵𝑐)  the state variables of the system  (12) − (17) and H the Hamiltonian, 

the optimality system is given by 
𝑑𝑥𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝜆𝑖
,   −

d𝜆𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑥𝑖
, i = 1, … , 6 with transversality conditions 𝜆𝑖(𝑡𝑓) = 0; 

𝜕𝐻

𝜕𝑢𝑗
= 0, j = 1, 2, 3. 

 

Theorem 1. Let 𝑈 = (𝑢1, 𝑢2) be a control vector, 𝑥 = (𝑆, 𝐶, 𝐼, 𝑆𝑣, 𝑅, 𝐵𝑐) be the state variables of the system  (12) − (17) and H the 

Hamiltonian. There exist an optimal control vector  𝑈∗(𝑡) and the corresponding state vector 𝑥∗(𝑡) that minimize 𝐽(𝑈) over ῼ. 
Furthermore, there exist adjoint functions 𝜆𝑖 satisfying the equations 

 −
𝑑𝜆𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑥𝑖
, i = 1, … , 6 with transversality conditions 𝜆𝑖(𝑡𝑓) = 0. 

In addition, the optimal controls are given by 𝑢𝑗
∗ = max{0, min(1, 𝑅𝑗)} , 𝑗 = 1, 2, 3. 

Proof: We use the recipe by Fleming and Rishel (1975). The existence of an optimal control vector follows from the convexity of the 

integrand 𝐽 with respect to 𝑈, a priori boundedness of the state solutions and the Lipscitz property of the state solutions with respect to the 

state variables. See [Fleming and Rishel (1975)] (corollary 4.1). The adjoint equations and transversality conditions can be obtained by 

using the Pontryagin’s Maximum Principle such that 

 −
𝑑𝜆1

𝑑𝑡
=

 𝜕𝐻

 𝜕𝑆
= −𝜆1[(1 − 𝑢1)𝜆 +  (𝜇 + 𝑢3)]  +  𝜆2(1 − 𝑢1)𝜌𝜆 + 𝜆3(1 − 𝑢1)(1 –  𝜌) 𝜆 + 𝜆4𝑢3 + 𝐴1𝑢1 + 𝐴3𝑢3 

−
𝑑𝜆2

𝑑𝑡
 =

 𝜕𝐻

 𝜕𝐶
 = −𝜆2[ (𝜃  + 𝜙 +  𝜇)] +  𝜆3𝜃 +  𝜆5𝜙 + 𝜆6𝜎1    

−
𝑑𝜆3

𝑑𝑡
 =

 𝜕𝐻

 𝜕𝐼
 =  𝐴2𝑢2  + 𝛼𝐶1 + 𝐶2  −𝜆3[(𝑢2  +  𝛽  +  𝜇 +  𝛼)]  + 𝜆5(𝑢2  +  𝛽)  + 𝜆6𝜎2 

 −
𝑑𝜆4

𝑑𝑡
 =

 𝜕𝐻

 𝜕𝑆𝑣
 =  −𝜆4 𝜇 

−
𝑑𝜆5

𝑑𝑡
 =

 𝜕𝐻

 𝜕𝑅
 =  𝜆1𝛿 − 𝜆5( 𝜇 +  𝛿) 

−
𝑑𝜆6

𝑑𝑡
 =

 𝜕𝐻

 𝜕𝐵
 =  −𝜆1(1 − 𝑢1) [

( 𝐾+ 𝐵𝑐)𝑉 – 𝐵𝑐𝑉  

( 𝐾+ 𝐵𝑐)2 ]𝑆 + 𝜆2(1 − 𝑢1) [
( 𝐾+ 𝐵𝑐)𝑉 – 𝐵𝑐𝑉  

( 𝐾+ 𝐵𝑐)2 ] ρ𝑆 

         𝜆3{ (1 − 𝑢1) [
( 𝐾+ 𝐵𝑐)𝑉 − 𝐵𝑐𝑉  

( 𝐾+ 𝐵𝑐)2 ](1 − ρ)𝑆}  −  𝜆6(𝜇𝑏 + 𝑟𝑢1) 

with transversality conditions 𝜆1(T) = 𝜆2(𝑇) = 𝜆3(𝑇) = 𝜆4(𝑇) = 𝜆5(𝑇) = 𝜆6(𝑇) = 0 
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The controls 𝑢𝑗  can be solved for by using the optimality condition 
𝜕𝐻

