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ABSTRACT 

Bordetella pertussis is the bacterium that causes pertussis, a highly contagious respiratory disease spread 

primarily through droplet coughing or sneezing. Despite all efforts to reduce or even eliminate the transmission 

of pertussis disease, it continues to be hazardous in newborns and adults, causing illness and death in both age 

groups. Numerous studies have examined the factors that influence the spread of pertussis epidemiology and 

have used mathematical models to predict the possible effects of different vaccination approaches. In this 

paper, a mathematical model of pertussis has been formulated by incorporating the vaccination and 

Asymptomatic classes. We established that the existence and uniqueness of solution, boundedness and 

positivity of solution holds for the epidemiological model.  
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INTRODUCTION 

Pertussis, also known as whooping cough, represents a major 

global health challenge due to its acute nature and impact on 

adults and children. This respiratory infection, caused by the 

bacterium Bordetella Pertussis (B.pertussis), has existed for 

decades and continues to be an urgent problem worldwide At 

risk are infants under one year of age, particularly those under 

six months of age, who bear a disproportionate burden of 

disease and face severe complications such as apnea, 

pneumonia, seizures and even death (Auger et al., 2013; De 

Cells et al., 2018; Fabricius et al., 2018; Tilahun et al., 2018). 

Transmission of whooping cough occurs primarily through 

the air, with infected individuals distributing bacteria-laden 

droplets into the air through coughing or sneezing (Koenig et 

al., 2019; Mattoo and Cherry, 2005). Inhalation of these 

infectious droplets by susceptible people facilitates the 

pathogen's entry into the body and leads to infection. This 

transmission route highlights the urgent need for effective 

prevention and control measures, especially in regions with 

high disease prevalence. 

Typically, the first symptoms of pertussis manifest 

approximately 7 to 10 days post-infection. While pneumonia 

is a relatively common complication, seizures and 

neurological complications are rare. Pertussis sufferers are 

highly contagious in the first three weeks after the cough 

begins, with many children suffering from persistent 

coughing attacks that last between 4 and 8 weeks. Efforts to 

control pertussis include a range of strategies, including 

vaccination campaigns, public health education on hygiene 

practices, and early detection and treatment protocols. Despite 

these efforts, the persistence of pertussis highlights the 

complexity of infectious disease management and the 

continued need for careful surveillance and research to 

develop more effective interventions. 

There are repeated outbreaks of pertussis around the world, 

affecting a significant portion of the population. A 2014 report 

identified 24.1 million cases of pertussis worldwide, which is 

particularly devastating for children under five, resulting in 

approximately 160,700 deaths from the disease. However, 

there is limited data on pertussis in developing regions, 

making it even more difficult to understand the overall global 

burden. Infants in particular are at significantly higher risk, 

with a mortality rate of 4% for children under 12 months old, 

compared to 1% for children aged 14 years (Raslan et al., 

2017). 

Effective vaccination plays a critical role in reducing the risk 

of whooping cough. Current vaccine options include whole-

cell vaccines containing inactivated Bordetella pertussis and 

acellular pertussis vaccines consisting of highly purified 

pertussis antigens. Some regions also administer additional 

pertussis vaccines to adults for immune system reinforcement, 

while pregnant women receive doses to safeguard newborns 

who are too young for vaccination. 

The use of antibiotics has proven beneficial in both stopping 

the spread of the disease and protecting those already infected. 

Strict measures are needed to prevent infected people from 

coming into contact with vulnerable populations, especially 

children and pregnant women. Anyone who remains 

unvaccinated and comes into contact with the virus within 

five days of infection is at increased risk. Contact 

investigations are critical for managing individuals who have 

had close contact with infected individuals, including family 

members, direct caregivers, and health care workers who are 

at increased risk due to frequent exposure. It is important to 

note that infection can occur even without prolonged or close 

contact. 

