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ABSTRACT 

In population-based search algorithm such as Evolutionary Programming (EP), the search process typically 

involves seeding population of first generation with randomly generated individuals, selecting parents through 

fitness evaluation, producing offsprings through variation of parents, and selecting parents and offsprings into 

next generation of candidate solutions. Obviously, the quality of the variation operator is important in leading 

the search process towards global optimal solution.  In this paper, a high-quality variation operator is proposed. 

The proposed variation operator has the capacity to bias search towards optimal solutions while ensuring 

adequate balance between exploration and exploitation of the search space so as to facilitate discovery of 

optimal solutions in fewer number of generations. The proposed variation operator was used in our published 

work named EPSQLiFix. The proposed variation operator demonstrated high performance. Thus, it can as well 

be applicable in other related problem domains.  

 

Keywords: Variation Operator, Search Process, Vulnerabilities Detection, Grammar Reachability,  
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INTRODUCTION 

Over the years, search algorithms have been widely used for 

finding optimal solutions to class of problems for which 

finding exact solution is not feasible (Hidalgo-Herrero, 2013). 

These kinds of problems are termed as NP-hard problems or 

simply called search problems. 

There are local search algorithms which look for candidate 

solutions within the neighborhood of a given individual 

solution. Notable weakness of local search algorithms is that 

they can only find a solution which is the best among its 

neighborhood but not necessarily the best within the entire 

search space. Thus, a local search algorithm may be trapped 

within local optima (Alhijawi & Awajan, 2024). Local search 

algorithms are usually individual based algorithm such as 

Greedy Search, Tarbu Search, Ant Colony, and so on. 

On the other-hand, there are global search algorithm which 

has the capacity of looking for solution within the entire 

search space. Thus, a global search algorithm has the potential 

for finding solution which is the best possible solution in the 

entire search space. Global search algorithms are mostly 

population-based algorithms such as Genetic Algorithm, 

Evolutionary Programming, Genetic Programming, Particle 

Swarm, etc. (Alhijawi & Awajan, 2024; Obunadike et 

al.,2018; Emmanuel et al., 2022). 

For both local and global search algorithms, the search 

process involves variation of parents to produce offsprings. In 

some algorithms, beside variation operation, cross-over 

operation may also be performed in the process of producing 

offsprings from parents. Obviously, the success of search 

algorithm is directly influenced by the quality of the 

applicable variation operator that is applied to generate 

modified copy of an individual (parent) in order to produce its 

offspring.  

In the literature, a number of variation operators were 

proposed, each for specified task and problem domain. 

However, a common quality factor of variation operator is its 

capacity for increasing elitism of search process by ensuring 

adequate balance between exploitation and exploration of the 

search space. 

This paper proposed variation operator that performs four 

variation operations on individual so as to produce its 

offspring. In our research work, detection of SQL injection 

vulnerabilities for web application was modelled as Grammar 

Reachability search problem in which individual candidate 

solution is a sequence of grammar production rules that were 

derived from the web page being analyzed. Details of our 

problem formulation was reported in (Umar et al., 2018a).  

The proposed variation operator ensures adequacy of search 

space exploitation and exploration through randomization and 

facilitates early discovery of optimal solutions through 

biasness. The proposed variation operator has been used in 

our earlier work EPSQLiFix, (Umar et al., 2018b), and it’s 

performance was remarkable. Thus, the proposed variation 

operator has potential applicability in related problem 

domains.   

The remaining of this paper is organized as follows. Review 

of related literature is presented in the next section, followed 

by presentation of Detection of SQL Injection Vulnerabilities 

as Grammar Reachability Search Problem. This is followed 

by presentation of the proposed variation operator, the Section 

present definition and algorithm of the proposed variation 

operator, as well as illustrative example of its applicability. 

Lastly, the paper conclusion is presented. 

In the literature, the terms variation operation and mutation 

operation are used interchangeably.  There is no single 

variation or mutation operator that fits all, and there is no 

defined procedure for formulating variation or mutation 

operators. This section presents some research work which 

proposed variation/mutation operators. 

