
MAGNETOHYDRODYNAMICS FLOW OF…              Lawal et al. FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 555 - 562 555 

8 

 

MAGNETOHYDRODYNAMICS FLOW OF A FREE CONVECTIVE DUSTY FLUID BETWEEN TWO 

PARALLEL OSCILLATING VERTICAL POROUS PLATES WITH DISSIPATIVE EFFECTS 

 

*1Lawal, O. Waheed, 1Osewanu D. Sottin and 2Sikiru A. Babatunde 

 
1Department Mathematics, Tai Solarin University of Education, Ijagun, Ogun State, Nigeria 

 2Department of Physical, Mathematical and Computer Science, Aletheia University, Ago-Iwoye, Ogun State, Nigeria 

 

*Corresponding authors’ email: waheedlawal207@yahoo.com   

 

ABSTRACT 

This research investigates the unsteady Magnetohydrodynamics (MHD) flow of a free convective dusty fluid 

between two parallel oscillating vertical porous plates with dissipative effects. The dusty fluid is thought to be 

moving along the infinite plates as a result of an outside magnetic force.  The temperature, velocity and pressure 

of the particles flowing along the channel are kept constant. The non-linear PDEs that govern the flow of the 

fluid are solved numerically using finite difference method and Maple 23 is used to implement and simulate 

the obtained scheme. The result are analyzed and presented inform of graphs. It is established that the effect 

of Reynolds number, viscoelastic parameter and Prandtl number on the velocity and temperature distribution 

are subdued by magnetic field.  
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INTRODUCTION 

Magnetohydrodynamics (MHD) is a captivating and intricate 

field that combines principles of magnetism and fluid 

dynamics to explore how electrically conductive fluids 

behave under the influence of magnetic fields. This 

interdisciplinary area is crucial for understanding phenomena 

in astrophysics, plasma physics, and various industrial 

processes. At its core, MHD focuses on how magnetic fields 

affect the movement of electrically conductive fluids, and 

vice versa. The fundamental equations governing MHD 

include the Navier-Stokes equations (which describe fluid 

motion), Maxwell's equations (describing electromagnetism), 

and Ohm's law applied to moving mediums. These equations 

are interconnected and nonlinear, presenting challenges but 

also opportunities for insightful analysis and numerical 

exploration. MHD plays a pivot role in oil and gas production 

and many other fields like astrophysics.  

Similarly, MHD helps explain the dynamics of the solar wind 

and its interaction with the planetary magnetosphere. The 

Earth's magnetic field, generated by the motion of molten iron 

in its outer core, is a result of MHD processes. This 

geodynamo effect is critical for maintaining the magnetic 

shield that protects Earth from harmful cosmic radiation. 

Additionally, MHD provides explanations for phenomena 

observed in the atmospheres and interiors of other celestial 

bodies in our solar system. In industry, MHD finds 

applications in metallurgy and materials processing, where 

precise control of molten metal flow is essential for producing 

high-quality materials. 

The effects of radiation absorption on MHD Jeffrey fluid flow 

over a vertical plate through a porous material were 

investigated by Mopuri et al.(2021). The models for the 

temperature, concentration, and velocity distributions were 

obtained by deriving and solving the equations guiding the 

fluid flow using the perturbation approach. The effects of 

mass transfer on MHD oscillatory flow for Carreau fluid 

through an inclined porous channel under the impact of 

temperature and concentration at a slant angle on the flow 

center with the effect of gravity were examined by Dheia 

(2020) using a mathematical model. He examined the 

acquired graphs and explained the implications of various 

parameters that are useful for fluid movement.  

Bang et al. (2022) examined the combined effects of radiation 

and chemical reaction on the MHD free convection flow 

across inclined plates encased in a porous medium of an 

electrically conductive incompressible viscous fluid. They 

consider the spontaneously initiated plate with changing mass 

diffusion and derived its equations, which the perturbation 

approach is used to solve analytically. The unstable heat 

transfer and incompressible MHD Poiseuille flow of a viscous 

liquid across a porous channel were investigated by Sreedhara 

et al.(2022). They believed that the fluid, whose viscosity 

varies with temperature, is influenced by an oscillating 

pressure gradient and confined by two horizontal plates. 

Mustafa et al. (2021) studied the transient convection MHD 

flow between two infinite parallel plates with porous medium. 