The scientific community has paid a lot of attention to 

mathematical modelling since it facilitates a deeper 

understanding of the systems under study and aids in the 

description of actual situations. It has been applied to the 

modelling of issues in physics, biology, chemistry, and 

economics among other domains (Gershenfeld et al., 1999; 

Ibragimov et al., 2017; Serovajsky et al., 2021). Most 

importantly, mathematical models have utilized to provide 

public health policy-makers with more understanding of the 

dynamic transmission and uncontrollability of different 

diseases (Brauer et al., 2019; Khan et al., 2022; Ullah et al., 

2020).  

Mathematical models governed by ordinary differential 

equations are used to identify parameters that may curb or 

enhance the spread of infectious diseases such as HIV 

(Ibrahim et al., 2015; Ayoade et al., 2024), Covid-19 (Usman 

et al., 2023), Ebola (Wang et al., 2023; Akinyemi et al., 2023), 

Cholera (Abubakar and Ibrahim, 2022), TB (Dago et al., 
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2015), Monkeypox (Akinyemi et al., 2023; Idisi et al., 2023), 

Lassa fever (James et al., 2015a) and Whooping Cough 

(Aisha et al., 2020). 

Most of these mathematical models lack exact solutions, thus 

approximate methods are often used (Ibrahim et al., 2023). 

The existence of several solutions makes a model less useful 

and unreliable (Keeling & Rohani, 2011; Shakil et al., 2017; 

Holden et al., 2023). Some mathematical models with 

existence and uniqueness results can be found in Akinyemi et 

al., 2015; James et al., 2015b; Shakil et al., 2017 and Shah et 

al., 2024. However, Shakil et al., 2017 suggested that a 

mathematical model with a unique solution may not be 

defined for all values of time. 

Subsequently, since the model describes an event within the 

human population, it is also vital for all time t, that the 

population should not be negative and determining the region 

where the model is biologically meaningful. In other words, 

the need to investigate the positivity solution and the 

feasibility region of the model is crucial in making a well-

founded prediction (Keeling & Rohani; Brauer et al., 2019). 

The intent of this study is to investigate the well-posedness 

(existence, and uniqueness, positivity and boundedness) of a 

new mathematical model that extends the one in Aisha et al 

2020. This model incorporates vaccination and exposed 

classes in the one presented by Aisha et al., 2020. 

This study aims to investigate the well-posed position of an 

extended mathematical model derived from that proposed by 

Aisha et al. (2020) by introducing existence, uniqueness, 

positivity, and boundedness. The new model integrates 

vaccinations and exposed classes also into the framework. 

 

MATERIALS AND METHODS 

 Model formulation 

In this section, an extended version of the model in Aisha et 

al., 2020 is proposed by stratifying the total human population 

time 𝑍(𝑞) into six (6) mutually exclusive subpopulations of 

individuals with Maternally derived immunity 𝑀(𝑞) 
Susceptible Individuals 𝑆(𝑞) , Vaccinated individual 𝑉(𝑞) , 

Asymptotic individuals 𝐸(𝑞), Infectious Individual 𝐼(𝑞), and 

Recovered Individuals 𝑅(𝑞), so that 

𝑍(𝑞) = 𝑀(𝑞) + 𝑆(𝑞) + 𝑉(𝑞) + 𝐸(𝑞) + 𝐼(𝑞) + 𝑅(𝑞)  

 

 
Figure 1: Flow chart of MSVEIR model 

 

Fundamental assumption of the model 

The model’s formulation was grounded on the following set 

of assumptions. 

i. The force of infection 𝜆is defined as 𝜆 = 𝛽(𝐼 + 𝜂𝐸) 
ii. Treatment is administered to individuals in I 

compartment, since Pertussis associated symptom is 

detectable. 

iii. It is assumed that there is no permanent Immunity 

against the disease since some members of the R 

Compartment can still return back to the S 

Compartment.  

iv. Death rate is not equal to birth rate. 

v. The vaccinated individuals are assumed to have 

complete immunity against Pertussis diseases. 