Mutation testing involves changing a program in minor ways 

by applying mutation operations, which results in modified 

versions of the program (Wang et al., 2022). Crossover 

operators and mutation operators play a very important role in 

the development of an efficient search algorithm (Kumar et 

al., 2021).  Search base mutation testing was proposed by 

(Uzunbayir & Kurtel, 2024). They presented novel approach 

which combines genetic algorithms and ant colony 

optimization to reduce test cases and enhance the 

effectiveness of the test suit for mutation testing. Mutation 
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testing emerges as an invaluable method for evaluating a test 

suite’s fault detection capability. Their approach uses 

mutation operators to introduce minor changes to the code, to 

optimize existing test suites, and to improve mutant detection 

with fewer test cases, thus improving the overall testing 

quality. 

In the work of (Li et al., 2023) Many mutation operators have 

been designed to address a variety of challenging optimization 

issues. They proposed reinforcement learning based operator 

selection strategy for improving exploration and exploitation 

of the search space. They used the reinforcement learning to 

control state transition, as well as to identify the appropriate 

operator for each parent that maximizes its cumulative 

improvement. Their method divides the state of population 

search into four categories and selects the optimal operator 

that varies with the change in population state. Al-Tashi et al., 

(2023) proposed integrated mutation operator that adds more 

informative features which can assist in enhancing 

classification accuracy. In their work, the continuous search 

space was converted into binary space using the sigmoid 

function, and they used wrapper-based Artificial Neural 

Network (ANN) to evaluate the classification performance of 

the selected feature subset. 

It is interesting to mention that empirical evidences (Arcuri, 

2008, 2011; Ackling et al., 2011) have shown that biasing of 

variation operations is very effective in improving 

effectiveness of search process for software repairs. 

Moreover, it has been shown empirically that not all 

variations result in valid programs (Arcuri, 2008; Ackling et 

al., 2011). This is because variation operations may result in 

syntax violation, logical incorrectness, or functional 

degradation (Arcuri, 2008, 2011; Dominguez-Jimenez et al., 

2011).  Moreover, in the literature, different techniques have 

been used to bias variation to appropriate part of candidate 

solution. For instance, Arcuri (2008, 2011) proposed a novel 

variation operator that utilizes information extracted by 

Tarantula (Ackling et al., 2011; Jones & Harrold, 2005) fault 

localization tool to bias variation to most suspicious location 

among n randomly selected nodes of candidate solution. 

Ackling et al. (2011) proposed technique that combines the 

above Tarantula approach and lookup tables for biasing 

variation to most suspicious location as well as restricting 

variation to only eligible nodes. Their approaches facilitate 

evolvement of better fitness candidate solutions. 

 

Detection of SQL Injection Vulnerabilities as Grammar 

Reachability Search Problem 

This section highlights the reformulation of SQL injection 

vulnerabilities detection as grammar reachability search 

problem, details of which was reported in our earlier work 

titled Formulation of SQL Injection Vulnerability Detection 

as Grammar Reachability Problem (Umar, 2018a).  The 

section begins by presenting source code of hypothetical 

webpage example shown in Fig. 1. The hypothetical webpage 

is used as running example in the remaining sections of this 

paper. The example webpage performs basic user 

authentication in a Java web application. As shown in the 

figure, there are two data input fields namely “username” and 

“password”. The data input field “username” is validated at 

line 13 using the function toSQL(N), whereas the data input 

field “password” is not validated at all. These two data input 

fields are subsequently used in generation of dynamic query 

string at line 14, and eventual dynamic execution of the query 

at line 17. Consequently, lack of validation of “password” 

makes the hypothetical webpage vulnerable to SQL injection.   
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protected void doPost(HttpServletRequest request, 

HttpServletResponse response) { 

    

String N =””;     

   

String Q = null; 

