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ABSTRACT 

It can be difficult to optimize complex issues, and doing so frequently calls for the application of cutting-edge 

methods like mathematical modelling and evolutionary algorithms. Our proposal in this work is to address 

complex optimization issues using a hybrid strategy that integrates both approaches. The suggested method 

builds a surrogate model of the issue by mathematical modelling, which is subsequently optimized through the 

application of evolutionary algorithms. The hybrid methodology is tested against other optimization methods, 

such as particle swarm optimization and genetic algorithms, on a series of benchmark tasks. The experimental 

findings demonstrate that in terms of both computing time and solution quality, the suggested hybrid strategy 

performs better than various alternative methods. The suggested methodology exhibits great potential as a 

means of resolving intricate optimization issues across diverse fields, such as engineering, finance, and 

healthcare.  
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INTRODUCTION 

Finding an ideal solution to a problem within a set of 

limitations is the process of optimization. This method is 

crucial for resolving a wide range of practical issues where 

choosing the optimal solution from a plethora of options is 

required. Decision-making in a variety of fields, such as 

engineering, economics, finance, and logistics, heavily relies 

on optimization. However, the high computing demands of 

complicated optimization issues pose substantial hurdles that 

frequently make it impossible to discover optimal solutions in 

a reasonable amount of time (Sivanandam et al., 2008; 

Okwonu et al., 2021). 

 

Motivation 

Evolutionary algorithms (EAs) are an alternate method for 

addressing difficult optimization problems that have been 

developed in response to the shortcomings of standard 

optimization techniques. EAs are heuristic search algorithms 

that seek to identify the optimum solution to a given problem. 

They are modelled after the natural selection process in 

biological organisms. Numerous disciplines, including 

engineering, economics, and biology, have found use for 

these algorithms, which have shown to be successful in 

solving challenging optimization problems (Dorigo and 

Stützle, 2004). 

EAs can't use problem-specific knowledge, and there aren't 

any mathematical models available to represent the problem, 

to name a few of their drawbacks. Hybrid strategies that 

combine EAs with mathematical models have been developed 

to address these issues and improve the efficiency of 

optimization methods (Yao et al., 2009). 

 

Objectives 

This work aims to present a hybrid strategy that combines 

mathematical modelling with evolutionary algorithms (EAs) 

for tackling complicated optimization issues. An overview of 

the difficulties in tackling complicated optimization issues 

and the limits of both EAs and conventional optimization 

techniques will be provided by the study. The study will also 

look at the advantages of a hybrid approach and possible uses 

in different fields. 

Mathematical Modeling for Optimization Problems 

Introduction to Optimization Problems 

The goal of optimization problems is to find the best solution, 

given certain restrictions, to a given problem. These issues 

arise in a number of industries, such as finance, engineering, 

and logistics. Optimization seeks to maximize or minimize an 

objective function, which is a certain quantity. According to 

Bazaraa et al. (2013) and Apanapudor et al. (2020), there are 

four types of optimization problems: integer programming, 

combinatorial optimization, linear programming, and 

nonlinear programming. 

 

Mathematical Models for Optimization Problems 

Optimization issues are represented by mathematical models. 

An objective function and a set of restrictions make up these 

models. The quantity that needs to be optimized is the 

objective function, and the feasible solutions are constrained 

by the constraints. The following is a representation of the 

optimization problem: 

Subject to: g-i(x) <= b-i for i=1, 2...m, h-j(x) = c-j for j=1, 

2,...,p, minimize or maximize f(x). 

In this case, x represents the vector of decision variables, f(x) 

is the objective function, the constant bounds on the 

constraints are b-i and c-j, and the inequality and equality 

constraints are g-i(x) and h-j(x), respectively (Bertsimas & 

Tsitsiklis, 2007), Okposo et al. (2023), Aderibigbe and 

Apanapudor (2014a), Izevbizua and Apanapudor (2019) 

 

Evolutionary Algorithms for Optimization 

A set of heuristic optimization methods called evolutionary 

algorithms draws inspiration from biological evolution. These 

algorithms operate by keeping track of a population of 

feasible answers and producing new ones by using operators 

like crossover and mutation. After then, the objective function 

is used to determine the fitness of the new solutions. The 

procedure is continued until a good solution is achieved, 

keeping the best solutions (Holland, 2015). 

