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ABSTRACT 

This study examines the complex relationships between global meat and seafood markets, focusing on the 

time-varying correlation between the Meat Index Market and the Seafood Index after Japan's nuclear 

wastewater release. Employing a Bayesian technique combined with the Skewed Multivariate Generalized 

Error Distribution, the study efficiently captures the time-varying correlations, with causality tests determining 

directional influences between the indices. The results reveal significant disruptions in seafood markets, 

highlighting the geopolitical impact on market dynamics. By offering a fresh perspective on market 

interdependencies during environmental crises, the study aids in risk assessments and effective risk mitigation 

strategies, introducing a Bayesian perspective into traditional financial econometrics and signifying a 

methodological shift in advanced model selection. Ultimately, understanding the dynamic relationships 

between meat and seafood markets can help traders, decision-makers, and market players navigate the financial 

effects of external shocks on global seafood market dynamics.  
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INTRODUCTION 

In the past decade, global financial markets have experienced 

significant disruptions, prompting extensive research into 

understanding co-movements, integration, and 

interconnectedness. Scholars have focused on unravelling the 

complexities of financial volatility, essential for portfolio 

diversification and policy formulation. Market instability 

poses challenges for investors and decision-makers, 

necessitating adept investment management and the creation 

of policies fostering financial and economic stability 

(BenSaïda, 2019). Financial shocks and transmissions, 

defined by (Engle et al., 1990), encompass causality in market 

variance and volatility spillovers, with (Forbes & Rigobon, 

2002) introducing the concept of "variance contagion." While 

prior studies have explored market integration and linkages, 

this research addresses the novel dynamic cross-market 

connectivity, specifically examining the time-varying 

correlation between the Seafood Index and Meat Index 

Market in the context of an ocean pollution shock. 

Researchers who have studied the difficulties of information 

transmission and asymmetries in market connections and 

spillovers include (Baruník et al., 2016) and Baruník & 

Křehlík, 2018). The challenge that follows is the lack of 

comprehensive knowledge regarding how the market 

responds to these inequalities (Brown, G. 2012). Increased 

volatility is mostly caused by factors including a nation's risk 

profile, financial openness, investor protection, creative 

thinking, and progress (Liu, 2013). Volatility transmissions 

have been recognized by the research community as a critical 

issue, mostly caused by macro- and economic-policy 

initiators. Factors associated with a company's or nation's 

origin also contribute to the complexity of interpreting market 

reactions (Brown, G. 2012). Although a great deal of research 

has been done on market integration and correlation, dynamic 

cross-market connectivity, the main subject of this study still 

requires special attention. 

The significant shift in seafood consumption from domestic 

to international markets has transformed seafood into a major 

component of international trade. Trade liberalization, 

globalization, increased demand, and advancements in 

production and logistics have driven the growth of the seafood 

industry (Asche, 2008; Tveterås et al., 2012; Asche et al., 

2015). Global trade has more than doubled between 72 billion 

USD in 2004 and 148 billion USD in 2014, according to the 

Food and Agriculture Organization (FAO, 2016). Seafood 

exports account for 9% of global agricultural exports, with a 

value greater than that of the combined trade in sugar, maize, 

coffee, rice, cocoa, chicken, and pigs (Asche, F., et al, 2015) 

(Zhang et al., 2021).   The recent decision by the Japanese 

government to release nuclear wastewater into the ocean has 

raised concerns globally, impacting the seafood market and 

leading to geopolitical repercussions, such as China's 

prohibition of seafood imports from Japan (Holland, J. 2023). 

These geopolitical events underscore the importance of in-

depth analyses, emphasizing the role of government policies 

in influencing sectors' resilience to unforeseen environmental 

and socio-political shocks (Guo et al., 2022). 

At the same time, a kind of challenges, such as divergent 

consumer preferences, hinder the global fish trade, of which 

Japan is a prominent part. Despite these obstacles, the 

government continues to view this issue as a top priority. For 

this reason, thorough analyses must be carried out (Guo et al., 

2022). The way government policies become linchpins, 

impacting the sector's capacity to adapt to unanticipated 

environmental and socio-political shocks, emphasizes the 

need for cogent and informed planning (Love et al., 2021); 

(Pelletier et al., 2014) and (Graziano et al., 2018). Such 

geopolitical events have historically shown to have a 

considerable impact on financial markets, presenting 

important obstacles for investors and decision-makers. (Wu et 

al., 2023) highlighted the decline in the market for Japanese 

fishery products due to pollution. Their investigation was able 

to provide significant insights into the short-term drop in the 

final demand for Japanese fishing items through the 

application of models such as the Multi-Region Input-Output 

Model (MRIO) and the Inoperability Input-Output Model 
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(IIM). Their analysis of market integration in the seafood 

industry from 1990 to 2015, (Dahl & Jonsson, 2018) found 

that there were notable and time-varying volatility spillover 

effects among the major seafood markets, underscoring the 

intricate relationships that exist between market dynamics, 

environmental factors, and economic events.  

The Meat Index, performing as a comprehensive indicator for 

meat-related markets comprising beef, pig, and poultry, plays 

a significant role in analysing consumer preferences, 

economic conditions, and global trade. While existing 

literature has extensively explored market dynamics, 

environmental factors, and economic events, the present study 

narrows its focus to the time-varying correlation between the 

Meat Index and the Seafood Index following the Fukushima 

incident (Buesseler et al., 2012). The unprecedented release 

of nuclear wastewater into the ocean has led to heightened 

concerns about the safety and sustainability of seafood from 

affected areas. This study aims to contribute a fresh 

perspective on market interdependencies amid global 

environmental crises, guiding risk assessments and adaptation 

strategies (Hirabayashi et al., 2019; Smith et al., 2017; 

Johnson, 2018). 

In financial econometrics, the Maximum Likelihood method 

has been the primary tool for estimating the univariate 

GARCH model (Bollerslev, 1990). However, when 

examining the link between volatilities and co-volatilities of 

multiple markets, this approach has limitations (Bollerslev, 

1986; Tse & Tsui, 2000). The flexibility of the model 

proposed by (Engle, 2002) in capturing dynamic correlations 

over time makes it suitable for investigating the evolving 

relationship between the Meat Index and the Blue Finance 

Index in response to environmental shocks. The inclusion of 

the M-GARCH component, as described by (Engle, 2001), 

allows for efficient modelling of volatility dynamics, crucial 

for comprehending the impact of ocean pollution on market 

volatility. The chosen DCC M-GARCH model (Cappuccio, 

2019) is well-suited for a comprehensive investigation of the 

combined performance of the Meat Index and the Blue 

Finance Index, given its design for multivariate time series 

analysis. Leveraging the Bayesian framework (Lopes & Tsay, 

2011), the model can effectively address uncertainty in the 

context of environmental shocks. Additionally, its ability to 

handle asymmetry (Asai et al., 2017) and incorporate regime-

switching features (Bauwens et al., 2006) enhances its 

suitability for examining the intricate relationship between 

these financial indices amid ocean pollution shocks.  