String R = null; 

java.sql.Statement stat = null; 

stmt = conn.createStatement(); 

java.sql.ResultSet S = null; 

N = request.getParameter("username");     

String P = request.getParameter("userpass");    

R = toSQL(N); // validation for N (i.e. Username) 

Q = "select * from userstbl where uname='" + R + "' AND 

passwd ='" + P + "'"; 

 

S = Stmt.executeQuery(Q);   

 // exec qry at sensitive sink 

} 

Figure 1: Source code of Example Vulnerable Webpage (source: Umar, 2018a) 

 

In addition to the above running example, three important 

terminologies are repeatedly used in our presentation. The 

first terminology is Application’s Entry Point (AEP), which 

is a program statement at which input data gets into web 

application.  In a source code, an AEP is identified by 

presence of data input function such as 

request.getParameter("username") in line 11 of fig. 1. The 

second terminology is Sensitive Sink (SS), which is a 

program statement at which dynamic query is executed 

(Medeiros et al., 2014; Halfond & Orso, 2005; Yan et al., 

2013). In a source code, an SS is identified by presence of 

query execution command such as   Stmt.executeQuery(Q) in 

line 17 of fig. 1. Finally, the third terminology is Data 

Validation Statement, which is a program statement that 

performs validation of input data. For example, the statement 

R = toSQL(N) in line 13 is a data validation statement which 

uses the data validation function toSQL(N) to secure the 

username input data. 

The key idea behind our formulation of SQL injection 

vulnerabilities detection as grammar reachability search 

problem is that, where data flow path can be established from 

a given AEP (such as “password” in line 12 of Fig. 1.) and 

ends in an SS (such as line 17 of Fig. 1.), if data validation is 

performed along the path, then the associated AEP (such as 

https://scholar.google.com/citations?user=3lB8Y8kAAAAJ&hl=en&oi=sra
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“username” in lines 11 of Fig. 1.) is said to be validated and 

secure, otherwise, if data validation is NOT performed along 

the path, then the corresponding AEP  (such as “password” in 

line 12 of Fig. 1.) is vulnerable to SQL injection.  

The AEP-to-SS path can be represented as a sequence of 

source code line numbers that shows corresponding data flow 

across program statements for example L11, L13, L14, L17 

depicts data flow from AEP parameter “username” to 

dynamic query execution at SS in Line 17 

Our strategy for vulnerabilities detection is to extract 

grammar production rules from declaration and assignment 

statements of the webpage, such that the nonterminal symbol 

of the LHS (Left Hand Side) of each grammar production rule 

represents the variable of the LHS of the corresponding 

statement from which the grammar rule is extracted. The 

extracted grammar rules are converted to context free 

grammar (CFG) production rules. Then, the CFG rules are 

used to test reachability from nonterminal symbol 

representing AEP statement to nonterminal symbol 

representing SS statement. However, in the extracted 

grammar, the rule extracted from a SS statement is considered 

as the start rule for tracking reachability. The Format of 

Extracted Grammar Production Rules is shown in table 1. 

Furthermore, corresponding CFG production rules extracted 

from source code of Fig.1. are shown in Fig.2. 

 

Table 1: Format of Extracted Grammar Production Rules 

Example Description 

𝑋𝑝 →  𝑋𝑞 Unit rule, nonterminal produce single nonterminal 

 

𝑋𝑝 →  α𝑋𝑞𝛽   𝑤ℎ𝑒𝑟𝑒  α, β ϵ (Σ ∪  N)∗ Nonterminal produce combinations of terminals and 

nonterminals 

𝑌𝑝𝑎 →  𝛾  𝑤ℎ𝑒𝑟𝑒 𝛾 ϵ Σ∗ Nonterminal produce sequence of terminal symbols 

 

𝑋𝑝𝑏 → α 𝐟𝐮𝐧_𝐧𝐚𝐦𝐞(𝑋𝑞)𝛽 Nonterminal symbol produce function with one argument, 

e.g. executeQuery(𝑋𝑝), toSQL(𝑋𝑝) 