The model is therefore described by a nonlinear 

deterministic system of six equations: 

𝑑𝑀

𝑑𝑞
= Λ− 𝛼𝑀 − 𝜇𝑀 

𝑑𝑆

𝑑𝑞
= 𝛼𝑀 − 𝜀𝑆 − 𝛽(𝐼 + 𝜂𝐸)𝑆 − 𝜇𝑆 + 𝜓𝑅 

𝑑𝑉

𝑑𝑞
= 𝜀𝑆 − 𝜇𝑉     

 (1) 
𝑑𝐸

𝑑𝑞
= 𝛽(𝐼 + 𝜂𝐸)𝑆 − 𝜎𝐸 − 𝜇𝐸 

𝑑𝐼

𝑑𝑞
= 𝜎𝐸 − 𝜙𝐼 − (𝜇 + 𝛿)𝐼 

𝑑𝑅

𝑑𝑞
= 𝜙𝐼 − 𝜓𝑅 − 𝜇𝑅 

Subject to the initial population:  

𝑀0 ≥ 0, 𝑆0 >  0, 𝑉0 ≥ 0, 𝐸0 ≥ 0, 𝐼0 ≥ 0, 𝑅0 ≥ 0 
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Table 1: Description of the Model Parameters 

Parameter Description 

Λ Proportion of immunized individuals against infection 

𝛼 The transfer out of the passively immune class  

𝜓 The rate of loss of immunity 

𝜀 Vaccine efficacy 

𝜙 The rate of treating infected humans 

𝛿 Pertussis induce death rate 

𝜂 Modification parameter due to infection 

𝛽 The pertussis contact rate 

𝜇 Natural death rate 

𝜎 The rate for which asymptomatic infectious human becomes symptomatic. 

 

Fundamental properties of the model 

This section explains the fundamental characteristics of the model. In particular, it demonstrates the uniqueness, positivity and 

boundedness of the model within an invariant region. Such analysis is crucial for assessing the dynamic properties of a disease 

model, as it indicates its epidemiological relevance and mathematical soundness, ensuring both the coherence of the model 

and the reliability of its predictions (Mattos et al., 2005). 

 

Existence and Uniqueness of Solution 

We present a theorem about the existence of a unique solution to system (2) and provide a rigorous proof for its establishment. 

The system of equations under consideration is described in detail below.   

𝑥' = ℎ𝑖(𝑞, 𝑥), 𝑖 = 1, . . . , 𝑛𝑥(𝑞𝑜) = 𝑥𝑜  (2) 

Theorem 1 

Let D denote the region  
|𝑞 − 𝑞0| ≤ 𝑎, ‖𝑥 − 𝑥0‖ ≤ 𝑏, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑥 = (𝑥10, 𝑥20, . . . , 𝑥𝑛)    (3) 

 

and assume that ℎ(𝑞, 𝑈) satisfies the Lipschitz condition. 
‖ℎ(𝑞, 𝑥1) − ℎ(𝑞, 𝑥2)‖ ≤ 𝑘‖𝑥1 − 𝑥2‖         (4) 

such that the pairs (𝑞, 𝑥1) and (𝑞, 𝑥2) belong to D, for 𝑘 > 0. Thus, 𝑈 > 0 such that there exists a unique continuous vector 

solution 𝑥(𝑞) of the system (2) in the interval |𝑞 − 𝑞0| ≤ 𝑈. Then (4) is satisfied by the requirement that 
∂ℎ𝑖

∂𝑥𝑗
𝑖, 𝑗 = 1,2, . . . , 𝑛are 

continuous and bounded in D’. The region of interest is 0 ≤ 𝜉 ≤ Ω and a bounded solution of the form  0 ≤ Ω < ∞ is 

found in the region D, whose partial derivatives satisfy 𝛿 ≤ 𝜉 ≤ 0, where 𝜉 and 𝛿 are positive constants. 