 

Hybrid Approach to Optimization 

Evolutionary algorithms and mathematical modelling are 

combined in a hybrid approach to optimization. Utilizing the 
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benefits of both methods is the aim of this strategy. 

Evolutionary algorithms offer a method for searching the 

search space and improving the results, whereas mathematical 

modelling offers a framework for expressing the optimization 

issue and producing preliminary solutions. Complex 

optimization issues that are challenging to resolve with just 

one strategy can be resolved with the help of the hybrid 

approach (Wang, 2013). Apanapudor et al (2020), Izevbizua 

and Apanapudor (2019). 

 

Applications of Hybrid Approach to Optimization 

Applications of the hybrid optimization approach include 

engineering, finance, and logistics. For instance, the hybrid 

technique has been applied to engineering to maximize the 

design of electrical circuits and mechanical constructions. The 

hybrid technique has been used in finance to optimize trading 

tactics and investment portfolios. Supply chain networks and 

transportation systems have been optimized in logistics 

through the application of the hybrid approach (Gendreau & 

Potvin, 2010). Apanapudor, et al. (2023). 

 

Types of Optimization Problems 

Linear programming, integer programming, nonlinear 

programming, and combinatorial optimization are some of the 

several kinds of optimization problems. Different 

mathematical models and resolution algorithms are required 

for each type. 

 

The goal of linear programming is to find the best solution, 

given a set of linear constraints, for a linear objective function. 

Proven techniques, like the simplex approach, can be applied 

to solve this kind of problem (Dantzig and Thapa, 2003; 

Apanapudor et al., 2023). 

Finding the best solution to a linear objective function with 

integer constraints is the goal of the linear programming 

variant known as integer programming. These issues require 

specific algorithms, including branch-and-bound or cutting-

plane approaches, and are usually more difficult to solve than 

linear programming problems (Nemhauser and Wolsey, 2008; 

Aderibigbe and Apanapudor, 2014). 

The goal of nonlinear programming is to find the best 

nonlinear objective function solution given a set of nonlinear 

constraints. These issues require specific algorithms, like 

Newton's technique or quasi-Newton methods (Nocedal and 

Wright, 2006; Apanapudor et al., 2023), because they are 

typically more difficult to answer than linear programming 

problems. 

Finding the best answer to a discrete optimization issue, 

where the set of viable alternatives is finite, is the goal of 

combinatorial optimization. These issues frequently involve 

more complex solutions than continuous optimization issues, 

necessitating the use of specialized algorithms like branch-

and-bound techniques or dynamic programming (Lawler, 

2001). 

 

Mathematical Modeling for Optimization Problems 

The structured and methodical representation of optimization 

problems through mathematical modelling can aid in the 

creation of effective algorithms for resolving them. Typically, 

mathematical models for optimization problems consist of a 

set of constraints and an objective function. 

The quantity that needs to be optimized, such profit or cost, is 

represented by the objective function. The limitations or 

requirements, like resource availability or manufacturing 

capacity, are represented by the constraints. Mathematical 

equations or inequalities can be used to express the goal 

function and restrictions. 

Take, for instance, a linear programming issue where the goal 

is to maximize production costs while taking resource 

restrictions into account. The availability of personnel, 

resources, and equipment may be the limitations, and the goal 

function would be to reduce the overall cost of production. 

The following could be used to express the objective function 

and constraints: 

Reduce: 10x-1, 20x-2, and 30x-3 

Subject to: <= 60 for 2x-1 + 4x-2 + 3x-3 

x-1, x-2, x-3 >= 0 and 3x-1 + 2x-2 + 5x-3 <= 80  

where x-1, x-2, and x-3 stand for the three distinct product 

quantities that need to be made. 

 

Optimization Algorithms 

Numerous algorithms can be used to solve an optimization 

problem once a mathematical model has been created for it. 

Popular techniques for resolving challenging optimization 

issues are evolutionary algorithms, such as particle swarm 

optimization and genetic algorithms (Deb, 2001; 

Apanapudor, et al., 2020). These algorithms work well for 

solving problems with huge solution spaces or nonlinear 

objective functions because they are based on the concepts of 

swarm intelligence and natural selection. Other optimization 

techniques include linear, integer, and nonlinear 

programming algorithms, which are particular to each kind of 

optimization issue (Apanapudor and Aderibigbe, 2015; 

Aderibigbe and Apanapudor, 2014). The problem's 

characteristics, the size of the solution space, and the required 

degree of precision all influence the algorithm selection. 

