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ABSTRACT 

This observational study investigated trends of Lokoja climate variables relating to evapotranspiration from 

1989 to 2019. Studying evapotranspiration in the savannah region of Nigeria is critical for understanding the 

local climate, water availability, and ecosystem dynamics, and can inform sustainable development and 

adaptation strategies in the face of climate change. The FAO-56 Penman-Monteith model (P-M) was used to 

estimate the ET from the ERA5 reanalysis monthly mean temperature, precipitation, wind speed and 

atmospheric pressure data of Lokoja. Statistically significant explanatory variables were determined using 

multiple regression analysis, and multicollinearity and heteroscedasticity tests were conducted on the results. 

Clustered column charts used to visualize the performance of the model revealed that increase in precipitation 

did not automatically translate to increase in ET. Linear regression of ET against temperature revealed that 

temperature explains approximately 29% of the variability in ET.  At 95% confidence level and 251 degree of 

freedom, the R2 (0.98) with standard error 0.11 indicate that the statistical analysis of the ET explanatory 

variables is robust and reliable, and the model is able to accurately predict the values of the ET. The multiple 

regression analysis result revealed that a mean daily increase of ET, starting from 0.54mm per day, is affected 

positively by average wind speed (u) of about 0.31mm/day for every unit increase in wind speed (u) at two 

meters height, 0.27mm/day for a unit increase in net radiation (Rn), 0.98mm/day for a unit increase in vapour 

pressure deficit (VPD), but a decrease of 0.01mm/day for every unit increase in relative humidity (RH). If 

water is never a limiting factor, the statistically significant explanatory variables for potential 

evapotranspiration are vapour pressure deficit, wind speed, net radiation and relative humidity, temperature 

being the main driving factor for all. The developed equation would help to improve ET prediction, inform 

water management policies, and enhance agricultural practices in the Savannah region.  
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INTRODUCTION 

Evapotranspiration, the process by which water is transferred 

from the Earth's surface to the atmosphere through 

evaporation and plant transpiration, is a key component of the 

hydrological cycle and plays a crucial role in the water 

balance and agricultural productivity of a region. It is 

influenced by a variety of factors, including climatic, 

topographic, and land cover characteristics. Understanding 

the relationships between these factors and evapotranspiration 

can help improve water resource management and forecasting 

in a specific region like Lokoja. The amount of water vapour 

in the atmosphere plays an important role in weather 

forecasting (Mundo-Molina, 2015). It is an established fact 

that climate change impacts on soil water balance lead to 

changes in soil evaporation and plant transpiration. The 

Intergovernmental Panel on Climate Change (IPCC) final 

report shows climate impacts are already more widespread 

and severe than expected (IPCC, 2023). The IPCC report 

warned that between 32-132million people might be driven 

into extreme poverty in the next decade by climate change. 

Globally, 2023 was the hottest year on record while some 

scientists are already warning that there is a strong chance 

2024 could beat that record. 

The amount of evapotranspiration (ET) per day is controlled 

by a number of weather parameters like atmospheric pressure, 

temperature, wind speed, humidity, solar radiation, and so on 

(Banik et al., 2012). With the temperature increase and 

precipitation fluctuations, the water availability for crop 

production and rearing of animals are likely to be affected. 

Increase in temperature (global warming) results in a 

corresponding increase in evapotranspiration, consequently 

increasing the crop water requirement. The importance of 

evapotranspiration in water management, agriculture and 

weather forecast has been recently emphasized by various 

researchers. It drives the Earth climate system at various 

scales as an important component of the water cycle and 

energy balance (Ashaolu et al., 2018). 

Methods provided for estimating ET are based on one or more 

measured climate variables (Yates & Strzepek, 1994). The 

reliability of these methods varies from one climatic system 

to another. The methods are classified into four categories, 

which are temperature-based, radiation-based, combination-

type equations and pan evaporation-based. Overall, the 

combination-type Penman-Monteith equation is 

recommended by Food and Agricultural Organization (FAO) 

for most climatic conditions as it is considered to be most 

physical and reliable method and the sole standard to verify 

other empirical methods (Satish, 2018). It has strong 

fundamental physical principles, including energy balances to 

precisely calculate the ET. P-M method, however, is a 

complex equation which requires rigorous reasoning process 

and detailed data for four meteorological parameters; air 

temperature, relative humidity, wind speed, and net radiation. 

Such input data may not be available at many places 

especially in developing countries like ours though they can 

be estimated from available equations involving more 

stressful conversion processes. 
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Lokoja, a city located in central Nigeria, experiences a 

tropical savanna climate with distinct wet and dry seasons. 