Theorem 2: if  
∂𝑓𝑖

∂𝑥𝑗
, 𝑖, 𝑗 = 1,2,3,4   are continuous and bounded in the region D (0 ≤ 𝜉 ≤ Ω), then the model (1) has a unique 

solution within D. 

Proof  

Each of the right hand side of (1) be denoted by 𝑓𝑖∀𝑖 = 1, . . .6 respectively  

Thus, the partial derivatives of the system (1) are given below. 

|
∂ℎ1

∂𝑀
| = |−(𝛼 + 𝜇)| <  ∞, |

∂ℎ1

∂𝑆
| = |

∂ℎ1

∂𝑉
| = |

∂ℎ1

∂𝐸
| = |

∂ℎ1

∂𝐼
| = |

∂ℎ1

∂𝑅
| = 0 <  ∞ 

Similarly, |
∂ℎ2

∂𝑀
| = |𝛼| <  ∞, |

∂ℎ2

∂𝑆
| = |−𝜀 − 𝛽(𝐼 + 𝜂𝐸) − 𝜇| <  ∞, |

∂ℎ2

∂𝑉
| = |

∂ℎ2

∂𝐸
| = |

∂ℎ2

∂𝐼
| = 0 < ∞, |

∂ℎ2

∂𝑅
| = |𝜓| <  ∞ 

 |
∂ℎ3

∂𝑆
| = |𝜀| <  ∞, |

∂ℎ3

∂𝑉
| = |−𝜇| <  ∞,|

∂ℎ3

∂𝑀
| = |

∂ℎ3

∂𝐸
| = |

∂ℎ3

∂𝐼
| = |

∂ℎ3

∂𝑅
| = 0 < ∞ 

 |
∂ℎ4

∂𝑆
| = |𝛽(𝐼 + 𝜂𝐸)| <  ∞, |

∂ℎ4

∂𝐸
| = |−(𝜎 + 𝜇)| <  ∞, |

∂ℎ4

∂𝑀
| = |

∂ℎ4

∂𝐼
| = |

∂ℎ4

∂𝑅
| = |

∂ℎ4

∂𝑉
| = 0 < ∞ 

|
∂ℎ5

∂𝑀
| = |

∂ℎ5

∂𝑆
| = |

∂ℎ5

∂𝑉
| = |

∂ℎ5

∂𝑅
| = 0 < ∞, |

∂ℎ5

∂𝐸
| = |𝜎| <  ∞, |

∂ℎ5

∂𝐼
| = |−𝜙 − (𝜇 + 𝛿)| <  ∞,  

|
∂ℎ6

∂𝑀
| = |

∂ℎ6

∂𝑆
| = |

∂ℎ6

∂𝑉
| = |

∂ℎ6

∂𝐸
| = 0 < ∞, |

∂ℎ6

∂𝐼
| = |𝜙| <  ∞, |

∂ℎ6

∂𝑅
| = |−(𝜓 + 𝜇)| <  ∞ 

Given that all partial derivatives are continuous and bounded, Theorem 1 asserts the existence of a single, unique solution to 

system (1) within the defined domain D, according to the Derrick and Grossman theorem in Derrick and Grossman (1987). 

 

Positivity Solution of the Pertussis Model 

Lemma 1: The solution set{M(𝑡), S(𝑡), V(𝑡), E(𝑡), I(𝑡), R(𝑡)} 

of system (1) is non-negative ∀𝑞 ≥ 0, given that the initial 

populations are not negative. 