The research aims to employ the Bayesian DCC-Multivariate 

GARCH approach to investigate potential correlations 

between seafood index prices in Japan, the US, Norway, and 

Australia (Maruha Nichiro Corporation (MNC), Marine 

Harvest ASA (MNHVF), Austevoll Seafood ASA (AUSS)) 

and stock related to the Meat Index (BRF S.A (BRFS) of 

Brazil, Prima Meat Packers Ltd. (ABC) of Japan, and Beyond 

Meat (BYN) of the US). This research builds upon previous 

studies and methodologies, such as the Multi-Region Input-

Output Model (MRIO), the Inoperability Input-Output Model 

(IIM) (Wu et al., 2023), and copula-ADCC-EGARCH models 

(Tiwari et al., 2019).  

 

 
Figure 1: The seafood and Meat Index prices 

 

By applying Bayesian techniques with the Markov Chain 

Monte Carlo (MCMC) method under various error 

distributional assumptions (Ardia, D., 2006; Fioruci et al., 

2014), this research aims to provide insights into the time-

varying correlation dynamics between these financial indices, 

offering valuable contributions to both financial econometrics 

and the understanding of market interdependencies amid 

environmental shocks. Leveraging insights from the 

Fukushima incident's impact on seafood markets (Buesseler 

et al., 2012), the research seeks to contribute a fresh 

perspective to understanding market interdependencies 

amidst global environmental crises. 

 

Financial and Economic Theories 

Various financial and economic theories are related to the 

research problem and provide insight into different aspects. 

The Portfolio Theory, introduced by (Markowitz, 1952), 

emphasizes the significance of investment diversification to 

maximize returns on risk. This idea is relevant to our research 

since it supports the diversification approach that investors 

may use as we analyses the time-varying correlation between 
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the Blue Finance Index (Seafood Index) and the Meat Index. 

According to (Baumol & Oates, 1988), environmental 

economics looks at how environmental problems affect the 

economy. This idea adds to our understanding of the wider 

economic effects of environmental disturbances, given the 

potential impact of an ocean pollution shock on the 

seafood markets. The Efficient Market Hypothesis (Fama, 

1970) emphasizes that asset prices represent all available 

information, which serves as a framework for our study of 

how well markets incorporate knowledge regarding the 

effects of ocean pollution shocks on the Meat Index and the 

Blue Finance Index. Last but not least, (Pfeffer & Salancik, 

1978)'s theory "Resource Dependency Theory" emphasizes 

how organizations, in this example, the meat and seafood 

markets, adapt to external shocks. Understanding the time-

varying correlation can help you better understand how 

markets adjust to changing environmental conditions. 

 

Hypotheses 

Hypothesis 1 (H1): There is a time-varying correlation 

between the Blue Finance Index (Seafood Index) and the 

Meat Index market. This hypothesis builds on the expectation 

that these markets, influenced by common environmental 

factors, may exhibit dynamic correlations over time. 

Hypothesis 2 (H2): The impact of ocean pollution shocks on 

the correlation is asymmetric, with a stronger effect during 

periods of environmental distress compared to periods of 

normal environmental conditions. This hypothesis implies 

that the correlation dynamics may vary asymmetrically based 

on the severity of environmental conditions. 

Hypothesis 3 (H3): The time-varying correlation between the 

Blue Finance Index and the Meat Index market is influenced 

by regulatory and policy responses to mitigate the effects of 

ocean pollution. This hypothesis acknowledges the role of 

regulatory frameworks in shaping the correlation dynamics, 

aligning with broader discussions on the impact of policies on 

financial markets. 

The paper is organized as follows: Section 2 discusses the data 

and method; Sections 3 and 4 offer Analysis and 

Interpretation of results while Section 4 finalises with a 

discussion and conclusion. 

 

MATERIALS AND METHODS 

Data 

The daily returns of the seafood stock index for Japan, the US, 

Norway, and Australia (Maruha Nichiro Corporation (MNC), 

Marine Harvest ASA (MNHVF), and Austevoll Seafood ASA 

(AUSS), respectively. Also, the stocks related to the Meat 

index considered in the research are BRF S.A (BRFS) of 

Brazil, Prima Meat Packers Ltd. (ABC) of Japan, and Beyond 

Meat (BYN) of the US. The data were sourced from Yahoo 

Finance from January 5, 2015, to November 7, 2023, and 

Figure 1 represents the daily closing price. The return is 

computed as:  

 𝑦𝑡  =  100 × [𝑙𝑛(𝑝𝑡 ) − 𝑙𝑛(𝑝𝑡−1)]          (1) 

Where 𝑝𝑡 is the index closing price at time𝑡, the percent 

constantly compounded yields 𝑦𝑡. The plot of seafood stock 

indices market returns against time is presented in Figure 2. 

 
Figure 2: The Seafood and Meat Index return prices 

 

Multivariate GARCH models 

Several MGARCH models were put up to investigate the 

correlations between various financial market uncertainties. 

To represent the time-invariant conditional correlation matrix, 

for example, (Bollerslev, 1990) suggested the constant 

conditional correlation (CCC) technique. However, in the 

majority of empirical applications, the assumption of constant 

conditional correlation over time is impractical. In light of 

this, (Engle, 2002) and (Tse & Tsui, 2000) separately 

suggested expanding upon the CCC model of (Bollerslev, 

1990) by permitting the conditional correlation matrix to 

fluctuate over time. A DCC GARCH model is the name given 

to the generated model. Assume that we have the covariance 

matrix 𝑯𝑡 and the returns, 𝒚𝑡, of index price, with an expected 

value of 0. The DCC model proposed by (Engle, 2002) is 

defined as follows:  



TIME-VARYING CORRELATION …                           Tukur  FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 431 - 442 434 

Let 𝒚𝑡 be a multivariate time series of returns with 𝒚𝑡  =
 (𝑦1𝑡, . . . , 𝑦𝑛𝑡)′ and 𝐸(𝒚𝑡) = 0. According to the model, 

𝒚𝑡 = 𝑯𝑡

1
2⁄

𝝐𝑡       (2) 

is conditionally heteroskedastic. Where 𝑯𝑡

1
2⁄
 is any 𝑛 × 𝑛 

positive definite matrix at time 𝑡 that depends on a finite 

vector of parameters 𝜽, such that the conditional variance of 

𝒚𝑡  is 𝑯𝑡. The 𝑛 × 1  error vectors are assumed to be 

independently and identically distributed with 𝐸(𝜖𝑡)  =  0 

and 𝐸(𝝐𝑡𝝐𝑡
′ )  =  𝑰𝑛, where 𝑰𝑛 is the identity matrix of order 𝑛.  