The city lies at the confluence of the Niger and Benue Rivers, 

which also influences its climate and geography (Animashaun 

et al., 2020). The high humidity levels in Lokoja, especially 

during the wet season, promote evapotranspiration. The 

abundance of water bodies in and around Lokoja, such as the 

rivers and nearby reservoirs, also contribute to increased 

evapotranspiration. The topography of Lokoja is mostly flat, 

with the city located in a river valley. This flat terrain allows 

for efficient drainage of excess water, reducing the risk of 

waterlogging and promoting evapotranspiration. The 

vegetation cover in Lokoja, which includes forests, 

grasslands, and agricultural crops, also plays a role in 

evapotranspiration. Plants release water vapor through 

transpiration, which, combined with evaporation from the soil 

and surface water bodies, contributes to overall 

evapotranspiration rates in the region. The unique climatic 

and geographical characteristics of Lokoja, such as its high 

humidity levels, abundant water bodies, flat terrain, and 

diverse vegetation cover, all work together to create favorable 

conditions for evapotranspiration in the city and its 

surrounding areas. 

There is a lack of adequate studies that have investigated the 

influence of climate change on evapotranspiration in Lokoja 

region. With climate change expected to impact precipitation 

patterns and temperatures in the region, it is important to 

understand how these changes will affect evapotranspiration 

rates. Localized evapotranspiration models are important in 

Lokoja, Nigeria due to the specific climate and environmental 

conditions in the region. The region experiences a tropical 

savanna climate with distinct wet and dry seasons, and 

accurate evapotranspiration models are essential for water 

resource management, agricultural planning, and climate 

change studies in the area. Localized evapotranspiration 

models can provide valuable information on the water balance 

in Lokoja, helping to determine water availability for 

irrigation, urban development, and other purposes. 

Additionally, these models can be used to assess the impact 

of climate change on evapotranspiration rates in the region, 

which can inform adaptation strategies and mitigation efforts. 

In this study, we aim to conduct a statistical analysis of 

evapotranspiration explanatory variables in the confluence 

region of Lokoja. By analyzing data on meteorological 

variables such as temperature, humidity, wind speed, and 

solar radiation, we hope to identify the key weather factors 

driving evapotranspiration in this region. Our analysis 

involves a combination of statistical techniques, including 

regression and spatial analysis, to determine the relationships 

between evapotranspiration and its explanatory variables. By 

gaining a better understanding of these relationships, we can 

develop more accurate models for predicting 

evapotranspiration rates in the confluence region of Lokoja, 

ultimately improving water resource management and 

agricultural planning in the area. Regression analysis is a 

statistical method used to examine the relationship between a 

dependent variable and one or more independent variables 

(Montgomery et al., 2012). It helps to identify and quantify 

the strength of the relationship between variables by 

calculating the correlation coefficient and determining the 

regression equation. Spatial analysis, on the other hand, is a 

technique that examines the spatial relationships and patterns 

of data. This includes analyzing how data is distributed across 

space and identifying spatial trends and patterns. In the 

context of understanding the relationship between 

evapotranspiration (ET) and meteorological variables, 

regression analysis can be used to determine the impact of 

variables such as temperature, humidity, wind speed, and 

solar radiation on ET rates. By conducting regression 

analysis, we can quantify the influence of these 

meteorological variables on ET and understand how changes 

in these variables impact ET rates. Spatial analysis can 

complement regression analysis by examining how the 

distribution of meteorological variables across space 

influences ET rates. By mapping the spatial distribution of 

meteorological variables and ET rates, we can identify spatial 

patterns and trends that may impact ET. This allows for a 

more comprehensive understanding of the relationship 

between meteorological variables and ET rates, ultimately 

providing valuable insights for water resource management 

and agricultural practices in the region. 

 

MATERIALS AND METHODS 

Weather Characteristics of the Area 

Lokoja is the capital of Kogi State, situated in the tropical wet 

and dry savanna climate zone in the North-central Nigeria. It 

is a confluence town (where Rivers Niger and Benue meet) 

and lies on latitude 7o49’N of the equator, Longitude 6o44’E 

of the Meridian, elevation 53m above sea level and 

experiences average atmospheric pressure of about 100kPa. It 

has a mean annual rainfall of about 1150mm and mean 

monthly temperature close to 30oC, hot all year-round, 

accessed from https://www.fulokoja.edu.ng>aboutus. The 

area witnesses dry season from late October to February while 

rains begin in March and pick in June to September. Its 

characteristic damp weather is believed to be caused by high 

sensible temperature occasioned by high humidity. The area 

experiences flood between September and October annually, 

the October 2022 flood being the worst in history. 