(source: Umar, 2018a) 

 

Note that, in the table, 𝑋𝑎𝑏 and 𝑌𝑎𝑐 denotes nonterminal 

symbols, the subscript 𝑎 = p, q, r are line numbers of 

statements from which grammar rule is extracted, subscript 

𝑏 = letter S or A or V and subscript 𝑐 = 𝑙𝑒𝑡𝑡𝑒𝑟 𝑎. Moreover, 

𝐟𝐮𝐧_𝐧𝐚𝐦𝐞  represents function names, denoting sensitive 

sink functions, AEP functions, and data validation functions.   

 

 

𝑋17𝑆  → 𝐞𝐱𝐞𝐜𝐮𝐭𝐞𝐐𝐮𝐞𝐫𝐲(𝑋14)       
𝑋14  →  𝑌14𝑎  𝑋13 𝑌14𝑏  𝑋12𝐴 𝑌14𝑐 

𝑌14𝑎  →  select * from userstbl where uname=' + 

𝑌14𝑏  → + "′ AND passwd = ′" + 

𝑌14𝑐  → + "′" 

𝑋13𝑉  →  𝐭𝐨𝐒𝐐𝐋 ( 𝑋11𝐴 )   
𝑋11𝐴  → 𝐫𝐞𝐪𝐮𝐞𝐬𝐭. 𝐠𝐞𝐭𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫("username")  

𝑋12𝐴  → 𝐫𝐞𝐪𝐮𝐞𝐬𝐭. 𝐠𝐞𝐭𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫("userpass")  

 

Figure 2: CFG rules extracted from the running example (source: Umar, 2018a) 

 

The extracted CFG rules are analyzed for establishing 

possible flow paths from AEPs to SSs by testing for grammar 

reachability. Where such reachability is found, we analyze the 

associated “reachability productions sequence” for detection 

of SQLIV. If data validation is found along productions 

sequence, then the associated AEP parameter is secured and 

not vulnerable, otherwise, absence of data validation along 

such productions sequence means that the associated AEP 

parameter is not secured, and thus, SQLIV is found. 

By reformulating detection of SQL injection vulnerabilities as 

grammar reachability search problem using evolutionary 

programming (EP) algorithm, individual candidate solutions 

are formed as sequence of CFG production rules. Figure 3 

show some candidate solutions for the running example in 

Fig.1. The search process evolves candidate solutions by 

application of the proposed variation operator and fitness 

evaluation through generations until optimal solutions are 

found. Details of the proposed variation operator is presented 

in the next section. 

 

 

i. 𝑋14 , 𝑋12𝐴 

ii. 𝑋14  
iii. 𝑋17𝑆  , 𝑋14 , 𝑋13𝑉 , 𝑋11𝐴 

 

Figure 3: Example of Candidates for the running example web 

application (source: Umar, 2018a) 

 

Proposed Variation Operator 

The grammar reachability search process using evolutionary 

programming (EP) algorithm begins with seeding population 

of first generation with candidates, each consisting of a single 

randomly selected CFG production rule. The candidates grow 

along the search process through application of variation 

operations and fitness evaluation. In this section, we present 

the proposed variation operator that performs four variation 
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operations to produce offsprings. For instance, the variation 

operation could be “to append” a grammar production rule to 

a candidate or “to replace” an existing grammar production 

rule within a candidate. 

Given a set of variation operations, and a pool of all 

production rules extracted from webpage WP containing SS 

and some AEPs, it is important that there exists a sequence of 

variation operations that can select set of rules which establish 

SS-to-AEPs reachability. If such sequence of operations 

exists, then it would be possible to find all reachability 

derivations for detection of SQLIVs in a given web page. 

However, the fact that such reachability exist does not mean 

that it is easy to establish it. 