Proof: The first equation of model (1) obviously gives   
𝑑𝑀

𝑑𝑞
= Λ− 𝛼𝑀 + 𝜇𝑀    

Then, 
𝑑𝑀

𝑑𝑞
≥ −(𝛼 + 𝜇)𝑀    (5) 

∫
𝑑𝑀

𝑀
≥ −∫(𝛼 + 𝜇)𝑑𝑞   (6) 

    

The solution of (6) yields  

𝑙𝑛𝑀 ≥ −(𝛼 + 𝜇)𝑞 + 𝑐   (7)  

𝑀(𝑞) ≥ 𝑀(0)𝑒−(𝛼+𝜇)𝑞   (8) 

Thus, (8) becomes 

𝑀(𝑞) ≥ 𝑀0𝑒
−(𝛼+𝜇)𝑞 ≥ 0∀𝑞 ≥ 0  (9) 

Similarly, the second equation of system (1) gives 
𝑑𝑆

𝑑𝑞
= 𝛼𝑀 − 𝜀𝑆 − 𝛽(𝐼 + 𝜂𝐸)𝑆 − 𝜇𝑆 + 𝜓𝑅 

It is true that 
𝑑𝑆

𝑑𝑞
≥ −((𝜀 + 𝜇) + 𝛽(𝐼 + 𝜂𝐸))𝑆  (10) 

Separating the variables in above and integrate  

     

∫
𝑑𝑆

𝑆
≥ −∫((𝜀 + 𝜇) + 𝛽(𝐼 + 𝜂𝐸)) 𝑑𝑞  (11) 
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Then by solving using separation of variable and applying 

initial condition gives; 

𝑙𝑛 𝑆 ≥ −∫((𝜀 + 𝜇) + 𝛽(𝐼 + 𝜂𝐸)) 𝑞 + 𝑐 (12) 

𝑆(𝑞) ≥ 𝑆0𝑒
−((𝜀+𝜇)+𝛽(𝐼+𝜂𝐸))𝑞 ≥ 0∀𝑞 ≥ 0 (13) 

Next, the subsequent equations of system (1) yields 
𝑉(𝑞) ≥ 𝑉0𝑒

−𝑢𝑞  ≥ 0                ∀𝑞 ≥ 0

𝐸(𝑞) ≥ 𝐸0𝑒
−(𝜇+𝜎)𝑞 ≥ 0          ∀𝑞 ≥ 0

𝐼(𝑞) ≥ 𝐼0𝑒
−(𝜙+(𝜇+𝜎))𝑞 ≥ 0     ∀𝑞 ≥ 0

𝑅(𝑞) ≥ 𝑅0𝑒
−(𝜓+𝜇)𝑞 ≥ 0           ∀𝑞 ≥ 0}

 
 

 
 

 (14) 

 

Hence, the state variables will never be negative provided 

their initial populations  

(𝑀(0), 𝑆(0), 𝑉(0), 𝐸(0), 𝑅(0)) are not negative.  

 

Boundedness of Solution 

Lemma 2:  The region 𝐷 = {(𝑀, 𝑆, 𝑉, 𝐸, 𝐼, 𝑅) ∈ ℝ+
6 : 𝑍 ≤

Λ

𝜇
} 

is positively invariant for the system (1)  

Proof: The rate of change of the total human population is 

given as 
𝑑𝑍

𝑑𝑞
=

𝑑𝑀

𝑑𝑞
+

𝑑𝑆

𝑑𝑞
+
𝑑𝑉

𝑑𝑞
+
𝑑𝐸

𝑑𝑞
+

𝑑𝐼

𝑑𝑞
+
𝑑𝑅

𝑑𝑞
  (15)  

𝑑𝑍

𝑑𝑞
= Λ− 𝜇𝑀 − 𝜇𝑆 − 𝜇𝑉 − 𝜇 ∈ −(𝜇 + 𝛿)𝐼 − 𝜇𝑅  (16) 

𝑑𝑍

𝑑𝑞
= Λ− 𝜇𝑀 − 𝜇𝑆 − 𝜇𝑉 − 𝜇𝜀 − 𝜇𝐼 − 𝜇𝑅 − 𝛿𝐼 (17) 