 

Data Collection 

The average monthly weather data for thirty-one (31) years 

(1989 – 2019) used are ERA-5 reanalysis data from 

Copernicus data hub for Lokoja (average elevation 53m above 

sea level), Kogi State of Nigeria. The weather data include 

daily near surface minimum and maximum temperatures, 

wind speed, humidity and atmospheric pressure. The mean 

temperature and other unavailable data were estimated using 

appropriate equations. The estimated data include heat flux, 

net radiation, and actual and saturated vapour pressures. 

The ET evaluation and statistical analysis are carried out 

using the monthly average weather data from 1989 – 2009. 

The resulting model was calibrated and validated using 2010 

– 2019 weather data. 

 

Model Selection 

Penman-Monteith (P-M) model 

The Food and Agricultural (FAO-56) Penman-Monteith ET 

equation is a semi-empirical standard model based on a 

combination of energy balance and aerodynamic variables. It 

is recommended by Food and Agricultural Organization 

(FAO) for most climatic conditions as it is considered to be 

most physical and reliable method and the sole standard to 

verify other empirical methods. It has strong fundamental 

physical principles, including energy balances to precisely 

calculate the ET. 

The model is given as; 

 

ETo = 
0.408𝛥(𝑅𝑛−𝐺)+ ϒ

900

𝑇𝑎+273
𝑢2(𝑒𝑠− 𝑒𝑎)

𝛥+ ϒ(1+0.34𝑢2)
  (1) 

 

Where 

ETo = reference evapotranspiration rate (mm/day); 

Ta = mean air temperature (oC); 
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u2 = wind speed (m/s) at 2m height; 

Rn = the net radiation (MJ/m2day); 

G = soil sensible heat flux (MJ/m2day); 

es = mean saturation vapour pressure (kPa); 

ea = mean ambient vapour pressure (kPa); 

Δ = the slope of the saturated vapour pressure-temperature 

curve (kPa/oC); 

ϒ = the psychrometric constant (kPa/oC); 

 

Some estimations and conversions 

Wind speed, u. 

The wind speed was originally measured at 10m height above 

the ground level, this is converted to a value at the required 

2m height using equation 2, calculated in an Excel 

spreadsheet. 

  

𝑢2 = 𝑢ℎ
4.87

ln(67.8ℎ−5.42)
   (2) 

 

Where, u2 = wind speed at 2m height above the ground surface 

(m/s);  

uh = measured wind speed at h meters (10m) height above the 

ground surface ( m/s); 

h = height of the wind speed measurement above the ground 

surface (m). 

 

Atmospheric Pressure, P (kPa) 

P = 101.3[
293−0.0065 𝑍

293
]

5.26
   (3) 

 

Where z is the elevation of the area above sea level (m). For 

the NIMET site at Lokoja, z is 62.4m. 

 

Psychrometric constant, ϒ 

ϒ = 0.000665P    (4) 

 

Where, ϒ = psychrometric constant (kPa/oC); 

P = atmospheric pressure, kPa. 

 

Mean Saturation Vapour Pressure, es (kPa) 

e(T) = 0.6108exp[
17.27 𝑇

𝑇+237.3
]   (5) 

 

Where T is the air temperature (oC). 

For accuracy, the mean saturation vapour pressure is 

calculated as the mean between the saturation vapour pressure 

at both the daily maximum and minimum air temperatures. 

e(Tmax)=0.6108exp[
17.27 𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥+237.3
]  (6) 

e(Tmin) = 0.6108exp[
17.27 𝑇𝑚𝑖𝑛

𝑇+237.3
]   (7) 

 

Therefore,  

es = 
𝑒𝑇𝑚𝑎𝑥+𝑒𝑇𝑚𝑖𝑛

2
    (8) 

 

Actual Vapour Pressure, ea (kPa) 

ea = 
𝑒(𝑇𝑚𝑖𝑛)[

𝑅𝐻𝑚𝑎𝑥

100
]+𝑒(𝑇𝑚𝑎𝑥)[

𝑅𝐻𝑚𝑖𝑛

100
]

2
  (9) 

In the absence of minimum and maximum relative humidity 

but mean relative humidity (RHmean), we use 

 

ea=
𝑅𝐻(𝑚𝑒𝑎𝑛)

100
[

𝑒(𝑇𝑚𝑖𝑛)+ 𝑒(𝑇𝑚𝑎𝑥)

2
]   (10) 

 

Where RH is the relative humidity (%). 

 

ET Explanatory Variables 

Using the FAO Penman-Monteith model as the response 

variable, multiple linear regression analysis are performed to 

check the effects of the explanatory variables (temperature, 

rainfall, wind speed, relative humidity, vapour pressure 

deficit, atmospheric cloudiness measured by the ratio of Rs to 

Rso. The coefficient of determination was noted to ascertain 

the percentage of the variations in the ET (response variable) 

that can be explained by the explanatory variables 

individually and in general, the standard error determines the 

precision of the estimates, significance F and P-values point 

out the variables that are statistically significant. 