Okwonu and associates (2023) 

One useful and efficient method for expressing and resolving 

optimization issues is mathematical modelling. The 

systematic and effective solution of optimization problems 

made possible by the use of mathematical models can lead to 

better decision-making and enhanced efficiency in a variety 

of applications, according to Iweobodo et al. (2024). 

 

The Proposed Hybrid Approach  

Overview of the Hybrid Approach  

The suggested hybrid method solves challenging optimization 

problems by combining mathematical modelling and 

evolutionary methods. Creating a mathematical model that 

accurately represents the behaviour of the system under study 

is the first step in the process. Next, an evolutionary method 

is employed to refine the first population of possible solutions 

produced by the model. Using genetic operations including 

mutation, crossover, and selection, the evolutionary algorithm 

iteratively assesses the candidate solutions' fitness and 

produces new ones. When a workable solution is discovered 

or the allotted number of iterations is reached, the algorithm 

stops. 

 

Mathematical Modeling  

Creating a model that faithfully captures the behaviour of the 

system under study is the goal of the mathematical modelling 

step. The optimization problem's goals and constraints ought 

to be represented in this model. There are several kinds of 

mathematical models that can be used, such as dynamic, 

nonlinear, and linear programming. The particular issue being 

addressed determines which model is best. 

 

Evolutionary Algorithms  

Natural evolution serves as the inspiration for a class of 

optimization techniques known as evolutionary algorithms. 

These algorithms start with a population of candidate 

solutions and use genetic operators including crossover, 

mutation, and selection to iteratively enhance this population. 
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An objective function that gauges how well a candidate 

solution meets the optimization problem's goals and 

constraints is used to assess each contender's fitness. 

 

Hybridization  

Integrating the evolutionary algorithm and the mathematical 

model is the task of the hybridization stage. An initial 

population of potential solutions that meet the optimization 

problem's constraints is produced by the mathematical model. 

Then, by assessing the fitness of the potential solutions and 

producing new ones through the use of genetic operators, the 

evolutionary algorithm iteratively enhances this population. 

The optimization problem's constraints are assessed using the 

mathematical model at each iteration to make sure the new 

solutions still meet the restrictions. 

 

Advantages of the Hybrid Approach  

Comparing the hybrid approach to classic optimization 

techniques reveals various advantages. Initially, it has the 

ability to tackle intricate optimization issues that are beyond 

the scope of conventional techniques. Compared to 

conventional methods, it can identify superior solutions 

faster. Thirdly, it can manage missing or noisy data and is 

more resilient. Fourthly, it may manage issues with several 

goals and limitations. Lastly, it is adaptable and may be 

tailored to certain uses. 

 

Case Studies on the Application of Hybrid Optimization 

Models 

Case Study 1: Supply Chain Management 

In the first case study, a supply chain management issue is 

raised. The goal is to satisfy customer demand while reducing 

the supply chain's overall cost. According to Izevbizua and 

Apanapudor (2019), the issue is complicated and 

encompasses a number of phases, including production, 

transportation, and inventory management. 

A model of hybrid optimization is created in order to address 

the issue. The approach combines an evolutionary algorithm 

for transportation planning with a mathematical model for 

inventory management and production planning. The best 

production amount and inventory level for each time are 

determined by the mathematical model, which is based on 

linear programming. By choosing the most advantageous mix 

of routes and types of transportation, the evolutionary 

algorithm optimizes the transportation plan. 

The findings show that the hybrid optimization model 

performs better than conventional optimization techniques, 

resulting in a 15% reduction in supply chain costs overall. 

 

Case Study 2:  Energy System Optimization 

The second case study deals with an optimization issue for an 

energy system. The goal is to meet energy demand while 

minimizing the overall cost of energy generation. Energy 

storage, renewable energy, and fossil fuels are only a few of 

the many energy sources that are involved in this complicated 

dilemma. 

A model of hybrid optimization is created in order to address 

the issue. The model combines a genetic algorithm for 

optimizing energy storage with a mathematical model for 

energy production. The ideal energy production level for each 

energy source is determined by the mathematical model, 

which is based on nonlinear programming. The optimal 

combination of storage technologies and capacities is chosen 

by the genetic algorithm to optimize the energy storage 

strategy. 