There are different possible specifications for 𝑯𝑡. In this 

paper, we focus on the so-called conditional correlation 

models which allow specifying separately the individual 

conditional variances and the conditional correlation matrix. 

(Bollerslev, 1990) proposed a parsimonious approach in 

which the conditional covariance is proportional to the 

product of the corresponding conditional standard deviations. 

The constant conditional correlation model is defined as, 

𝑯𝑡 = 𝑫𝑡𝑹𝑫𝑡 , where 𝑫𝑡 = 𝑑𝑖𝑎𝑔 (ℎ11,𝑡

1
2⁄

,   .  .  .   , ℎ𝑛𝑛,𝑡

1
2⁄

),  𝑹 is 

asymmetric positive definite matrix which elements are the 

conditional correlations 𝜌𝑖𝑗 , 𝑖, 𝑗 =  1, . . . , 𝑛. Each conditional 

covariance is then given by: ℎ𝑖𝑗,𝑡 = 𝜌𝑖𝑗√𝜌𝑖𝑖,𝑡𝜌𝑗𝑗,𝑡. Besides, 

each conditional variance in 𝑫𝑡 is specified as a univariate 

GARCH model. Here a GARCH (𝑝, 𝑞) model for each 

conditional variance is given by: 

ℎ𝑖𝑖,𝑡 = 𝜔𝑖 + ∑ 𝛼𝑖𝑝𝑦𝑖𝑖,𝑡−𝑝
2𝑃𝑖

𝑝=1 + ∑ 𝛽𝑖𝑞ℎ𝑖𝑖,𝑡−𝑞
𝑄𝑖
𝑞=1 ,         

  𝑖 = 1,   .  .  .   , 𝑛      (3) 

With 𝜔𝑖 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0,   𝑎𝑛𝑑 ∑ 𝛼𝑖𝑝
𝑃𝑖
𝑝=1 + ∑ 𝛽𝑖𝑞

𝑄𝑖
𝑞=1 <

1, 𝑖 = 1,   .  .  .   , 𝑛. Note that the subscripts p and q are the lag 

lengths. The GARCH model is not limited to the standard 

GARCH (p, q), and the optimal lag order is chosen by the 

Bayesian calculation process. We used the simplest 

GARCH(1,1) following (Fioruci et al., 2014). 

ℎ𝑖𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝑦𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖𝑖,𝑡−1,         𝑖 = 1,   .  .  .   , 𝑛       (4) 

𝑯𝑡  is positive definite if and only if ℎ𝑖𝑖,𝑡 > 0, 𝑖 =  1, . . . , 𝑛 

and 𝑹 is positive definite. 

(Christodoulakis & Satchell, 2002); (Engle, 2002) and (Tse & 

Tsui, 2000) independently proposed generalizations by 

allowing the conditional correlation matrix to be time-

dependent. The resulting model is then called a Dynamic 

conditional correlation (DCC) MGARCH model. We adopted 

the same approach (Engle, 2002) by setting the following 

parsimonious formulation for the correlation matrix, 

𝑹𝑡 = 𝑑𝑖𝑎𝑔(𝑸𝑡)−1
2⁄ 𝑸𝑡𝑑𝑖𝑎𝑔(𝑸𝑡)−1

2⁄  

Where 𝑸𝑡 are 𝑛 ×  𝑛 symmetric positive-definite matrices 

given by, 

𝑸𝑡 = (1 − 𝑎 − 𝑏)�̅� + 𝑎𝒖𝑡−1𝒖𝑡−1
′ + 𝑏𝑄𝑡−1   (5) 

Where 𝒖𝑡−1𝒖𝑡−1
′  is the lagged function of the standardized 

residuals 𝒖𝑡 = 𝑫𝑡
−1𝒚𝑡. �̅� is the 𝑛 × 𝑛 unconditional 

covariance matrix of 𝒖𝑡 , and 𝑄𝑡  is the unconditional variance 

between series 𝑖, 𝑎𝑛𝑑 𝑗. The conditional covariances are given 

by ℎ𝑖𝑗,𝑡 = 𝑞𝑖𝑗,𝑡√ℎ𝑖𝑖,𝑡ℎ𝑗𝑗,𝑡 √𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡⁄ .  

 

Estimation 

The conditional likelihood function of the model (2), for a 

return, 𝒚 = (𝑦1, . . . , 𝑦𝑛) can be written as 

𝑙(𝜃) = ∏ |𝑯𝒕|−1 2⁄𝑘
𝑡=1 𝑝𝜖(𝑯𝑡

−1 2⁄
𝒚𝑡) =

∏ [∏ ℎ𝑖𝑖,𝑡
−1 2⁄𝑛

𝑖=1 ]𝑘
𝑡=1 |𝑹𝑡|−1 2⁄ 𝑝𝜖((𝑫𝑡𝑹𝑡𝑫𝑡 )−1 2⁄ 𝒚𝑡)        (6) 

where 𝑝𝜖 is the joint density function for 𝝐𝑡.  

The set of all model parameters is represented by: 𝜽 =
(𝜔1, 𝛼1, 𝛽1,   .  .  .   , 𝜔𝑛, 𝛼𝑛 , 𝛽𝑛 , 𝜌12,   .  .  .  , 𝜌𝑛−1,𝑛). 

 

Bayesian DCC-MGARCH models  

Skewed Distributions 

(Bauwens & Laurent, 2005) proposed to construct a 

multivariate skew distribution from a symmetric one by 

changing the scale on each side of the mode for each 

coordinate of the multivariate density such as Multivariate 

Normal Distribution (MVND), Multivariate Student t 

Distribution (MVTD), Multivariate Generalized Error 

Distribution (MVGED). This is a multivariate extension of 

what (Fernandez & Steel, 1998) has proposed. The error term 

is also assumed to follow an SMVTD or a skew-MVGED. 