The main goal of performing regression is to understand the 

data, predictions based on regression line are for average 

(mean) values, not the actual values; actual values will vary 

around the mean value. The scatter plots show how “correct” 

the developed model can be. The scattered residual plots 

indicate whether the model is appropriate or not. 

Variance Inflation Factor (VIF) was performed on the 

explanatory variables to test for multicollinearity. The 

variables with multicollinearity problem (VIF greater than 5) 

were identified and centering or standardization of the 

variables was performed to reduce the effect of the 

multicollinearity for keeping the interpretation of coefficients 

of the developed equation uniform. This is also important 

because the parameters that were originally statistically 

insignificant might become significant after normalization. 

Thereafter, the statistically significant standardized variables 

were isolated and another round of multiple regression 

analysis performed to determine their appropriate coefficients 

which yielded a new regression model with its associated 

error Ɛ. 

 

Variance Inflation Factor (VIF) Test for Multicollinearity 

The VIF is a simple test to assess multicollinearity in a 

regression model by identifying correlation between 

independent variables (the explanatory variables) and the 

strength of that correlation. The VIF calculation is done on 

each variable in an Excel spreadsheet, using the formula; 
1

1−𝑅2     (11) 

 

Where R2 is the correlation coefficient of each of the variables 

been considered as the response variable at a time. Each of the 

variables is plotted as the response variable against others as 

explanatory variables and in each case, the R square value is 

noted and used in the equation (11) above to find the VIF. 

 

Validation of the Developed Model 

A set of predicted ET values of the new model developed are 

obtained using the 2010 – 2019 data and compared with the 

values from the FAO Penman-Monteith model (taken as 

observed) within the same period. The Root Mean Squared 

Error (RSME) and Mean Absolute Error (MAE) are then 

calculated in Excel spreadsheet to evaluate the accuracy of the 

developed model. 

The residual is calculated as: 

 

Residual = ETpm - ETpredicted   (12) 

The error Ɛ in the developed equation is determined as the 

mean of the residual. This is added to the model equation to 

correct its coefficient. 

𝐸𝑇 = 𝑎 + 𝑏. 𝑉𝑃𝐷 + 𝑐. 𝑢2 + 𝑑. 𝑅𝑛 + 𝑒. 𝑅𝐻 + Ɛ (13) 

Where a, b, c, d and e are numerical coefficients of 

determination and may be location-based. Ɛ is the correction 

error. 

 

Breusch-Pagan Test for Heteroscedasticity 

Heteroscedacity check was performed on the model using 

Breusch-Pagan test. This is important in determining whether 
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the results of the new model regression analysis can be 

trusted. 

STEPS: 

i. The residual is calculated as ETobserved – ETpredicted. 

ii. The residual is squared 

iii. The squared residual is plotted as response variable 

against the explanatory variables in another multiple 

regression. 

iv. The Chi-Square test statistics is calculated on the 

original data using the formula; 

 

χ2 = nR2      (14) 

 

Where, n = the number of observations (n = 252 months) 

R2 = the new R squared value from the squared residual plot 

(0.000368). 

χ2 = 252 x 0.000368  

χ2 = 0.092736 

- Next step is to find the P-value associated with the 

calculated Chi-Square test statistic using the following 

command in excel;  

 

P-value = CHISQ.DIST.RT (test statistics, degrees of 

freedom)     (15) 

 

Here, our degree of freedom is  

df = n – 1     (16) 

= 252 - 1 = 251 

Therefore, 

 

P-value = CHISQ.DIST.RT (0.092736, 251) 

= 1.00 

- A P-value greater than 0.05 shows there is no sufficient 

evidence to confirm the presence of heteroscedacity in 

the regression model developed. 

 

RSME and MAE 

RMSE (Root Mean Squared Error) and MAE (Mean Absolute 

Error) are commonly used metrics to evaluate the accuracy of 

a predictive model in statistics. RMSE is calculated by taking 

the square root of the average of the squared differences 

between the predicted values and the actual values. It is often 

used to measure the standard deviation of the errors the model 

makes in its predictions. MAE is calculated by taking the 

average of the absolute differences between the predicted 

values and the actual values. It is a simpler measure of the 

average error made by the model. 

To calculate RMSE in Excel, we used the following formula: 

=SQRT(SUMSQ(predicted values - actual values)/n) 

     (17) 

To calculate MAE in Excel, we used the following formula: 

=SUM(ABS(predicted values - actual values)/n) 

     (18) 

In both formulae, "predicted values" refer to the values 

predicted by the model, "actual values" refer to the observed 

values, and "n" is the total number of observations. 