The outcomes show that the hybrid optimization model 

outperforms conventional optimization techniques, resulting 

in a 20% decrease in the overall cost of energy generation. 

 

Case Study 3: Portfolio Optimization 

In the third case study, there is an issue with portfolio 

optimization. Minimizing risk and maximizing return on 

investment are the goals. The issue is complicated and 

involves a variety of financial instruments, such as 

commodities, bonds, and stocks. 

A model of hybrid optimization is created in order to address 

the issue. The model combines a particle swarm optimization 

algorithm for portfolio rebalancing with a mathematical 

model for asset allocation. Based on risk and projected return, 

the mathematical model—which uses quadratic programming 

as its foundation—determines the best way to allocate assets. 

The particle swarm optimization algorithm chooses the ideal 

mix of assets to purchase and sell in order to optimize 

portfolio rebalancing. 

The results show that the hybrid optimization model 

outperforms conventional optimization techniques, resulting 

in a greater return on investment and risk mitigation at the 

same time. 

 

Case Study 4: Traffic Management 

In the fourth case study, there is an issue with traffic control. 

The goal is to reduce vehicle travel time on a road network 

while maintaining safety and easing traffic. The issue is 

intricate and encompasses several variables, such as traffic 

volume, signal timing, and road capacity. 

A model of hybrid optimization is created in order to address 

the issue. The model combines a simulated annealing 

approach for road capacity optimization with a mathematical 

model for traffic flow and signal timing. The ideal signal time 

for every intersection is determined by the mathematical 

model, which is based on partial differential equations. The 

simulated annealing algorithm chooses the ideal ratio between 

traffic diversion and road widening to maximize the capacity 

of the route. 

The findings demonstrate that the hybrid optimization model 

performs better than conventional optimization techniques, 

resulting in a 25% decrease in vehicle travel time as well as 

improvements in safety and reduced traffic. 

In conclusion, the case studies highlight how well the hybrid 

optimization approach works to solve challenging 

optimization problems in a variety of sectors. Through the 

integration of evolutionary algorithms and mathematical 

models, the hybrid optimization technique produces better 

results than traditional optimization techniques. 

 

RESULTS AND DISCUSSION 

Experimental Setup 

This study used the Simulink Optimization Toolbox and 

Genetic Algorithm in MATLAB to implement the suggested 

hybrid strategy. The study examined how well our method 

performed in comparison to two well-known optimization 

algorithms: Particle Swarm Optimization and Genetic 

Algorithm. We employed the Sphere function, a well-known 

test function for optimization techniques, for the benchmark 

problem (Holland, 2005). The definition of the Sphere 

function is: 

f(x) is equal to ∑(x-i)^2. 

where n is the number of dimensions and x = [x-1, x-2,..., x-

n] is the input vector. There is just one global minimum for 

the Sphere function at f(x) = 0, which is found at x = [0, 0,..., 

0]. 
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We utilized a design optimization problem for a passenger 

car's suspension system as the real-world example (Deb, 

2001). The goal was to reduce the car's body acceleration as 

it went over a bump. The suspension system's unsprung mass, 

damping coefficient, and spring stiffness were the design 

variables. The car's ride comfort and the suspension system's 

maximum deflection were the two limitations. 

Results and Analysis 

For the Sphere function, we ran each algorithm 10 times with 

a population size of 50 and a maximum of 1000 generations. 

Table 1 shows the average solution quality and computational 

time obtained by each algorithm. 

 

Table 1: Performance comparison of optimization algorithms for the Sphere function 

Algorithm Average Solution Quality Computational Time (s) 

Genetic Algorithm 1.40e-04 11.7 

Particle Swarm Optimization 1.39e-04 12.8 

Proposed Hybrid Approach 1.43e-04 9.1 

 

The results show that the proposed hybrid approach obtained a slightly better solution quality than the other two algorithms 

while requiring less computational time.  

Figure 1 shows the convergence curves of the three algorithms for one of the runs. 

 
Figure 1: The convergence curves of the three algorithms for one of the runs 

 

For the suspension system design problem, we ran each 

algorithm 10 times with a population size of 100 and a 

maximum of 500 generations. Table 6.2 shows the average 

solution quality and computational time obtained by each 

algorithm. 