They applied a periodic magnetic field that was perpendicular 

to the fluid while it was under a continuous pressurized 

gradient. After obtaining the dimensionless governing 

momentum and energy equations, a finite difference 

technique is used to solve them numerically. Unsteady MHD 

flow between two non-conducting infinite vertical plates in 

the presence of a uniformly inclined magnetic field was 

examined by Mrinmoy et al. in 2023. In their research, one of 

the plates is thought to be moving at a constant speed, while 

the other plate is thought to be adiabatic. 

Under the influence of a uniform magnetic field applied 

normal to the surface, Prusty et al. (2020) investigated MHD 

free convective, dissipative boundary layer flow past a 

vertical surface embedded in a porous matrix with conjugate 

effect of thermophoresis and heat source in the presence of 

thermal radiation, chemical reaction, and constant suction. 

Together with their studies, they can demonstrate the solutal 

and thermal buoyancy effects. The free convective unstable 

fluctuating, MHD flow of an electrically conducting 

viscoelastic dusty fluid in a channel regulated by the upper 

plate's motion and an oscillating pressure gradient was 

examined by Farhad et al. (2020). Using the assumed periodic 

solutions, they reduced the coupled governing partial 

differential equations for the fluid and dust particle to an 

ordinary differential equation, which they eventually solved 

using the Poincare-Light Hill Perturbation Technique. 

The effects of radiation on heat transfer and 

magnetohydrodynamic free convection flow through an 

extremely porous plate were examined by Nagaraju et al. 
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(2021). In their research, they verified and analyzed numerous 

parameter reactions on velocity, temperature, and 

concentration using graphs. Vidhya et al. (2020)  investigated 

the effects of radiation and a heat source on unstable natural 

convective MHD flow passing through a vertical porous plate 

when a uniform magnetic field was supplied perpendicular to 

the flow direction. Sakthikala et al. (2020) examined the 

effects of suction and injection through a vertical channel with 

non-uniform wall temperature during MHD flow of second-

grade fluid through a vertical porous medium in a magnetic 

field. Using the regular perturbation approach, the governing 

equations under flow parameters on velocity, temperature, 

and concentration profiles are solved. The results are 

graphically displayed.  

Linah et al. (2023) explored how mass and heats are 

transferred in (MHD) flow. Their focus is on understanding 

the flow over an inclined plate positioned near a semi-infinite 

porous plate. To tackle this problem, they combine the laws 

of electromagnetism with the Navier-Stokes equations to 

develop a comprehensive MHD flow model. Under the 

influence of a uniform transverse magnetic field, Ugwu et al. 

(2022) investigated the theoretical analysis of steady (MHD) 

free convective and mass transfer flow past an infinite vertical 

porous plate. They employ the Method of Lines (MOL) to 

solve non-dimensional coupled partial differential equations 

using numbers. The flow's velocity expression, temperature, 

and concentration profiles were primarily shown and 

discussed. 

The MHD free convection and heat transfer fluid flow 

through a semi-infinite vertical porous plate with the impacts 

of chemical reaction were studied by Biswas et al. (2018). 

Following the presentation of the governing equations of the 

flow in terms of a system of partial differential equations 

(PDEs), the explicit finite difference method (EFDM) is used 

to solve the problems. Finally, using the graphics program 

tecplot-9, the acquired data are plotted and explained 

following the stability convergence test (SCT). 

This work examines the unsteady MHD flow of a free 

convective dusty fluid between two parallel plates with 

viscous and magnetic dissipation, motivated by a few chosen 

research studies. The method of solving the associated system 

of partial differential equations has been selected to be the 

finite difference method. The generated systems of equations 

were implemented on MAPLE 23 in order to compute the 

necessary results for the impact of various parameters on the 

temperature and velocity profile. 