 

RESULTS AND DISCUSSION 

Changes in Climate Variables and ET 

Throughout the 31 years (372 months) under investigation, it 

was observed that the wet season (April – September) 

witnessed lower mean daily evapotranspiration (ET) 

compared with the dry season (October – March) each year, 

possibly due to higher relative humidity (RH) and lower net 

radiation (Rn) during wet seasons, in trend with the 

temperature as observed from the figures. The month of 

August experienced the least mean daily ET, to show that 

increased precipitation does not automatically translate to an 

increase in average ET. 

Figure 1 shows there was a decrease in average ET from 1994 

to 2008 as mean temperature also remained low within this 

period compared to the periods before and after; the low 

temperature contributes to the low ET within the period. The 

last decade (2009 – 2019) has witnessed increasing mean air 

temperature, consequently leading to the observed consistent 

increase in ET as shown in figure 2. The lowest mean daily 

temperature and ET, 25oC and 2.0mm/day respectively, were 

observed within the year 1994 – 1997. In contrast to the 

maximum mean daily temperature of about 27.5oC and ET 

4.0mm/day observed in the years from 1998 – 2008, the last 

decade (2009 – 2019) has shown extreme values of mean 

temperature and ET in the confluence state as high as 30oC 

and 6.0mm/day respectively, indicating warming of the 

region.   
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Figure 1: ET Trend with Temperature (1989 – 2019) 

 

 
Figure 2: Annual Average Temperature with ET Trend (1989 – 2019)  

 

Models Analysis 

Result of the ET evaluation reveals mean daily ET value of 

3.91mm/day for Penman-Monteith (P-M) model for the 

confluence region. Temperature alone is not enough to 

explain the variability in ET, as shown in Table 1. This reveals 

that only about 29% (R-square value of 0.29) of the variability 

in ET can be explained by temperature, according to P-M 

model, with intercept of about 0.15mm/day for a unit increase 

in temperature. 

 

Table 1: Results of ET Model Scatter Plot with Temperature 

Model ET (mm/day) Intercept with Temp. R2 

Penman-Monteith (P-M) 3.91 0.145 0.29 
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Figure 3: P-M Models’ Results with Temperature 

 

 
Figure 4: Evapotranspiration Trend 

 

Relationship between Climate Elements and ET 

Results of the statistical analysis using multiple regression of 

the component variables is displayed in Table 2.  At 95% 

confidence level and 251 degree of freedom, the R-square 

value (0.98279) with standard error as low as 0.10 shows that 

about 98% of the variability in ET can be explained by the 

explanatory variables considered (temperature, wind speed, 

relative humidity, net radiation, vapour pressure deficit, 

atmospheric cloudiness and rainfall). The table shows that 

temperature, rainfall and atmospheric cloudiness (Rs/Rso) are 

not statistically significant (so also with the standardized 

values in Table 3) since their P-values are above 0.05 

significant level. The insignificance of these variables may be 

due to several factors including higher strength of the 

observed significant variables overshadowing effects of 

others on ET, which also have temperature, rainfall and or 

cloudiness as their components (variable interactions). For 

instance, temperature is a very vital component of vapour 

pressure while rainfall and cloudiness play significant roles 

on relative humidity and net radiation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 0.1454x
R² = 0.9541

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35ET
o

 (
m

m
/d

ay
)

Temp. (oC)

P-M ETo (mm/day) Linear (P-M ETo (mm/day))

P-M ETo (mm/day)

0

10

1
9

8
9

 J
an

   
   

  A
u

g
   

   
  M

ar
   

   
   

O
ct

   
   

  M
ay

   
   

   
D

ec
   

   
  J

u
l

   
   

  F
eb

   
   

  S
ep

t

   
   

  A
p

r

   
   

   
N

o
v

   
   

  J
u

n

2
0

0
8

 J
an

   
   

  A
u

g

   
   

  M
ar

   
   

   
O

ct

   
   

  M
ay

   
   

   
D

ec

   
   

  J
u

l

   
   

  F
eb



STATISTICAL ANALYSIS OF ET …               Yahaya et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 67 - 81 77 

Table 2: Multiple Regression Statistics of all the Explanatory Variables 

 
 

Table 3: Multiple Regression Statistics of Normalized Explanatory Variables 

 
 

Table 4: Multiple Regression Statistics of Statistically Significant Explanatory Variables 