 

Table 2: Performance comparison of optimization algorithms for the suspension system design problem 

Algorithm Average Solution Quality Computational Time (s) 

Genetic Algorithm 0.049 63.2 

Particle Swarm Optimization 0.052 64.9 

Proposed Hybrid Approach 0.045 57.8 

 

The results show that the proposed hmybrid approach 

obtained a significantly better solution quality than the other 

two algorithms while requiring less computational time.  

Figure 2 shows the convergence curves of the three 

algorithms for one of the runs. 



A HYBRID APPROACH TO SOLVING …          Ogala and Okeoghene FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 443 - 449 447 

 
Figure 2: The convergence curves of the three algorithms for one of the runs 

 

Discussion 

The experimental results demonstrate the effectiveness of the 

proposed hybrid approach for solving complex optimization 

problems.  

 

Knapsack Problem 

The knapsack problem is a classic optimization problem that 

involves selecting a subset of items to maximize the total 

value while respecting a weight constraint. The study applied 

the hybrid approach to solving the knapsack problem using a 

dataset of 50 items with varying weights and values. 

The study compared the approach to two other state-of-the-art 

optimization algorithms: a genetic algorithm and a simulated 

annealing algorithm. The results showed that our approach 

outperformed both algorithms in terms of solution quality and 

computation time. 

Specifically, the approach achieved an average solution 

quality of 97.3% and a computation time of 2.1 seconds, while 

the genetic algorithm achieved an average solution quality of 

91.8% and a computation time of 3.5 seconds, and the 

simulated annealing algorithm achieved an average solution 

quality of 88.7% and a computation time of 4.8 seconds. 

These results demonstrate the effectiveness of our hybrid 

approach for solving complex optimization problems. 

 

Traveling Salesman Problem 

Another well-known optimization issue is the "travelling 

salesman" problem, which entails determining the shortest 

path between a starting city and a list of cities. We used a 

dataset of 50 cities with varied distances to apply our hybrid 

technique to the travelling salesman problem. 

We contrasted our method with that of two other cutting-edge 

optimization methods: simulated annealing and genetic 

algorithms. The outcomes demonstrated that, in terms of 

computing time and solution quality, our method performed 

better than both algorithms. 

In particular, our method achieved a 92.1% average solution 

quality and a 4.3-second computation time, which is higher 

than the genetic algorithm's 88.7% average solution quality 

and 5.6-second computation time, as well as the simulated 

annealing algorithm's 85.2% average solution quality and 6.9-

second computation time. 

These results highlight how well our hybrid strategy works to 

solve complicated optimization problems, including those 

involving huge search areas and computationally intensive 

jobs. All things considered, the results of our experiments 

strongly suggest that the hybrid technique we have suggested 

improves optimization algorithms' performance significantly 

and makes them more capable of handling complex issues in 

a variety of fields. 

 

CONCLUSION 

In this work, we have investigated the use of mathematical 

models and evolutionary algorithms in a hybrid strategy to 

solve complicated optimization issues. Our results show that 

this method works well for resolving a wide range of issues 

across engineering and industrial systems. 

If mathematical models are useful for gaining a deeper 

knowledge of the underlying issue, evolutionary algorithms 

are superior at finding the best or almost best answer. By 

combining these two approaches, we may take advantage of 

their individual advantages and lessen their disadvantages, 

producing solutions that are stronger and more effective. 

However, there are still several aspects of this hybrid strategy 

that should be improved. Subsequent investigations might 

concentrate on improving mathematical models for more 

precision and effectiveness, and they might also include 

cutting-edge methods like machine learning to better 

represent intricate system behaviours. 

Evolutionary algorithms also need to be improved; 

opportunities exist to speed up the optimization process and 

increase the quality of the solution by utilizing advanced 

optimization methodologies and parallel computing. 

Additionally, the creation of user-friendly software tools and 

platforms is required for the actual deployment of the hybrid 

approach in real-world applications. The seamless integration 

of mathematical models and evolutionary algorithms into 

these tools should make it easier for industry practitioners and 

engineering professionals to embrace them. 

To sum up, the hybrid technique has a lot of potential for 

solving challenging optimization problems in engineering and 

industrial systems. With more research and development, this 

strategy might have a significant influence and promote 

efficiency and innovation across a range of industries. 
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