𝑑𝑍

𝑑𝑞
= Λ− 𝜇𝑍 − 𝛿𝐼      (18) 

So the equation becomes 
𝑑𝑍

𝑑𝑞
+ 𝜇𝑍 ≤ Λ    (19) 

Next, (19) is solved base on the Integrating factor (I.F) 

method as follows  

𝐼. 𝐹 = 𝑒∫𝜇𝑑𝑞 = 𝑒∫𝜇𝑑𝑞 = 𝑒𝜇𝑞    (20) 

𝐼. 𝐹. 𝑍(𝑞) = ∫ 𝐼. 𝐹 × 𝑄(𝑞)𝑑𝑞 + 𝐶  (21) 

𝑒𝜇𝑞 . 𝑍(𝑞) = ∫ 𝑒𝜇𝑞 .Λ+ 𝐶   (22) 

𝑒𝜇𝑞 . 𝑍(𝑞) ≤ ∫ 𝑒𝜇𝑞 .Λ+ 𝐶   (23) 

𝑒𝜇𝑞 . 𝑍(𝑞) ≤
1

𝜇
𝑒𝜇𝑞 .Λ+ 𝐶     (24) 

at q = 0,    𝑍(0) ≤
Λ

𝜇
+ 𝐶   (25) 

𝐶 = 𝑍(0) −
Λ

𝜇
     (26) 

𝑒𝜇𝑞 . 𝑍(𝑞) ≤
Λ

𝜇
+ 𝑒𝜇𝑞 + 𝑍(0) −

Λ

𝜇
     (27) 

𝑍(𝑞) ≤
Λ

𝜇
+
𝑍(0)

𝑒𝜇𝑞
−

Λ

𝜇𝑒𝜇𝑞
      (28) 

𝑍(𝑞) ≤
Λ

𝜇
+ 𝑒−𝜇𝑞 (𝑍(0) −

Λ

𝜇
)   (29) 

As 𝑞 → ∞ in (29), the total population𝑍 →
Λ

𝜇
implies that 0 ≤

𝑍 ≤
Λ

𝜇
.Thus, the feasible solution set of the system equation 

of the Pertussis model enters and remains in the region: 

𝐷 = {(𝑀, 𝑆, 𝑉, 𝐸, 𝐼, 𝑅) ∈ ℜ+
6/𝑀0 ≥ 0, 𝑆0 >  0, 𝑉0 ≥ 0,𝐸0

≥ 0, 𝐼0 ≥ 0,𝑅0 ≥ 0} 

It is seen that the above is positively invariant of the system 

(1) model. Therefore, the model is well-posed 

epidemiologically and mathematically.  

 

Discussion of Results 

The results obtained in the previous section are discussed 

here. The Theorem 1, proposed by Derrick and Grossman was 

used to validate Theorem 2. The mathematical relevance of 

Theorem 2 suggests that the new model for pertussis in the 

presence of vaccination and asymptomatic class has a solution 

that is unique.  

Secondly, since the proposed model describes the spread of 

pertussis within the human population, it becomes imperative 

that the population remains non-negative at any time q, 

otherwise, it becomes of no practical importance. Hence 

Lemma 1 was validated. 

Thirdly, since unbounded solution of a model means the 

solution lies at infinity and implies the model has no practical 

importance. Hence the need to determine the region where the 

model solution is bounded is of great importance. Next, 

Lemma 2 shows that the solution of the total human 

population 𝑍(𝑞)at time 𝑞is bounded at 𝑍 ∈ [0,
𝜋

𝜇
]. 

Therefore, the proposed model is said to be well-posed 

because the model is shown to possess a unique solution that 

is positive and bounded. 

 

CONCLUSION 

This study presents a novel deterministic model for pertussis 

that incorporates the staged progression of the disease by 

integrating vaccination and asymptotic classes and 

implementing treatment as a control measure. The existence 

and uniqueness of the solutions theorem were used to show 

that there is a unique solution to the model. Furthermore, the 

model solution was confirmed to be both positive and 

bounded. Consequently, the proposed model is considered to 

be mathematically well formulated and epidemiologically 

significant. 