 

MATERIALS AND METHODS 

Formulation of the problem 

It is assumed that the dusty fluid is flowing along the infinite 

plates in an upright orientation along the x-axis with the y-

axis taken normal to the plate due to the external magnetic 

force. When t<0, the fluid's thermal state (T) and that of the 

plates are equal. The temperature outright increased or 

reduced to 𝑇𝑤 while the plates started from rest advances in 

its own plane with uniform velocity 𝑈0 at 𝑡 > 0. With the 

exception of the influence of density change with 

temperature, which has only been taken into account in the 

external force component, the fluid properties in this case are 

assumed to be adiabatic. The buoyancy force acting on the 

dust particles is ignored. Following Saffman's (1962) work on 

a dusty fluid, Marble (1963) provided the following 

governing equations for two-dimensional incompressible 

flow: 

Continuity Equation 

∇ ∙ �̅� = 0,     (1) 

Momentum Equation 

𝜌 [
𝜕𝑢

𝜕𝑡
+ (∇ ∙ �̅�)�̅�] = −∇P𝜌 + ∇(μ∇ ∙ �̅�) + F̅p + J × β0 −

μ

𝐾1
�̅�

        (2) 

𝜌𝑐𝑝 [
𝜕�̅�

𝜕𝑡
+ (∇ ∙ �̅�)�̅�] = 𝐾2∇2�̅� + 𝑄𝑝 + 𝜑𝑉𝐷 + 𝜑𝑀𝐷  (3) 

∇ ∙ �̅�𝑝 = 0,       (4) 

𝜌𝑝 [
𝑢𝑝

𝜕𝑡
+ (∇ ∙ �̅�𝑝)�̅�𝑝] = −∇𝑃𝑝 − F̅p     (5) 

𝜌𝑝𝑐𝑝 [
𝜕�̅�𝑝

𝜕𝑡
+ (∇ ∙ �̅�𝑝)�̅�𝑝] = �̅�𝑠 − 𝑄𝑝     (6) 

The viscosity and volume fraction of the solid particle 

pseudo-fluid are ignored. 

• �̅�, �̅�, 𝑃 𝑎𝑛𝑑 𝜌 denote the velocity, temperature, pressure, 

and density of the fluid, respectively, while subscript "𝑝" 

indicates corresponding properties of the particle phase.  

•  μ and 𝑐𝑓denotes viscosity and specific heat of fluid while 

𝑐𝑝 is the specific heat of particles. 

• J represent current density, 

•  β0 is a uniform magnetic field, 

•  𝐾1 and 𝐾2 are the permeability and thermal conductivity 

of the fluid respectively, 

• �̅�𝑝 is an absolute fluid particles interaction force per unit 

volume, 

•  𝜑𝑉𝐷 and 𝜑𝑀𝐷 are viscosity and magnetic dissipation 

respectively, 

•  𝑄𝑝 is total thermal interaction between the fluid and the 

particle phase per unit volume, 

•  𝑢𝑝 is velocity of dust particles and 𝑃𝑝 is the mass of the 

dusty particles per unit volume of the fluid. 

When the particle's relative velocity is used to calculate the 

Reynolds number and it is less than one, Stokes' law describes 

the force that accelerates the particle to the fluid speed, 

where 𝐾 = 6𝜋μ𝑎 is a stokes’ constant and  𝑎 is radius of the 

dust particle. Presuming that N represents the particle number 

density �̅�𝑝 = 6𝜋𝑁μ𝑎 (�̅�𝑝 − �̅�) = 𝜌𝑝
(𝑢𝑝−𝑢)

𝜏𝑚
 is the expression 

for the total contact force per unit volume. The relaxation 

time, denoted by 𝜏𝑚 =
𝑚

6𝜋μ𝑎
, is the amount of time that the 

particle phase's velocity decreases to (
1 

𝑒
) times its original 

value in relation to the fluid phase and the mass of each 

particle is denoted by m. Similarly, 𝑄𝑝 =
𝑝𝑐𝑠(𝑇𝑝−𝑇)

𝜏𝜏
 gives the 

overall thermal interaction between the fluid and the particle 

phase per unit volume and the particle phase's thermal 

relaxation period is represented by 𝜏𝜏 =
𝑚𝑐𝑠

4𝜋𝐾𝑎
 (the particle 

phase's temperature in relation to the fluid is (
1 

𝑒
) times its 

original value). Typically, simplifying assumptions are made 

for diluted suspensions in most studies on dusty fluids. We 

make following assumptions in this study; 

i. The particle's number density N, or the quantity of dust 

particles per unit volume of the   

ii. mixture is constant. 

iii. The approximation by Boussinesq is accurate. 

iv. It is assumed that the dust particles are all 

undeformable, spherical in shape, and have the same 

mass and radius. 

v. The pressure has the same velocity vector and 

temperature locally since the solid particles spread 

sparsely and do not interact. 