The SMVGED was considered to capture the excess kurtosis 

and skewness, which is observed in our study of seafood and 

Meat index market returns. Therefore, for the distributions of 

the errors, the 𝝐𝑡 in Equation (2), we consider the above-

mentioned three skewed multivariate distributions to fit the 

Bayesian DCC-MGARCH.  

The multivariate skew distributions proposed density 

functions are given as follows:  

𝑠(𝒚|𝛾) = 2𝑛 (∏
𝛾𝑖

1+𝛾𝑖
2

𝑛
𝑖=1 ) 𝑓(𝒚∗)    (7) 

where 𝑓(∙) is a symmetric multivariate density, 𝑦∗ =

(𝑦1
∗,   .  .  .  , 𝑦𝑛

∗) such that 𝑦𝑖
∗ =

𝑦𝑖
𝛾𝑖

⁄  and 𝑦𝑖
∗ = 𝑦𝑖𝛾𝑖 if 𝑦𝑖 < 0, 

𝑖 =  1, . . . , 𝑛. The parameters 𝛾𝑖 control the degree of 

skewness on each margin, right (left) marginal skewness 

corresponding to 𝛾𝑖 > 1  (𝛾𝑖 < 1). Also, the existence of the 

moments of Equation (5) depends only on the existence of the 

marginal moments 𝐸(𝑋𝑖
𝑟) in the original symmetric 

distribution. The interpretation of each i is the same as in 

(Fernandez & Steel, 1998), i.e. 𝛾𝑖
2 = 𝑃(𝑋𝑖 ≥ 0)/𝑃(𝑋𝑖 < 0) 

which helps with the specification of a prior distribution. 

Besides the multivariate skew normal distribution, we allow 

the error term to follow a multivariate skewed t or a 

multivariate skew GED as well. In all cases, setting 𝛾𝑖 = 1, 

𝑖 =  1, . . . , 𝑛 recovers the original symmetric density. 

A normalized multivariate normal distribution would be a 

logical first choice for the error distribution in (2). Since most 

financial asset returns have broader tails in their unconditional 

distribution than this model with normal errors suggests, the 

normality assumption is rejected in the majority of 

applications. Student t-distributed errors have been most 

frequently used to account for the excess of (unconditional) 

kurtosis in the univariate case (Baillie & Bollerslev, 1989)). 

The multivariate Student t distribution (Fiorentini et al., 

2003), which has the additional degrees of freedom parameter 

𝑣 to be estimated, is therefore a logical option in the 

multivariate scenario. For 𝑯𝑡 to always be understood as a 

conditional covariance matrix, we assume that 𝑣 > 2. This 

multivariate 𝑡 distribution's density function is given by. 

𝑝(𝜖𝑡) =
Γ(

𝑣+𝑛

2
)

Γ(
𝑣

2
)[𝜋(𝑣−2)]𝑛 2⁄

[1 +
𝜖𝑡

′𝜖𝑡

𝑣−2
]

−
𝑣+𝑛

2
       (8) 

where Γ(∙) is the Gamma function, and (6) can be used to 

obtain the probability function. It should be noted that 

𝑉𝑎𝑟(𝜖𝑡) = 𝑰𝑛 and 𝐸(𝜖𝑡) = 0 represent the standardized form 

of the multivariate Student t distribution. This distribution is 

spherically symmetric about the origin, as are the 

conventional multivariate normal distributions. In this case, 

𝑦𝑡 has an elliptically symmetric distribution, and 𝑝(𝑦𝑡) ∝
|𝑯𝒕|−1 2⁄ 𝑔(𝒚𝑡

′ 𝑯𝑡
−1𝒚𝑡) for a nonnegative scalar function 𝑔(∙). 

While elliptical distributions can represent heavy tails, they 

are unable to represent asymmetric dependence structures. 

Lastly, it is important to note that there are a lot of possibilities 

for the multivariate generalization of the Student t distribution 

(Kotz & Nadarajah, 2004).  
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Lastly, (Fioruci et al., 2014) state that another name for the SMGED is the multivariate exponential power distribution. Its 

density function is thus expressed as follows:  

𝑠(𝒚|𝜹) = 2𝑛 (∏
𝛾𝑖𝛿𝛾𝑖

1+𝛾𝑖
2

𝑛
𝑖=1 ) [

Γ(
3

𝛿
)

Γ(
1

𝛿
)
]

𝑛

2
1

[2Γ(
𝛿+1

𝛿
)]

𝑛 exp {− [
Γ(

3

𝛿
)

Γ(
1

𝛿
)
]

𝛿

2

∑ |𝑦𝑖|𝛿𝑛
𝑖=1 }            (9) 

where 𝛿 is a common tail parameter, 𝑦𝑖
∗ =

(𝑦𝑖𝛿𝑖 + 𝜇𝛾𝑖
)

𝛾𝑖
⁄  𝑖𝑓 𝛾𝑖 ≥ −

𝜇𝛾𝑖

𝛿𝛾𝑖
⁄ and 𝑦𝑖

∗ = (𝑦𝑖𝛿𝑖 + 𝜇𝛾𝑖
)𝛾𝑖  −

𝜇𝛾𝑖

𝛿𝛾𝑖
⁄  

Consequently, there wouldn't need to be an additional 

parameter determined if the errors 𝜖𝑡 in Equation (1) were 

assumed to follow SMN. However, when the errors 𝝐𝑡 are 

SMST, the extra degrees of freedom parameter 𝑣 will be 

estimated (Fiorentini et al., 2003) and when the errors 𝝐𝑡 are 

SMGED, the extra parameter 𝛿 will be determined. 