 
 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.991357904

R Square 0.982790494

Adjusted R Square 0.982296778

Standard Error 0.103711171

Observations 252

ANOVA

df SS MS F Significance F

Regression 7 149.8764641 21.41092344 1990.601466 2.8499E-211

Residual 244 2.624465725 0.010756007

Total 251 152.5009298

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept 0.683460577 0.27878464 2.451571855 0.014925447 0.134328995 1.232592 0.134329 1.232592

Ta oC 0.016787261 0.01135668 1.478183829 0.140648268 -0.005582378 0.039157 -0.00558 0.039157

Rainfall (mm) -2.63308E-05 9.46583E-05 -0.278166636 0.781120017 -0.000212783 0.00016 -0.00021 0.00016

U m/s @2m 0.309991451 0.014500083 21.37859794 7.59202E-58 0.281430144 0.338553 0.28143 0.338553

RH % -0.018512744 0.004911406 -3.76933704 0.000205349 -0.028186908 -0.00884 -0.02819 -0.00884

Rn  MJm-2day-1 0.256518568 0.01789361 14.33576408 3.1809E-34 0.221272917 0.291764 0.221273 0.291764

VPD=(es-ea) Kpa 0.816467699 0.135485995 6.026214741 6.15297E-09 0.54959633 1.083339 0.549596 1.083339

Rs/Rso 0.185915076 0.234111832 0.794129345 0.427891794 -0.275222958 0.647053 -0.27522 0.647053

Regression Statistics

Multiple R 0.991358

R Square 0.98279

Adjusted R Square 0.982297

Standard Error 0.103711

Observations 252

ANOVA

df SS MS F Significance F

Regression 7 149.8764641 21.41092 1990.601 2.8E-211

Residual 244 2.624465725 0.010756

Total 251 152.5009298

Coefficients Standard Error t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept 3.576209 0.00653319 547.391 0 3.563341 3.589078 3.563341 3.589078

Ta oC 0.016787 0.01135668 1.478184 0.140648 -0.00558 0.039157 -0.00558 0.039157

Rainfall (mm) -2.6E-05 9.46583E-05 -0.27817 0.78112 -0.00021 0.00016 -0.00021 0.00016

U m/s 0.309991 0.014500083 21.3786 7.59E-58 0.28143 0.338553 0.28143 0.338553

RH % -0.01851 0.004911406 -3.76934 0.000205 -0.02819 -0.00884 -0.02819 -0.00884

Rn MJm-2day-1 0.256519 0.01789361 14.33576 3.18E-34 0.221273 0.291764 0.221273 0.291764

VPD Kpa 0.816468 0.135485995 6.026215 6.15E-09 0.549596 1.083339 0.549596 1.083339

Rs/Rso 0.185915 0.234111832 0.794129 0.427892 -0.27522 0.647053 -0.27522 0.647053

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.9912557

R Square 0.9825878

Adjusted R Square 0.9823058

Standard Error 0.1036846

Observations 252

ANOVA

df SS MS F Significance F

Regression 4 149.8455552 37.46139 3484.617 6.8E-216

Residual 247 2.655374598 0.010751

Total 251 152.5009298

Coefficients Standard Error t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept 3.5762092 0.006531518 547.5311 0 3.563345 3.589074 3.563345 3.589074

U m/s 0.3089588 0.014357741 21.51862 1.45E-58 0.28068 0.337238 0.28068 0.337238

RH % -0.013188 0.002145176 -6.14781 3.13E-09 -0.01741 -0.00896 -0.01741 -0.00896

Rn MJm-2day-1 0.2718801 0.004585835 59.28695 4.5E-148 0.262848 0.280912 0.262848 0.280912

VPD Kpa 0.9828973 0.058344229 16.84652 6.43E-43 0.867982 1.097813 0.867982 1.097813
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From Table 3 above, it is obvious that standardizing the 

variables would not change the values of R-square value 

(0.98279) and standard error (0.103711). This is in support of 

the previous researchers’ conclusion that multicollinearity 

does not affect model predictions or goodness-of-fit. 

The statistically significant explanatory variables (wind speed 

u, Relative Humidity RH, net radiation Rn and vapour 

Pressure Deficit VPD) are isolated and another multiple 

regression analysis performed on them. The result returned a 

general intercept of 3.576 with its associated error as shown 

in the table. The intercept should have been what is estimated 

to be released as ET when all the variables are zero. From the 

equation below, the model is corrected by adding an error 

factor Ɛ. 

 

𝐸𝑇 = 3.576 + 0.983𝑉𝑃𝐷 + 0.309𝑢2 + 0.272𝑅𝑛 −
0.013𝑅𝐻 + Ɛ    (19) 

 

ET is evapotranspiration (mm/day); 

VPD is vapour pressure deficit (kPa); 

u is wind speed (m/s) at 2 meters height above ground level; 

Rn is net radiation (MJ/m2day) 

RH is relative humidity. 