As a result, the pressure related to the particle cloud is 

minimal as this assumption eliminates the randomness in local 

particle motion. Consequently, the mixture's total pressure 

will equal the fluid pressure, p. Since the plate is infinite in 

the x-direction, the only functions that determine the flow 

amounts are y and t. Therefore, �̅� ≡ 𝑢(𝑦, 𝑡), �̅�𝑝 ≡ 𝑢𝑝(𝑦, 𝑡), 

�̅� ≡ 𝑇(𝑦, 𝑡), �̅�𝑝 ≡ 𝑇𝑝(𝑦, 𝑡) and 𝛾 = 𝛾𝑝 = 0. As a result, the 
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fluid and particle phases' continuity equations are both 

satisfied. Clearly, the governing equations of motion for the 

viscous, unsteady, incompressible, dusty, and particle phases 

hold the same values. So the governing equations (1-6) 

become; 

𝜌
𝜕𝑢

𝜕𝑡
= −

𝜕𝑃

𝜕𝑥
+ μ

∂2𝑢

∂y2 − 𝜌𝑔 + 𝑘𝑁(𝑢𝑝 − 𝑢) − 𝜎β0
2𝑢 −

μ

𝐾1
𝑢 

     (7) 

 
𝜕𝑢𝑝

𝜕𝑡
= −

K

𝑚
(𝑢𝑝 − 𝑢)   (8) 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝐾2

∂2𝑇

∂y2 +
𝜌𝑐𝑠(𝑇𝑝−𝑇)

𝜏𝑇
+ μ(

𝜕𝑢

𝜕𝑦
)2 + β0

2u2 (9) 

𝜕𝑇𝑝

𝜕𝑡
=

𝑇−𝑇𝑝

𝜏𝑇
    (10) 

𝑢(𝑦, 𝑡), 𝑢𝑝(𝑦, 𝑡), are  respectively for the velocities of the 

fluid and particle, while 𝑃 represent pressure. From equation 

(7), we get; 

− (
∂P

∂x
+ ρ∞g) = 0    (11) 

Taking away −
𝜕𝑃

𝜕𝑥
 from equation (7) and (11) we deduced, 

𝜌
𝜕𝑢

𝜕𝑡
= μ

∂2𝑢

∂y2 + 𝑔(𝜌∞ − 𝜌) + 𝑘𝑁0(𝑢𝑝 − 𝑢) − 𝜎β0
2𝑢 −

μ

𝐾1
𝑢 

     (12) 

NOTE: 𝜌∞ = 𝜌, and they are both constant in all terms 

excepect the bouyancy term 𝑔(𝜌∞ − 𝜌). From equation above 

we get; 

𝑔β𝜌∞(𝑇 − 𝑇∞) = 𝑔(𝜌∞ − 𝜌)   (13) 

By substituting equation (13) into (12), we obtain, 

𝜌
𝜕𝑢

𝜕𝑡
= μ

∂2𝑢

∂y2 + 𝑔β𝜌∞(𝑇 − 𝑇∞) + 𝑘𝑁(𝑢𝑝 − 𝑢) − 𝜎β0
2𝑢 −

μ

𝐾1
𝑢,     (14) 

where β is the coefficient of volume expansion and μ is the 

fluid's kinematic viscosity. 

The initial and boundary conditions of the problem are given 

by; 

For 𝑡 ≤ 0; 𝑢 = 𝑢𝑝 = 0; 𝜃 = 𝜃𝑝 = 0  (15) 

 𝑦 = 0; 

 𝑡 > 0; {
𝑢 = 𝑢0 + 𝜀𝑢0𝑒𝑖𝜔𝑡;  𝑢𝑝 = 𝑢0 + 𝜀𝑢0𝑒𝑖𝜔𝑡

𝑇 = 𝑇𝑤 +  𝜀(𝑇𝑤 + 𝑇∞)𝑒𝑖𝜔𝑡;  𝑇𝑝 = 𝑇𝑤 +  𝜀(𝑇𝑤 + 𝑇∞)𝑒𝑖𝜔𝑡} 

 𝑦 = ℎ;     {𝑢 → 0; 𝑢𝑝 → 0; 𝑇 → 𝑇∞;  𝑇𝑝 → 𝑇∞, } (16) 

Considering non-dimensional variables; 