 

REFERENCES 

Abubakar, S. F., and Ibrahim, M. O. (2022). Optimal Control 

Analysis of Treatment Strategies of the Dynamics of 

Cholera. Journal of Optimization, 2022. 

 

Aisha A.Y, Farah A. A, Ahmad I. I, and Yazariah M. Y. 

(2020).  Dynamical Analysis on the Transmission of pertussis 

with Maternally Derived Immunity. Journal of mathematics 

and Statistics. Vol.16: 104. 112. DOI: 

10.3844/jmssp.2020.104.112. 

 

Akinyemi, S. T., Yemisi, O., Olarenwaju, I. M., and Bala, A. 

(2023). Approximate Solution of a Fractional-Order Ebola 

Virus Disease Model with Contact Tracing and 

Quarantine. Applied Mathematics and Computational 

Intelligence (AMCI), 12(1), 30-42. 

 

Akinyemi, S. T., Ibrahim, M. O., Dago, M. M., and Bakare, 

N. G. (2015). On Existence of a Staged Progression 

HIV/AIDS Model with Control Measures. Journal of the 

Nigerian Association of Mathematical Physics, 29, 163-166. 

 

Auger, K.A., Patrick, S.W. and Davis, M.M. (2013). Infant 

hospitalizations for pertussis before and after Tdap 

recommendations for adolescents. Pediatrics, 132: e1149-

e1155. DOI: 10.1542/peds.2013-1747. 

 

Ayoade, A., Akinyemi, S., and Oyedepo, T. (2024). 

Minimization of HIV Infection among Nigerian Women 

through the Use of Microbicides: An Insight from 

Mathematical Modeling.  Journal of Advanced Mathematical 

Modeling, 13(5), 1-22. 

 

Brauer, F., Castillo-Chavez, C. and Feng, Z. (2019). 

Mathematical Models in Epidemiology; Springer: New York, 

NY, USA; Volume 32.  

 

Dago, M. M., Ibrahim, M. O., and Tosin, A. S. (2015). 

Stability Analysis of A Deterministic Mathematical Model 

For Transmission Dynamics Of Tuberculosis. 

5. International Journal of Advances in Science Engineering 

and Technology, ISSN, 2, 2321-9009. 



WELL-POSEDNESS OF A NOVEL…      Ogbuagu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June, 2024, pp 43 - 47 47 

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

 

Derrick, W. R. and Grossman, S. I. (1987). A first course in 

differential equations with applications. West Publishing 

Company. 

 

Fabricius, G., Aispuro P.M., Bergero P., Bottero D. and 

Gabrielli, M. (2018). Pertussis epidemiology in Argentina: 

TRENDS after the introduction of maternal immunisation. 

Epidemiol. Infect., 146: 858-866. DOI: 

10.1017/S0950268818000808 

 

Gershenfeld, N.A. and Gershenfeld, N. (1999). The Nature of 

mathematical Modeling; Cambridgee University Press: 

Cambridge, UK. 

 

Holden, T. D. (2023). Existence and uniqueness of solutions 

to dynamic models with occasionally binding 

constraints. Review of Economics and Statistics, 105(6), 

1481-1499. 

 

Ibragimov, R.N. (2017). Mathematical Modelling of Natural 

Phenomena; Nova Science Pub Inc.; Hauppauge, NY, USA, 

pp. 1-515. 

 

Ibrahim, M. O., Akinyemi, S. T., Dago, M. M., and Bakare, 

N. G. (2015). Mathematical Modelling of a Staged 

Progression HIV/AIDS Model with Control 

Measures. Journal of the Nigerian Association of 

Mathematical Physics, 29, 163-166. 