 

Prior Distribution 

With the completion of the model specification, all relevant 

parameters' previous distributions are specified. According to 

(Fiorentini et al., 2003), these are assumed to be normally 

distributed, truncated to the intervals that define each one, and 

a priori independent. These previous distributions for the 

GARCH(1,1) coefficients in (2) are the same as those 

suggested by (Ardia, D., 2006), 𝜔𝑖  ~ 𝑁(𝜇𝜔𝑖
, 𝜎𝜔𝑖

2 ) 𝐼(𝜔𝑖>0),

𝛼𝑖~𝑁(𝜇𝛼𝑖
, 𝜎𝛼𝑖

2 )𝐼(0<𝛼𝑖<1) 𝑎𝑛𝑑 𝛽𝑖~𝑁(𝜇𝛽𝑖
, 𝜎𝛽𝑖

2 )𝐼(0<𝛽𝑖<1), 𝑖 =

1,   .  .  .  , 𝑛.  The multivariate Student 𝑡 or GED, respectively, 

assigns a truncated normal distribution to the tail parameter, 

denoted as 𝑣~𝑁(𝜇𝑣, 𝜎𝑣
2)𝐼(𝑣>0) 𝑜𝑟 𝛿~𝑁(𝜇𝛿 , 𝜎𝛿

2)𝐼(𝛿>0). 

subsequently, a similar strategy is used for the parameters 𝛼 

and 𝛽 in equation (3) i.e. 

𝛼~𝑁(𝜇𝛼 , 𝜎𝛼
2)𝐼(<0𝛼<1) 𝑎𝑛𝑑 𝛽~𝑁(𝜇𝛽 , 𝜎𝛽

2)𝐼(<0𝛽<1). As for 

skewness parameters, we use truncated normal distributions 

on positive values, i.e. 𝛾𝑖~𝑁(𝜇𝛾𝑖
, 𝜎𝛾𝑖

2 )𝐼(𝛾𝑖>0), 𝑖 = 1,   .  .  .  , 𝑛. 

Using the joint posterior distributions as a framework, the 

Markov chain Monte Carlo (MCMC) approach was utilized 

to extract samples. The simplest sampling is produced by 

applying the Metropolis-Hastings algorithm. 

 

The Performance of the Fitted Bayesian DCC-MGARCH 

We used the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Deviance Information 

Criterion (DIC) to determine which of the three innovation 

distributions best fits the Bayesian DCCMGARCH. The best-

fitting DCC-MGARCH models are identified using the AIC, 

BIC, and DIC. Before determining the fitted DCCMGARCH 

model, it is important to comprehend the statistical 

characterization for the price returns series for Seafood and 

food indexes. To prevent pseudo-regression issues, we used 

the Augmented Dickey-Fuller (ADF) tests to determine the 

stationarity of our test variables. On the other hand, we used 

the Shapiro–Wilk (SW) and Jarque–Bera (JB) tests to 

determine the normality, skewness, and kurtosis of the sample 

distribution. Lastly, Engle’s Lagrange multiplier (LM) test is 

utilized to determine the effects of autoregressive conditional 

heteroscedastic (ARCH) for each of the returns. 

 

RESULTS AND DISCUSSION  

Descriptive summary  

The unit root test for each price return series is shown in Table 

1. The results of the ADF tests demonstrate that each price 

series becomes stationary from the first difference and the null 

hypothesis of non-stationarity is rejected in each of the returns 

series at a 5% level of significance. The summary statistics 

results show JB statistic is statistically significant at the 5% 

level, indicating that all of the return series have excess 

kurtosis and skewness. Additionally, the SW statistic is also 

statistically significant at the 5% level, indicating that the 

return series does not originate from a normally distributed 

population. Therefore, all of the return series violate the 

assumptions of normality, and their asymmetric distributions 

must be taken into consideration. Additionally, the results of 

Engle's LM test are statistically significant at the 5% level, 

indicating that ARCH effects exist for all of the return series; 

the stationarity test was considered to be an essential 

precondition for avoiding problems associated with false 

regression, by applying ADF, the test suggested by (Zivot, E., 

et al. 1992), stationarity was found in the price returns of 

Seafood and Meat Index. As a result, three possible Bayesian 

DCC-MGARCH (1,1) models can be fitted using the Skewed 

Multivariate Normal Distribution (SMVND), Skewed 

Multivariate t Distribution (SMVTD), and Skewed 

Multivariate Generalised Error Distribution (SMVGED). 

 

Table 1: Statistical properties of seafood and Meat Index returns  
𝑴𝒊𝒏. 𝑴𝒂𝒙. 𝑴𝒆𝒂𝒏 𝑺𝑫 𝒌𝒖𝒓𝒕𝒐𝒔𝒊𝒔 𝑱𝑩 𝑳𝑴 𝑺𝑾 𝑨𝑫𝑭 

𝑴𝑵𝑪 −7.69 11.19 2.36𝐸 − 17 1.53 0.66 1772.37 0.063593 0.93767 −24.097 

𝑴𝑵𝑯𝑽𝑭 −23.97 14.27 −1.95𝐸 − 17 2.44 −1.40 18148.52 0.32388 0.630858 −22.155 

𝑨𝑼𝑺𝑺 −24.45 11.24 5.03𝐸 − 17 2.19 −1.58 14743.53 0.083798 0.88733 −23.098 

𝑩𝑹𝑭𝑺 −25.30 14.86 3.41𝐸 − 17 3.77 −0.49 719.40 0.064055 0.958715 −21.325 

𝑨𝑩𝑪 −7.12 6.68 −1.78𝐸 − 17 1.45 0.04 261.27 0.041323 0.97438 −22.149 

𝑩𝒀𝑵 −24.86 23.39 −3.71𝐸 − 17 4.89 0.41 529.77 0.081553 0.948749 −22.148 

 

Analysis of the causality test performed; the results, in Table 

2 below, show that variations in the prices of BYN are caused 

by changes in MNC, but not the other way around. In a similar 

vein, changes in BRFS and AUSS prices are Granger-caused 

by MNHVF without the reverse causal relationship. It has 

been noted that changes in MNHVF and BRFS prices are 

Granger-caused by AUSS, but not the other way around. The 

prices of the remaining Seafood and Meat Indexes can be 

interpreted similarly. 
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Table 2: The Granger causality test results of price returns; the p-values within the parenthesis.   
𝑴𝑵𝑪 𝑴𝑵𝑯𝑽𝑭 𝑨𝑼𝑺𝑺 𝑩𝑹𝑭𝑺 𝑨𝑩𝑪 𝑩𝒀𝑵 

𝑀𝑁𝐶 
 

0.69 (0.503) 0.59 (0.556) 1.57(0.209) 0.20 (0.816) 2.54 (0.079) 

𝑀𝑁𝐻𝑉𝐹 1.32 (0.267)  7.45(0.000) ∗∗ 13.54 (0.000) ∗∗ 2.47 (0.085) 0.259 (0.772) 

𝐴𝑈𝑆𝑆 0.941 (0.391) 3.09 (0.046) ∗  1.99 (0.137) 0.59 (0.552) 0.87 (0.419) 

𝐵𝑅𝐹𝑆 1.11 (0.330) 7.21 ( 0.000) ∗∗ 4.72 (0.009) ∗∗  1.65 (0.192) 1.14 (0.321) 

𝐴𝐵𝐶 0.31 (0.732) 0.55 (0.575) 1.47 (0.229) 1.20 (0.301) 
 

0.16 (0.852) 

𝐵𝑌𝑁 3.19 (0.042) 0.38 (0.687) 1.58 (0.206) 1.56 (0.211) 1.47 (0.230)  

* Denotes statistical significance at the 5% level of significance. 