{

𝑦 =
𝑢0�̅�

𝛾
;  𝑢 =

�̅�

𝑢0
; 𝑢𝑝 =

�̅�𝑝

𝑢0
;  𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
;  𝛾 =

𝑐𝑠

𝑐𝑝
;  𝑡 =

�̅�

𝛾
𝑢0

2;

𝜌 =
μ𝑐𝑝

𝐾
; ∝=

𝑁0𝑚

𝜌
;  𝜆 =

𝜏𝑝𝑢0

𝛾
;  𝜃𝑝 =

𝑇𝑝−𝑇∞

𝑇𝑤−𝑇∞
;  𝑝 =

μ𝑐𝑝

𝑘
;  𝐸 =

𝑢0
2

𝑐𝑝(𝑇𝑤−𝑇∞)
;
} 

     (17) 

Where 𝐺 is Grashof value, 𝐸𝑐 is the Eckert value, Pr is the 

Prandtl value, ∝ is our concentration variable and 𝜆 is the 

nondimentional relaxation time, then, equation (14), (8), (9) 

and (10) give us; 
𝜕𝑢

𝜕𝑡
=

1

Re

∂2𝑢

∂y2 + 𝐺𝜃 +
∝

𝜆
(𝑢𝑝 − 𝑢) −

Ha2𝑢

Re
−

K𝑢

R
; (18) 

𝜕𝑢𝑝

𝜕𝑡
= −

1

𝜆
(𝑢𝑝 − 𝑢);   (19) 

𝜕𝜃

𝜕𝑡
=

1

Pr

∂2𝜃

∂y2 +
2∝

3𝜆Pr
(𝜃𝑝 − 𝜃) + 𝐸𝑐(

𝜕𝑢

𝜕𝑦
)2 + 𝐻𝑎𝐸𝑐𝑢2; (20) 

𝜕𝜃𝑝

𝜕𝑡
= −

2

3𝜆𝛾
(𝜃𝑝 − 𝜃);   (21) 

𝑡 ≤ 0;  𝑢 = 𝑢𝑝 = 0; 𝜃 = 𝜃𝑝 = 1; 

𝑦 = 0; 𝑡 > 0; 

𝑢 = 1 + 𝜀𝑒𝑖𝜔𝑡; 𝑢𝑝 = 1 + 𝜀𝑒𝑖𝜔𝑡; 𝜃 = 1 + 𝜀𝑒𝑖𝜔𝑡;

 𝜃𝑝 = 1 + 𝜀𝑒𝑖𝜔𝑡; 

𝑦 → ∞;  𝑢 → 0; 𝑢𝑝 → 0;  𝜃 → 0; 𝜃𝑝 → 0  (22) 

By adopting finite different methods FDMs, we solve 

equation (18), (19), (20) and (21). By replacing the available 

coefficients in the equations with their finite difference 

quotients, the following finite difference equations are 

produced; 

 (
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

∆𝑡
) =

1

Re
(

𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

(∆𝑦)2
) + 𝐺𝜃𝑖,𝑗 +

∝

𝜆
(𝑢𝑝(𝑖,𝑗) −

𝑢(𝑖,𝑗)) −
Ha2𝑢(𝑖,𝑗)

Re
−

K𝑢(𝑖,𝑗)

R
   (23) 

(
𝑢𝑝(𝑖,𝑗+1)−𝑢𝑝(𝑖,𝑗)

∆𝑡
) = −

1

𝜆
(𝑢𝑝(𝑖,𝑗) − 𝑢(𝑖,𝑗))  (24) 

n(
𝜃𝑖,𝑗+1−𝜃𝑖,𝑗

∆𝑡
) =

1

Pr
(

𝜃𝑖+1,𝑗−2𝜃𝑖,𝑗+𝜃𝑖−1,𝑗

(∆𝑦)2
) +

2∝

3𝜆𝑃𝑟
(𝜃𝑝(𝑖,𝑗) −

𝜃(𝑖,𝑗)) + 𝐸𝑐(
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

∆
)2 +             𝐻𝑎𝐸𝑐𝑢(𝑖,𝑗)

2 (25) 

(
𝜃𝑝(𝑖,𝑗+1)−𝜃𝑝(𝑖,𝑗)

∆𝑡
) = −

2

3𝜆𝛾
(𝜃𝑝(𝑖,𝑗) − 𝜃(𝑖,𝑗)) (26) 

In the equation (23), (24), (25) and (26) the subscript 𝑖 denotes 

𝑦 and 𝑗 denotes 𝑡. Taken ∆𝑦 to be 0.1. 