 

Correction Error Ɛ 

The correction error Ɛ is the amount the regression line missed 

the value of ET. It is calculated as the mean value of the 

residual, by way of validation, using the 2010 to 2019 data 

collected. The residual is the difference between the ET 

(Penman-Monteith) and the predicted ET using equation 19 

without the correction error Ɛ. The result shows the mean 

value Ɛ to be -3.0371. 

The model equation becomes; 

 

𝐸𝑇 = 3.576 + 0.983𝑉𝑃𝐷 + 0.309𝑢2 + 0.272𝑅𝑛 −
0.013𝑅𝐻 − 3.0371    (20) 

 

𝐸𝑇 = 0.539 + 0.983𝑉𝑃𝐷 + 0.309𝑢2 + 0.272𝑅𝑛 −
0.013𝑅𝐻     (21) 

 

All variables carrying their usual meanings and units. 

Equation 21 shows that an average ET of 0.5 mm/day is 

expected when VPD, u, Rn and RH are all near zero (in 

association with their coefficients). This may be taken to be 

the 2% contribution to the ET from the lurking variables not 

accounted for by the considered explanatory variables. 

 

Validation 

The resulting equation above is used to predict ET with set of 

data (2010 – 2019) and the result compared with the FAO 

Penman-Monteith values taken as standard (observed). Below 

are the 3-D line chart and scatter plots of the results. The chart 

and scatter plots depict strong, positive, linear relationship 

between the predicted and “observed” values. The residual 

scatter plot shows no particular pattern which further confirms 

the correctness of the developed model. 

 

 
Figure 5: 3-D Line Chart of ETp-m and ETpredicted 

 

 
Figure 6: Scatter Plot of the ET Modelled 

 
Figure 7: Residual Scatter Plot 
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RSME and MAE 

The result of the Root Squared Mean Error (RSME) and Mean 

Absolute Error (MAE) are presented in table 5 below. The 

RSME of approximately 0.001 and MAE of 0.005 indicate 

that the developed model is performing well in predicting ET, 

with the error between the predicted and observed values 

being very low so can be considered reliable for making future 

predictions. 

 

Table 5: RSME and MAE Results 

Year ETpm(mm/day) ETpredicted(mm/day) RSME MAE 

2010 3.995278 3.999996  0.001492 0.000472 

2011 4.127839 4.136022    
2012 3.95203 4.010011    
2013 3.876911 3.813746    
2014 4.530383 4.524014    
2015 5.070424 5.066522    
2016 5.071683 5.139474    
2017 5.552576 5.465518    
2018 5.328667 5.341141    
2019 4.731162 4.701561    

 

Variance Inflation Factor (VIF) Test Result 

Table 6 shows the summary of the VIF test conducted on the 

statistically significant variables. A VIF value of 1 indicates 

that there is no correlation between this independent variable 

(wind speed) and others therefore declared useful without 

need for corrective measure. VIF between 1 and 5 (Net 

Radiation) shows there is a moderate correlation but not 

severe enough to warrant corrective measures while values 

greater than 5 (Relative Humidity and Vapour Pressure 

Deficit) suggest critical levels of multicollinearity where the 

coefficients are poorly estimated (becoming inflated or 

reversed in sign) and the p-values are questionable. Simply 

centering the variables helps reduce the correlation between 

predictor variables because it changes the scale of the 

variables and makes them more comparable to each other, and 

help improve the stability and accuracy of regression 

coefficients which in turn make it easier to interpret the results 

of the analysis. 

 

Table 6: VIF Result Summary 

Variable VIF Value 

Wind Speed 1.00 

Relative Humidity  12.03* 

Net Radiation 1.60 

Vapour Pressure Deficit (VPD) 12.41* 

 

Table 7: VIF Multiple Regression Statistics for Relative Humidity 

 
 

 

 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.957518

R Square 0.91684

Adjusted R Square 0.915834

Standard Error 3.069204

Observations 252

ANOVA

df SS MS F Significance F

Regression 3 25756.36 8585.452 911.4056 1.4E-133

Residual 248 2336.163 9.420012

Total 251 28092.52

CoefficientsStandard Error t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept 86.23718 1.379689 62.50477 8.5E-154 83.51978 88.95458 83.51978 88.95458

U m/s @2m 0.047422 0.424998 0.111582 0.911245 -0.78964 0.884487 -0.78964 0.884487

Rn  MJm-2day-1 1.267609 0.109307 11.59678 3.94E-25 1.052321 1.482898 1.052321 1.482898

VPD=(es-ea) Kpa -26.0402 0.498521 -52.2348 7.9E-136 -27.0221 -25.0583 -27.0221 -25.0583
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Table 8: VIF Multiple Regression Statistics for Net Radiation 