 

Idisi, O. I., Yusuf, T. T., Adeniyi, E., Onifade, A. A., Oyebo, 

Y. T., Samuel, A. T., and Kareem, L. A. (2023). A new 

compartmentalized epidemic model to analytically study the 

impact of awareness on the control and mitigation of the 

monkeypox disease. Healthcare Analytics, 4, 100267. 

 

James, T. O., Akinyemi, S. T., and Oluwade, B. (2015b). 

Stability analysis of Lassa fever with quarantine and 

permanent immunity. Int. J. Appl. Sci. Math. Theory, 1(8), 

72-81. 

 

James, T. O., Abdulrahman, S., Akinyemi, S., and 

Akinwande, N. I. (2015a). Dynamics transmission of Lassa 

fever disease. International Journal of Innovation and 

Research in Educational Sciences, 2(1), 2349-5219. 

 

Keeling, M. J., and Rohani, P. (2011). Modeling infectious 

diseases in humans and animals. Princeton University Press. 

 

Khan, A. A., Ullah, S., and Amin, R. (2022). Optimal control 

analysis of COVID-19 vaccine epidemic model. A case study. 

Eur. Phys. J. Plus 2022, 137, 156. 

 

Koenig, K. L., Farah, J., McDonald, E. C., Thihalolipavan, S. 

and M. J. Burns, (2019). Pertussis: The identify, isolate, 

inform tool applied to a re-emerging respiratory illness. 

Western J. Emergency Med., 20: 191-191. DOI: 

10.5811/westjem.2018.11.40023 

 

Mattoo, S. and Cherry, J.D. (2005). Molecular pathogenesis, 

epidemiology and clinical manifestations of respiratory 

infections due to Bordetella pertussis and other Bordetella 

subspecies. Clin. Microbiol. Rev., 18: 326-382. DOI: 

10.1128/CMR.18.2.326-382.2005li 

 

Raslan, R., El-Sayegh, S., Chams, S., Chams, N. and Leone, 

A. (2017). Re-emerging vaccine-preventable diseases in war-

affected peoples of the eastern Mediterranean region-an 

update. Frontiers Public Health, 5: 283-283. 

 

Serovajsky, S. (2021). Mathematical Modelling; Chapman 

and Hall/CRC; Boca Raton, FL, USA.  

 

Shakil, M., Wahab, H. A., Rahman, S. U., Bhatti, S., Shahzad, 

M., and Naeem, M. (2017). Existence and Uniqueness of 

Solutions of Mathematical Models of Predator Prey 

Interactions. Journal of Mathematics (ISSN 1016-

2526), 49(2), 75-87. 

 

Shah, K., Ahmad, I., Shafiullah M. A., Abdeljawad, T., and 

Jeelani, M. B. (2024). On the existence and numerical 

simulation of the Cholera epidemic model. Open 

Physics, 22(1), 20230165. 

 

Tilahun, G.T., Makinde, O. D. and Malonza, D. (2018). Co-

dynamics of pneumonia and typhoid fever diseases with cost 

effective optimal control analysis. Applied Math. Computer, 

316: 438-459. DOI: 10.1016/j.amc.2017.07.063 

 

 Ullah, S., Ullah, O., Khan, M.A., and Gul, T. (2020). Optimal 

control analysis of tuberculosis (TB) with vaccination and 

treatment. Eur. Phys. J plus 2020, 135, 602. 

 

Usman, I. G., Ibrahim, M, O., Isah, B.Y., Lawal, N., 

Akinyemi, S. T. (2023) “Application of non-standard finite 

difference method on covid-19 mathematical model with fear 

of infection.” Fudma Journal of Sciences, 7(4), 357-368. 

 

Wang, X., Li, J., Guo, S., & Liu, M. (2023). Dynamic analysis 

of an Ebola epidemic model incorporating limited medical 

resources and immunity loss. Journal of Applied Mathematics 

and Computing, 69(6), 4229-4242. 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/