**Denotes statistical significance at the 1% level of significance. 

 

Table 3 shows the goodness of fit statistics, such as AIC, BIC, 

and DIC values, for the various Bayesian DCC-MGARCH 

models. Based on the AIC, BIC, and DIC values, the Bayesian 

DCC-MGARCH with MVSGED model provided a better fit 

compared to other models because it has the lowest 

information criteria (IC) Value and was able to capture the fat 

tails and skewed features present in the Seafood and Meat 

Index prices. Exactly 20,000 samples were drawn from the 

posterior distribution using the Metropolis-Hasting Algorithm 

MCMC sampling algorithm. The first 5000 samples were 

discarded as part of the burn-in phase, leaving 15,000 

subsequent samples for the estimation. 

 

Table 3: Information criteria for DCC-MGARCH models  

𝑪𝒓𝒊𝒕𝒂𝒕𝒊𝒂 𝑺𝑴𝑽𝑻𝑫 𝑺𝑴𝑽𝑮𝑬𝑫 𝑺𝑴𝑽𝑵𝑫 

𝐸𝐴𝐼𝐶 26646.24 25521.66 27601.77 

𝐸𝐵𝐼𝐶 26779.39 25654.81 27729.99 

𝐷𝐼𝐶 26610.57 25483.64 27569.77 

 

In Table 4, the Bayesian estimates using the MCMC 

technique for the DCC-MGARCH (1,1) model with 

SMVGED are presented. This table encompasses the 

posterior means, medians, and standard deviation with 2.5% 

to 97.5% credible intervals, the skewness parameters 𝛾𝑖 in 

Equation (7) exhibit statistically significant posterior 

densities, implying asymmetry in all returns; (Fioruci et al., 

2014). Furthermore, the conditional variance results show 

high significance across all indices, affirming the presence of 

GARCH effects in the return series. 

 

Table 4: Summary of the MCMC simulations for the model with skewed MVGED. 

 
 

𝑴𝒆𝒂𝒏 𝑺𝑫 𝟐. 𝟓% 𝟐𝟓% 𝟓𝟎% 𝟕𝟓% 𝟗𝟕. 𝟓% 

 𝛿 0.518666 0.017552 0.485858 0.505602 0.518724 0.530248 0.553969 

𝑀𝑁𝐶 𝛾 1.005012 0.017874 0.977766 0.996218 0.999912 1.016911 1.044307 

𝜔 1.28485 0.383475 0.652473 0.988803 1.278508 1.544248 2.100214 

𝛼 0.249126 0.086881 0.134661 0.169132 0.242398 0.320128 0.409509 

𝛽 0.694949 0.084831 0.551004 0.622529 0.697168 0.765568 0.834356 

𝑀𝑁𝐻𝑉𝐹 𝛾 0.966041 0.002664 0.959106 0.964684 0.966423 0.967782 0.970546 

𝜔 0.32025 0.060133 0.197535 0.279277 0.320782 0.364064 0.434171 

𝛼 0.019595 0.006501 0.009929 0.014357 0.018578 0.024071 0.032653 

𝛽 0.539409 0.070871 0.408734 0.489411 0.536589 0.586296 0.684896 

𝐴𝑈𝑆𝑆 𝛾 1.001002 0.013192 0.976494 0.995035 0.997504 1.003837 1.039281 

𝜔 2.748827 0.719875 1.502256 2.19799 2.718225 3.21608 4.217363 

𝛼 0.427235 0.083504 0.256979 0.369592 0.432681 0.486194 0.58594 

𝛽 0.49418 0.09201 0.308416 0.435409 0.495966 0.556251 0.669695 

𝐵𝑅𝐹𝑆 𝛾 1.008711 0.010343 0.98818 1.00234 1.008612 1.014209 1.030855 

𝜔 10.26617 3.2337 4.669905 7.856199 10.15323 12.39062 17.38735 

𝛼 0.382847 0.099958 0.211659 0.304731 0.382117 0.456359 0.577016 

𝛽 0.538087 0.110805 0.328564 0.460237 0.532634 0.619422 0.738853 

𝐴𝐵𝐶 𝛾 1.022563 0.022021 0.981235 1.005937 1.024116 1.039678 1.061058 

𝜔 2.124207 0.830382 0.534446 1.573473 2.208756 2.71183 3.629322 

𝛼 0.235861 0.080263 0.074058 0.179221 0.236067 0.29626 0.382294 

𝛽 0.537435 0.14991 0.307615 0.431212 0.515622 0.611901 0.858884 

𝐵𝑌𝑁 𝛾 1.028623 0.028159 0.96922 1.006667 1.030595 1.051955 1.072231 

𝜔 9.945769 3.369216 4.952078 7.438891 9.593609 11.84671 17.74216 

𝛼 0.271935 0.061387 0.168018 0.228198 0.26709 0.314033 0.406375 

𝛽 0.684818 0.070701 0.533215 0.639043 0.696426 0.736398 0.801073 

 𝑎 0.003292 0.001945 0.00061 0.001827 0.002932 0.004341 0.008015 

 𝑏 0.425829 0.256819 0.025668 0.223393 0.421223 0.598329 0.932121 
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Observing the summary, something interesting is evident 

that, the marginal posterior distributions of the DCC 

conditional correlation parameters 𝑎 and 𝑏 show that their 

coefficients are highly significant, firmly rejecting the CCC 

model hypothesis (a = b = 0). As a result, it may be incorrect 

or misleading to assume that returns of Seafood and Meat 

index return price pairs always correlations are constant. 

Moreover, the correlation parameter estimates satisfy the 

required requirement 𝑎 + 𝑏 =  0.4297 <  1, confirming that 

the Bayesian DCC-MGARCH model is appropriate for 

capturing time-varying conditional correlations. 