From initial conditions; 

{
𝑢(0,0) = 0, 𝑢𝑝(0,0) = 0;

𝜃(0,0) = 0, 𝜃𝑝(0,0) = 0
},   (27) 

For all 𝑖 except 𝑖 = 0, 

{
𝑢(𝑖, 0) = 1, 𝑢𝑝(𝑖, 0) = 1;

𝜃(𝑖, 0) = 1, 𝜃𝑝(𝑖, 0) = 1
},   (28) 

Based on the boundary circumstances, 

{
𝑢(0, 𝑗) = 1 + 𝜀𝑒𝑖𝜔𝑗 , 𝑢𝑝(0, 𝑗) = 1 + 𝜀𝑒𝑖𝜔𝑗;

𝜃(0, 𝑗) = 1 + 𝜀𝑒𝑖𝜔𝑗 , 𝜃𝑝(0, 𝑗) = 1 + 𝜀𝑒𝑖𝜔𝑗
}, for all 𝑗. 

     (29) 

By analytical solutions of (18) for ∝= 0 and taking 𝑦 = 5 as 

the point of 𝑦 = ∞ as all of 𝑢, 𝑢𝑝, 𝜃, 𝜃𝑝  approach zero (0) at 

𝑦~5 for all values of P and G. So, we take 

𝑢(5, 𝑗) = 0, 𝑢𝑝(5, 𝑗) = 0, 𝜃(5, 𝑗) = 0, 𝜃𝑝(5, 𝑗) = 0, (30) 

This is correct for every 𝑗 and align with the boundary 

condition. In terms of velocities and temperatures, the 

velocities at the end of the time step, , 𝑢𝑖,j+1 and 𝑢𝑝(𝑖,j+1) , i= 

1 to 5, are iterated from (22) and (24). Likewise, 𝜃𝑖,j+1 and 

𝜃𝑝(𝑖,j+1)  are iterated from (25) and (26). This is continuously 

done until t = 1, (j = 100). These iterations were carried out 

and the graphs of 𝑢 and 𝑢𝑝 against 𝑦 and 𝜃 and 𝜃𝑝 against 𝑦 

were generated using MAPLE-23 package. The numerical 

results acquired for ∝= 0 is compared with the results 

acquired by the previous researchers and there is no 

contradiction. Also, for the accuracy of these results, there is 

comparison between results acquired and the analytic solution 

at 𝑡 = 0.2, 0.3, 0.5. For every range of 𝑦 values the absolute 

agreement was established with greatest error not up to one 

percent. The convergence was also established for minute 

values of ∆𝑡; namely, ∆𝑡 =
0.001, 0.002, 0.003, 0.004, 0.005. The difference in the 

results is trivial. It has been established by previous 

researchers that 𝐺 < 0 corresponds to plate gaining heat and 

𝐺 > 0 corresponds to plate losing heat. 

 

RESULTS AND DISCUSSION 

The effect of the relevant non-dimensional parameter on the 

velocity and temperature profile at extremely high and low 

constant values of magnetic field (Ha) were given and 

analyzed with the help of a graph as a result of iterating the 

preceding numerical approach using Maple 23.     
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1: Effects of the concentration parameter (𝛼)  on the graphs of velocity and temperature against time for 𝑃𝑟 = 0.7,
𝛾 = 0.6, 𝐾 = 0.2, 𝐻𝑎 = 2, 𝐺𝑟 = 5, 𝜆 = 2, 𝑅𝑂 = 2, 𝐸𝑐 = 0.001, 𝑅 = 0.1, 𝜀 = 0.01, 𝜔 = 1 

 

Figure 1, confirmed that as the concentration parameter (𝛼) 

increases, the velocity and the temperature of the flow 

decreases this is because the concentration of particles of the 

fluid has direct impact on viscosity of the fluid which can be 

determined by multiple factors that are not limited to particle 

size, chemical reaction and interactions. The reduction in 

temperature of the plate increases the chemical bond of the 

flow and this directly reduces the velocity of the flow.  