𝜕𝑢1
= 0; 

𝜕𝐻

𝜕𝑢2
= 0;  

𝜕𝐻

𝜕𝑢3
= 0;  Therefore, 

𝑢1
∗ = max{0, min(1, 𝑅1)}, 𝑅1 =

𝜆2𝜌𝜆𝑆 + 𝜆3(1 – 𝜌)𝜆S − 𝜆1𝜆S+𝑟𝐵𝑐𝜆6−𝐴1𝑆  

𝐵1
 

𝑢2
∗ = max{0, min(1, 𝑅2)}, 𝑅2 =

(𝜆3 −  𝜆5)𝐼−𝐴2𝐼

𝐵2
 

𝑢3
∗ = max{0, min(1, 𝑅3)}, 𝑅3 =

( 𝜆1− 𝜆4)𝑆−𝐴3𝑆 

𝐵3
 

 

Numerical Simulation  and Results 

For numerical simulation, we used the parameters values in Table 1. Jn addition, the following initial values were used: 𝑆(0) =
93803, 𝐶(0) = 25, 𝐼(0) = 50, 𝑆𝑣(0) = 0, 𝑅(0) = 232, 𝐵𝑐(0) = 14000. We used the following values for the weight constants: 𝐴1 =
0.1, 𝐴2 = 10, 𝐴3 = 4, 𝐵1 = 1000. 
𝐵2 = 1000, 𝐵3 = 1000, 𝐶1 = 20000, 𝐶2 = 10. We simulated the optimality system to determine the effects of the following 

strategies. 

(i) Personal hygiene and sanitation (𝑢1) only 

(ii) Treatment (𝑢2) only 

(iii) Vaccination (𝑢3) only 

(iv) Personal hygiene and sanitation, and treatment ( 𝑢1, 𝑢2) only 

(v) Personal hygiene and sanitation, and vaccination ( 𝑢1, 𝑢3) only 

(vi) Treatment and vaccination ( 𝑢2, 𝑢3) only 

(vii) Personal hygiene and sanitation, treatment and vaccination ( 𝑢1, 𝑢2,𝑢3) only 

The results of our simulation experiments can be seen in Figures 2 – 8. 

  

Table 2: Parameter values used for simulations 

Parameter  Value  Parameter  Value  

𝑘 50,000 𝑢2 0 − 1 

𝜇 0.0247 𝑢3 0 − 1 

𝛼 0.052 Λ 100 

𝛽 0.002 𝑢1 0 − 1 

𝜎1 0.9   

𝜎2 0.8   

𝜎 0.000904   

𝜃 0.2   

𝜙 0.0003   

𝜌 0.3   

1 − 𝜌 0.7   

𝜇𝑏 0.001   

 

 
Figure 4: Graph showing the dynamics of symptomatic cases of typhoid fever with hygiene and sanitation control (𝑢1) 

only 
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Figure 3: Graph showing the dynamics of symptomatic cases of typhoid fever with treatment control (𝑢2) only 

 
Figure 4: Graph showing the dynamics of symptomatic cases of typhoid fever with vaccination control (𝑢3) only 
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Figure 5: Graph showing the dynamics of symptomatic cases of typhoid fever with hygiene and sanitation(𝑢1) and 

treatment (𝑢2) controls 

 
Figure 6: Graph showing the dynamics of symptomatic cases of typhoid fever with hygiene and sanitation (𝑢1) and 

vaccination (𝑢3) controls 

 

 
Figure 7: Graph showing the dynamics of symptomatic cases of typhoid fever with treatment(𝑢2) and vaccination (𝑢3) 

controls 
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Figure 8: Graph showing the dynamics of symptomatic cases of typhoid fever with hygiene and sanitation (𝑢1), treatment (𝑢2) 

and vaccination (𝑢3) controls. 