For instance, the variation operations must be performed with 

caution so as to avoid destructive operations. Obviously, not 

all forms of variations are constructive or even feasible, for 

example, replacement of appropriate production rule with an 

inappropriate rule within a candidate would only lead to less 

fit candidate.  Moreover, since the population of first 

generation is seeded with candidates formed from single 

randomly selected production rules, it is very obvious that 

cross-over between two of such candidates could only be very 

destructive. This is because cross-over would result in 

exchanging different portions of grammar rules from the two 

candidates involved. The result would naturally be a 

candidate containing distorted and/or meaningless production 

rule. Consequently, our grammar reachability search 

approach excludes cross-over from applicable variation 

operations. Considering the above caution and the kind of task 

at hand, i.e., “searching for productions sequences that 

establish SSs-to-AEPs reachability”, the following four 

variation operations are feasible: - 

i. Append Head: this operation appends a production rule 

to the head, i.e., begin of a candidate. The newly added 

rule becomes the start rule in productions sequence. 

ii. Append Tail: this operation appends a production rule 

to the tail, i.e., end of a candidate. The newly added rule 

becomes the last rule in productions sequence. 

iii. Replace Head: this operation replaces the current start 

rule in a candidate with another production rule. The 

newly added rule becomes the start rule in productions 

sequence. 

iv. Replace Tail: this operation replaces the current last rule 

in a candidate with another production rule. The newly 

added rule becomes the last rule in productions 

sequence. 

The above four variation operations are meant to lead the 

search process to optimal solutions. However, in the literature 

of search-based software testing other types of variation 

operations such as delete, and insert are commonly applicable 

during search process, nevertheless, they may not be helpful 

in our task.  

It is necessary to mention that there are some scenarios where 

some of the above listed four operations could be very 

destructive to the search process. For example, the “Append 

head” operation should not append a grammar rule when the 

current head rule already contains sensitive sink function. 

Also, both “Replace head” and “Replace tail” operations 

should avoid replacing an appropriate production rule with an 

inappropriate one within a given candidate. Handling these 

challenges require systematic application of variations in a 

very novel ways that improves the performance of the search 

process. Consequently, the proposed novel variation operator 

takes into account the existing production rules in a candidate 

solution and the candidate’s fitness information to 

systematically bias application of the variation operations. In 

order words, the proposed variation operator aims at 

improving elitism for the search process while maintaining 

balance between exploration and exploitation of the search 

space (Floudas & Pardalos, 2014). definition of the variation 

operator is presented in the next subsection 

 

Definition 

The variation operator chooses any of the four variation 

operations with equal probability of 0.25.  Once an operation 

is randomly chosen, the novel operator bias application of the 

chosen operation in two ways. First, it uses the notion that “a 

program statement is more likely to pass data to (i.e. to 

interact with) other statements within its neighborhood” and 

consequently, bias application of variation operations to 

neighborhood of production rules. Second, the variation 

operator uses candidate’s fitness information to bias 

application of eligible variation operation, so as to avoid 

destructive variations. 

In the EP based grammar reachability search process, biasing 

search to neighborhood may not be as straight forward, 

because variation operations can affect only head rule or tail 

rule of a candidate. We call this rule as “anchor-rule”. For 

append head and replace head operations, the anchor-rule is 

the current head rule, while for append tail and replace tail 

operations, the anchor-rule is the current tail rule.  

Consequently, the proposed variation operator biases the 

search to the neighborhood of the anchor-rule of candidate as 

follows: First, q rules are randomly selected from the pool of 

production rules for possible consideration. Second, 

tournament is applied to the q rules for choosing the rule 

which is nearest to the anchor-rule. The chosen rule is 

considered as best neighbor. Finally, the operation is applied 

using the best neighbor rule. Thus, the proposed variation 

operator is defined as three tuples using Equ. 1. 

Sopr = {Opr, C, tournamentOf(q)}    (1) 

Where  𝑂𝑝𝑟 is the randomly chosen variation operation, 𝐶 is 

the candidate solution, and 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑂𝑓(𝑞) is a function 

that applies tournament selection on q rules and returns the 

best neighbor rule accordingly.  