The relationships between the prices of seafood and Meat 

markets, as represented by the Bayes DCC-MGARCH model 

with a skewed multivariate generalized error distribution, are 

shown in Figure 3. These conditional correlations show 

volatility, with sharp fluctuations at different times, rather 

than being static. This means that these markets were 

simultaneously recording significant volatilities. 
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Figure 3: The dynamic correlation between Seafood and Meat Index price returns from Bayesian DCC-MGARCH models 

under the SMVGED 

 

The results of the Dynamic Conditional Correlation (DCC) 

analysis for the return indices of BRF S.A. (BRFS) and 

Maruha Nichiro Corporation (MNC) are shown in Figure 3. 

Interestingly, there is a negative range of -0.01 to -0.08 for the 

correlation between these entities. This range is especially 

significant in the times preceding the announcement by the 

Japanese government that they intended to release nuclear 

wastewater from Fukushima into the sea. It's interesting to 

note that this correlation exhibits a less volatile range than the 

DCC between Prima Meat Packers Ltd. (ABC) and Maruha 

Nichiro Corporation (MNC), represented as (MNC x ABC), 

which shows a stronger correlation range of 0.41 to 0.47. The 

latter correlation exhibits a slightly increased variation 

between December 2019 and January 2020. An analysis of the 

time-varying connection between different meat stock indices 

and Marine Harvest (MNHVF) indicates oscillations between 

positive and negative correlations. In particular, there are 

significant positive and negative peaks in the correlation 

between MNHVF and BRFS in June 2020 and March 2022. 

The correlation fluctuates between -0.031 and 0.02. 

Following the announcement, there is volatility in the 

correlation. Similar to (MNHVF x BYN), the correlation 

ranges between MNHVF and ABC is -0.018 to 0.04, with 

noticeable rotations in the correlation dynamics. After the 

announcement, there is an evident rise in both positive and 

negative correlation that spans from May to August 2021. 

Looking into Austevoll Seafood ASA (AUSS), after the 

announcement, the DCC with BRFS fluctuates rapidly 

between positive and negative correlation, primarily moving 

around 0.01. The range of values is -0.02 to 0.06. There are 

multiple instances of increasing correlation in the negative 

correlation range of -0.01 to -0.03 observed in the DCC 

between AUSS and ABC. The correlation between BYN and 

AUSS, on the other hand, varies from -0.06 to 0.01; it was 

initially negative but changed to positive following the 

announcement. Finally, looking at DCC in the context of the 

seafood index shows how various seafood markets are 

connected. The strongest association between MNC and 

MNHVF was observed after the announcement, which may 

have something to do with MNC's operations in Japan. After 

the announcement in August 2021, the DCC between MNC 

and AUSS shows swings with peaks in both negative and 

positive correlation, ranging from -0.03 to 0.018. Last but not 

least, the DCC between AUSS and MNHVF mainly fluctuates 

about 0.06, with the lowest correlation found after the 

announcement.Robustness 
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Robustness to the number of Samples 

It can be high and time costly to generate 20,000 samples from 

the posterior distribution in the MCMC sampling, particularly 

when considering the amount of time needed to finish the 

process. Therefore, it might be better to produce fewer 

samples for concluding the Bayesian DCC MGARCH model. 

To verify this, 20,000 samples (5000 burn-in and 15,000 for 

estimation) and 10,000 samples (2000 burn-in and 8000 for 

estimation) were generated to re-estimate the model. Table 5 

presents the findings of how the model is robust to the number 

of samples. The posterior means and standard deviations 

show relatively little variation 

 

Table 5: Sensitivity analysis of the Bayes DCC-MGARCH model to the number of the MCMC sampling for the 

bivariate combination of MNHVF and BRFS price returns 

𝑺𝒂𝒎𝒑𝒍𝒆  
𝜹 

𝑴𝑵𝑯𝑽𝑭 𝑩𝑹𝑭𝑺 
𝒂 𝒃 

  𝜸 𝝎 𝜶 𝜷 𝜸 𝝎 𝜶 𝜷 

20,000 
𝑀𝑒𝑎𝑛 

2.939𝑒
− 01 

9.660𝑒
− 01 

1.782𝑒
− 01 

6.512𝑒
− 06 

8.915𝑒
− 01 

9.300𝑒
− 01 

2.509𝑒
+ 01 

1.415𝑒
− 01 

8.184𝑒
− 01 

2.250𝑒
− 04 

6.583𝑒
− 01 

𝑆𝑡𝑑. 
1.340𝑒
− 04 

2.212𝑒
− 05 

1.876𝑒
− 04 

1.851𝑒
− 06 

1.663𝑒
− 04 

2.590𝑒
− 03 

2.485𝑒
+ 00 

2.522𝑒
− 02 

2.628𝑒
− 02 

1.440𝑒
− 04 

8.076𝑒
− 02 

10,000 
𝑀𝑒𝑎𝑛 

2.972𝑒
− 01 

9.619𝑒
− 01 

1.486𝑒
− 01 

7.210𝑒
− 06 

8.842𝑒
− 01 

9.786𝑒
− 01 

2.153𝑒
+ 01 

1.796𝑒
− 01 

7.861𝑒
− 01 

5.001𝑒
− 04 

3.918𝑒
− 02 

𝑆𝑡𝑑. 
2.598𝑒
− 05 

2.717𝑒
− 05 

1.370𝑒
− 04 

2.554𝑒
− 06 

6.175𝑒
− 05 

2.756𝑒
− 03 

3.321𝑒
+ 00 

2.044𝑒
− 02 

2.353𝑒
− 02 

9.488𝑒
− 05 

2.102𝑒
− 02 

 

Robustness to prior specification 

Assessing the sensitivity of the posterior estimates to the prior specification and initial values for the DCC MGARCH model 

parameters is crucial (the three informative priors for alpha and beta parameters are as follows).  