 

Cost-Effectiveness Analysis 

In this section, the method of incremental cost-effective ratio (ICER) is used to compare cost-effectiveness of two strategies. The cost 

objective functional is used to evaluate the total costs associated with all possible strategies over the period. The numbers of infections 

averted and the total costs of the corresponding strategies are shown in Table 3. 

 

Table 3: The number of infections averted and the total cost of the corresponding strategies 

Strategy Description No. of infections averted Total cost of control 

𝐴 Hygiene and sanitation 1091 715896.80 

𝐵 treatment 1456 256248.10     

𝐶 vaccination 858 1029841.57     

𝐷 Hygiene and sanitation and treatment 1565 172872.43      

𝐸 Hygiene and sanitation and vaccination 1091 715896.80     

𝐹 Treatment and vaccination 1481 325927.44     

𝐺 Hygiene and sanitation, treatment and vaccination 1565 172872.43 

 

We compare the cost-effectiveness of strategies pair wise as follows. 

𝐼𝐶𝐸𝑅(𝐶) =
1029841.57

858
= 1200.28, 𝐼𝐶𝐸𝑅(𝐴) =

1029841.57−715896.80

858−1091
= −1347.42   

This shows that strategy 𝐴 is cheaper than strategy 𝐶. 

𝐼𝐶𝐸𝑅(𝐴) = 𝐼𝐶𝐸𝑅(𝐸) =
715896.80

1091
= 656.18, 𝐼𝐶𝐸𝑅(𝐵) =

715896.80 − 256248.10

1091 − 1456
= −1259.31 

This shows that B is better than strategies 𝐴 and 𝐸. 

𝐼𝐶𝐸𝑅(𝐵) =
256248.10

1456
= 175.99, 𝐼𝐶𝐸𝑅(𝐹) = 𝐼𝐶𝐸𝑅(𝐺) =

256248.10 − 172872.43

1456 − 1565
= −764.91 

 

DISCUSSION AND CONCLUSION 

This study has produced analytical and numerical results. The main 

analytical result can be found in Theorem 1. This theorem 

establishes the existence of the optimality system that ensues from 

our optimal control model. The results of our numerical experiments 

can be seen in Figures 2 through 8 and Table 3. As Figures 2 

through 4 have depicted, single intervention of hygiene and 

sanitation, treatment or vaccination does not have the capability to 

eradicate typhoid disease from the population. Table 3 shows that 

vaccination as a single intervention imposes the highest cost, 

followed by hygiene and sanitation, and treatment. It is also 

observed that treatment alone produces cyclical effects on the 

dynamics of typhoid fever. Figure 6 shows that double intervention 

of hygiene and sanitation, and vaccination is not able to eradicate 

the disease from the population.  

However, Figures 5 shows that double intervention of hygiene and 

sanitation, and treatment has the capability of eradicating the 

typhoid disease. Similarly, Figures 7 shows that double intervention 

of treatment and vaccination has the capability of eradicating the 

typhoid disease, with a higher cost compared to hygiene and 

sanitation, and treatment.  In the same vein, triple intervention of 

hygiene and sanitation, treatment and vaccination produces the same 

impact and imposes the same cost as the double intervention of 

hygiene and sanitation, and treatment as shown Figure 8. 

Based on the data employed, the findings show that a double 

intervention of hygiene and sanitation, and treatment as a strategy; 

and the combination of three controls as a strategy are the most cost-

effective strategies. 
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