 



MAGNETOHYDRODYNAMICS FLOW OF…              Lawal et al. FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 555 - 562 559 

 

(a) 

 

(b) 

Figure 2: Effects of the Hartmann number (𝐻𝑎)  on the graphs of velocity and temperature   against time for  𝑃𝑟 = 0.7, 𝛾 =
0.6, 𝐾 = 0.2, 𝐺𝑟 = 2, 𝜆 = 2, 𝛼 = 0.1, 𝑅𝑂 = 2, 𝐸𝑐 = 0.001, 𝑅 = 0.1, 𝜀 = 0.01, 𝜔 = 1 

 

Figure 2, shows that the increase in Hartmann number (𝐻𝑎) brings about a decrease in the velocity of the flow due to its 

magnetic effect. For channel flow between two parallel plates with an external magnetic field perpendicular to the channel 

walls, the velocity of the (MHD) flow in the presence of an external magnetic field reduces.   

 

 

(a) 

 

(b) 

Figure 3: Effects of the Grashof number (𝐺𝑟)  on the graphs of velocity and temperature against time for 𝑃𝑟 = 0.7, 𝛾 =
0.6, 𝐾 = 0.2, 𝐻𝑎 = 2, 𝜆 = 2, 𝛼 = 0.1, 𝑅𝑂 = 2, 𝐸𝑐 = 0.001, 𝑅 = 0.1, 𝜀 = 0.01, 𝜔 = 1 

 

Figure 3, confirms that the increase in the value of Grashof number (𝐺𝑟)  implies the increase in the wall temperature and this 

makes the bond(s) between the fluid to become weaker which make the strength of the internal friction to decrease, then the 

gravity to becomes stronger enough to speed-up the velocity of the flows.  
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(a) 

 

(b) 

Figure 4: Effects of the nondimentional relaxation time (𝜆) on the graphs of velocity and temperature against time for 𝑃𝑟 =
0.7, 𝛾 = 0.6, 𝐾 = 0.2, 𝐻𝑎 = 2, 𝐺𝑟 = 5, 𝛼 = 0.1, 𝑅 = 2, 𝐸𝑐 = 0.001, 𝑅 = 0.1, 𝜀 = 0.01, 𝜔 = 1 

 

Figure 4, verifies that as nondimentional relaxation time (𝜆) increases the temperature and velocity of the particles decreases 

because the thermal effect of the plate drastically decreases with time and contributes to the reduction in velocity of the flow.  

 

 

(a) 

 

(b) 

Figure 5: Effects of the Stoke’s constant value (𝐾) on the graphs of velocity and temperature   against time for 𝑃𝑟 = 0.7, 𝛾 =
0.6, 𝐻𝑎 = 2, 𝐺𝑟 = 5, 𝜆 = 2, 𝛼 = 2, 𝑅𝑂 = 2, 𝐸𝑐 =  0.001, 𝑅 = 0.1, 𝜀 = 0.01, 𝜔 = 1 

 

Figure 5, shows that as the Stoke’s constant value (𝐾) is increasing the velocity of the flow decreases, this validate the physical 

property Stoke’s constant as drag force.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6: Effects of the Prandtl (𝑃𝑟) on the graphs of velocity and temperature against time for  𝛾 = 0.6, 𝐾 = 0.2, 𝐻𝑎 =
2, 𝐺𝑟 = 5, 𝜆 = 2, 𝛼 = 2, 𝑅𝑂 = 2, 𝐸𝑐 = 0.001, 𝑅 = 0.1, 𝜀 = 0.01, 𝜔 = 1 

 

Figure 6, show that the velocity and temperature of the flow 

decreases as the Prandtl (𝑃𝑟) value increases, as a 

dimensionless number that provides a measure of the 

efficiency of transport by momentum diffusivity to thermal 

diffusion. Heat diffuses very quickly in liquid metals (𝑃𝑟 ≤
1) and very slowly in oils (𝑃𝑟 ≥ 1) relative to momentum. 

 

CONCLUSION 

The unsteady MHD flow of a free convective dusty flow 

between two parallel plates with viscous and magnetic 

dissipation has effect on the flow of the fluid. 

On the basis of obtained results; the following are observed. 

i. The velocity and the temperature of the flow decreases 

as concentration parameter increases. 

ii. The increase in Hartmann number brings about a 

decrease in the velocity of the flow due to its magnetic 

effect. 

iii. The increase in the value of Grashoff number implies 

the increase in the velocity of the flow. 
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