𝑃𝑟𝑖𝑜𝑟 1: 𝛼~𝑁(0.02, 0.002), 𝛽~𝑁(0.5, 0.002) 

𝑃𝑟𝑖𝑜𝑟 2: 𝛼~𝑁(0.04, 0.010), 𝛽~𝑁(0.8, 0.008) 

𝑃𝑟𝑖𝑜𝑟 3: 𝛼~𝑁(0.06, 0.020), 𝛽~𝑁(0.9, 0.010) 

 

Table 6: Robustness to prior specification for the price returns 

  𝑷𝒓𝒊𝒐𝒓 𝟏 𝑷𝒓𝒊𝒐𝒓 𝟐 𝑷𝒓𝒊𝒐𝒓 𝟑 

  𝑴𝒆𝒂𝒏 𝑺𝑫 𝑴𝒆𝒂𝒏 𝑺𝑫 𝑴𝒆𝒂𝒏 𝑺𝑫 

 𝛿 0.507202 0.013584 0.515978 0.015824 0.520171 0.028538 

𝑀𝑁𝐶 𝛾 0.999766 0.012945 0.994723 0.014205 0.992534 0.008687 

𝜔 1.712904 0.652144 1.252284 0.419577 1.186445 0.414735 

𝛼 0.284833 0.058399 0.27503 0.071014 0.227653 0.050851 

𝛽 0.632951 0.081311 0.690218 0.077849 0.719069 0.068113 

𝑀𝑁𝐻𝑉𝐹 𝛾 0.965697 0.00257 0.967014 0.001816 0.966122 0.002004 

𝜔 0.328887 0.050946 0.307956 0.06359 0.321801 0.077804 

𝛼 0.017491 0.006681 0.017828 0.005612 0.01537 0.005864 

𝛽 0.525504 0.057969 0.576406 0.075059 0.547258 0.102665 

𝐴𝑈𝑆𝑆 𝛾 0.990546 0.025634 0.980377 0.030059 0.989664 0.02391 

𝜔 2.861549 0.695365 2.817872 0.66423 2.646624 1.040133 

𝛼 0.410414 0.114809 0.43535 0.090695 0.395521 0.122519 

𝛽 0.510721 0.102418 0.496791 0.082643 0.534262 0.125321 

𝐵𝑅𝐹𝑆 𝛾 1.012419 0.012067 1.005925 0.009921 1.004826 0.010699 

𝜔 14.1368 3.854958 10.39616 3.763352 9.96787 3.653897 

𝛼 0.435384 0.14248 0.350895 0.098073 0.372635 0.11987 

𝛽 0.423576 0.13087 0.549953 0.123959 0.547825 0.131215 

𝐴𝐵𝐶 𝛾 1.025684 0.01839 1.026331 0.01944 1.0128 0.034484 

𝜔 3.307085 0.818285 1.996729 0.815058 2.684762 1.380699 

𝛼 0.303147 0.076782 0.247818 0.084009 0.262142 0.09853 

𝛽 0.329917 0.124872 0.553967 0.149218 0.438564 0.227805 

𝐵𝑌𝑁 𝛾 1.045089 0.025235 1.018114 0.034086 1.023021 0.036524 

𝜔 10.62482 3.982272 11.62231 3.251449 10.27277 5.921141 

𝛼 0.268728 0.087802 0.317466 0.087315 0.261724 0.123711 

𝛽 0.682563 0.095751 0.631969 0.086958 0.685093 0.132678 

 𝑎 0.002428 0.001703 0.002789 0.002159 0.002679 0.002532 

 𝑏 0.5503 0.252158 0.578129 0.217831 0.547939 0.27143 
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These priors are derived by making minor adjustments to the 

informative priors provided by (Fioruci et al., 2014). Table 6 

reports the posterior outcomes for the aforementioned priors. 

Nearly all metrics showed sensitivity to changes in the prior 

under any of the three priors.  

 

Discussion 

This paper examines the complex dynamics that affect the 

seafood market, which are further complicated by the subtle 

difficulties that resulted from the Japanese government's 

announcement that it planned to dump nuclear waste. Seafood 

is becoming more and more of a commodity in the global 

economy due to factors like trade liberalization, technological 

improvements, and rising demand (Asche, 2008); (Tveterås et 

al., 2012); and (Asche, F., et al, 2015). But the announcement 

from Japan has sent major shockwaves across the world 

seafood market, raising serious questions about the 

sustainability and safety of seafood coming from areas hit by 

this natural disaster. The study breaks from the traditional 

Maximum Likelihood approach in financial econometrics by 

introducing the use of a Bayesian Dynamic Conditional 

Correlation-Multivariate Generalized Autoregressive 

Conditional Heteroskedasticity (DCC-MGARCH) 

framework. The Bayesian approach, based on the Markov 

Chain Monte Carlo (MCMC) method and inspired by earlier 

works (Ardia, D., 2006); (Fioruci et al., 2014), provides an 

advanced perspective through which to examine the complex 

correlation dynamics between seafood (MNC, MNHVF, 

AUSS) and meat (BRFS, ABC, BYN) market index prices. 

Asymmetric features found in the observed fat tails of seafood 

and meat index prices are one way that the model's suitability 

for representing the complexities of time-varying conditional 

correlations is demonstrated by the application of the Skewed 

Multivariate Generalized Error Distribution (SMVGED) 

within the Bayesian approach. This adds to the set of financial 

econometrics methods by demonstrating the effectiveness of 

Bayesian frameworks in managing difficult and sensitive 

financial time series data. The causality test reveals 

directional influences between the prices of the meat and 

seafood indices by utilizing knowledge from Granger 

causality and Engle's LM test. This causality assessment 

provides us with information about influences and 

precedence, which is important when developing complex 

risk mitigation techniques in unstable market settings, as 

demonstrated by earlier research (Zivot, E., et al., 1992). 

 

CONCLUSION 

Given the environmental instability caused by the Fukushima 

nuclear wastewater release, this research is essential for 

understanding the complex relationships within the global 

meat and seafood markets. Demonstrating the evolving field 

of financial econometrics, the Bayesian DCC-MGARCH 

framework, enhanced by the SMVGED, serves as an 

advanced tool for capturing time-varying correlations. 

Integrating various findings clarifies the critical role seafood 

plays in international trade and highlights the significant 

effects that the Fukushima incident may have had on global 

seafood markets. The dynamic correlations identified through 

the Bayesian approach provide a comprehensive overview of 

the intricate relationships governing seafood and meat 

indices. The study shifts from the conventional Maximum 

Likelihood technique in financial econometrics by 

introducing a Bayesian perspective, aligning with 

contemporary advancements in the field. Sensitivity 

evaluations confirm the robustness of the Bayesian 

framework and emphasize its effectiveness in addressing the 

inherent complexity of financial time series data. This 

underscores the paradigm shifts necessary for advanced 

model selection and parameterization. The insights gained 

offer significant implications for traders, legislators, and 

market participants, aiding in the management of market 

volatility and contributing to broader discussions on the 

financial impacts of external shocks on global market 

dynamics. 
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