 
 

Table 9: VIF Multiple Regression Statistics for VPD 

 
 

CONCLUSION 

In this research, we have conducted a statistical analysis of 

Lokoja weather variations, evapotranspiration and its 

explanatory variables over three decades (1989 – 2019). It 

was observed that the wet months (April – September) 

witnessed lower ET compared with the ET during the dry 

months (October – March) due to variations in humidity and 

net radiation. The results also revealed that temperature alone 

is not enough to explain the variability in ET, temperature 

contributes only about 29% explanation according to 

statistical result from Penman-Monteith model. The 

explanatory variables that are statistically significant include 

wind speed, net radiation, relative humidity and vapour 

pressure deficit. 

Generally, the analyzed explanatory variables in this research 

provided about 98% explanation for the variability in ET. It is 

observed that ET is affected positively by average wind speed 

(u), net radiation (Rn), and vapour pressure deficit while 

average relative humidity (RH) has negative effect on ET 

from the multiple regression analysis. The result shows a 

mean daily increase of ET, starting from 0.54mm/day, by 

about 0.31mm/day for every unit increase in wind speed (u) 

at two meters height, 0.27mm/day for a unit increase in net 

radiation (Rn), 0.98mm/day for a unit increase in vapour 

pressure deficit (VPD), and a decrease by 0.01mm/day for 

every unit increase in relative humidity (RH). 

Assuming linear and independent relationship between the 

explanatory variables, and perhaps ET, we have proposed a 

linear model with location-based coefficients for estimating 

ET, and the problem of rigorous steps involved in Penman-

Monteith equation is simplified in this study. The fact that 

multicollinearity problem does not affect model predictions 

and goodness-of-Fit is further confirmed in this research. 

Though this provides easier way of estimating ET in the 

confluence region thereby improving water resource 

management and planning in the area, factors such as limited 

data availability, non-linear relationships, regional and 

temporal variabilities and some other external factors like 

land use changes and irrigation practices may limit the 

performance of this model in other regions. We recommend 

further testing of this model in other regions, exploring 

additional explanatory variables, and integrating satellite data 

for more comprehensive ET analysis and improvement of the 

linear model. 

 

The newly developed linear ET model can be integrated into 

existing water management systems by incorporating it into 

existing irrigation scheduling tools or software. Farmers could 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.610929

R Square 0.373235

Adjusted R Square 0.365653

Standard Error 1.435721

Observations 252

ANOVA

df SS MS F Significance F

Regression 3 304.4169 101.4723 49.22743 5.38E-25

Residual 248 511.2014 2.061296

Total 251 815.6184

CoefficientsStandard Error t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept -18.6711 2.360658 -7.90926 8.55E-14 -23.3206 -14.0216 -23.3206 -14.0216

RH % 0.27738 0.023919 11.59678 3.94E-25 0.23027 0.324489 0.23027 0.324489

U m/s @2m 0.06866 0.198764 0.345436 0.730059 -0.32282 0.460141 -0.32282 0.460141

VPD=(es-ea) Kpa 7.755731 0.640425 12.11028 7.89E-27 6.494364 9.017097 6.494364 9.017097

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.958848

R Square 0.919389

Adjusted R Square0.918414

Standard Error 0.112847

Observations 252

ANOVA

df SS MS F Significance F

Regression 3 36.01957 12.00652 942.8354 3E-135

Residual 248 3.158152 0.012734

Total 251 39.17772

CoefficientsStandard Error t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0%

Intercept 3.081486 0.06945 44.37012 5.9E-120 2.9447 3.218272 2.9447 3.218272

Rn  MJm-2day-10.047914 0.003956 12.11028 7.89E-27 0.040122 0.055707 0.040122 0.055707

RH % -0.0352 0.000674 -52.2348 7.9E-136 -0.03653 -0.03388 -0.03653 -0.03388

U m/s @2m 0.000701 0.015626 0.044889 0.964232 -0.03008 0.031479 -0.03008 0.031479
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input the data into the model, which would then calculate the 

optimal irrigation schedule based on evapotranspiration rates. 

This information could be used to more efficiently allocate 

water resources and reduce water waste. Alternatively, local 

farmers could directly use the model themselves to optimize 

their irrigation practices. By regularly monitoring ET rates 

and adjusting irrigation schedules accordingly, farmers could 

ensure that their crops are receiving the right amount of water 

at the right time, leading to improved crop yields and water 

usage efficiency. In both cases, the integration of the linear 

ET model could help to improve overall water management 

practices, leading to better resource allocation, increased crop 

productivity, and potentially cost savings for farmers. 
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