This technique allows the proposed variation operator to bias 

the search to the neighborhood. However, the application of 

the chosen operation using best neighbor rule needs to be 

further biased to eligible operations guided by candidate’s 

fitness information so as to avoid destructive variations.  

As discussed earlier, certain variation operations are not 

eligible in some scenarios. For example, “append head” is 

only eligible in a candidate whose current head rule is not 

sensitive sink rule 𝑋𝑖𝑆. Also, the “append tail” is only eligible 

in a candidate whose current tail rule does not contain AEP 

function. Fortunately, the type of production rule in 

candidate’s head and tail position can be determined from the 

candidate’s “productions sequence completeness” fitness 

values given by Equ. 2 and 3 respectively. The two equations 

are shown below. Details on formulation of these fitness 

equations is reported in our work (Umar et al., 2018a)   

𝑓𝑐𝑜𝑚(𝑋1) = {
0     𝑋1 →  𝑠𝑠_𝑓𝑢𝑛(𝛾)

5    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
    (2) 

𝑓𝑐𝑜𝑚(𝑋𝑘) = {
0     𝑋𝑘 →   𝑎𝑒𝑝_𝑓𝑢𝑛("𝑎𝑒𝑝_𝑛𝑎𝑚𝑒")

5     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    
  (3) 

Using the fitness equations shown above, if fitness 𝑓𝑐𝑜𝑚(𝑋1) 

evaluates to 0, it means the current head rule is a sensitive sink 

rule S and thus “append head” is not eligible. Similarly, if 

fitness 𝑓𝑐𝑜𝑚(𝑋𝑘) evaluates to 0, it means the current tail rule 

contains AEP function and thus “append tail” is not eligible. 

Consequently, from these fitness values, the proposed 

variation operator can know the type of rule in current head 

or current tail positions in a candidate solution and bias the 
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search process towards application of eligible variation 

operations. 

In addition, the proposed variation operator needs to avoid 

replacement of appropriate production rule in a candidate with 

an inappropriate one. The proposed variation operator 

considers the “production fitness” of the anchor-rule that is 

about to be replaced. This fitness is given by Eq. 4. Using the 

equation, if the production fitness has value of 0, it means the 

anchor-rule is in an appropriate position, and should be 

maintained, otherwise it can be replaced. 

𝑓𝑝𝑟𝑜𝑑(𝑋𝑖) = { 0   𝑋𝑖−𝑥

+
⇒  𝛼𝑋𝑖𝛽

1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
     

 𝑤ℎ𝑒𝑟𝑒  𝑖 > 1, 𝑖 > 𝑥, 𝑎𝑛𝑑 𝑥 > 0     (4) 

During the search process, both production fitness and 

completeness fitness of a candidate are considered so as to 

achieve highly effective biasing to eligible variation 

operations. The way in which the proposed variation operator 

uses the fitness information to bias application of eligible 

variation operations is summarized in Table 2. 

 

Table 2: Biasing of Variation Operations 

Variation 

Operation 
Eligibility Condition Interpretation 

Append Head fcom(X1) = 5 and fprod(X2) = 0 if k > 1 

fcom(X1) = 5, if  k = 0 

Append head if first rule is not 𝑋𝑖𝑆, but it 

is connected to second rule 

Replace Head fprod(X2) = 1 Replace head if first rule is not connected 

to second rule 

Append  

Tail 
fcom(Xk) = 5 and fprod(Xk) = 0, if k > 1 

fcom(Xk) = 5, if  k = 0 

Append tail if last rule does not contain 

“AEP fun”, but is appropriate 

Replace Tail fprod(Xk) = 1 Append tail if last rule is not appropriate 

 

In Table 2, the first column shows variation operations that 

can be applied to candidate. The second column shows the 

values of candidate’s fitness for which the corresponding 

variation operation is eligible. The last column provides 

explanation of what is done based on fitness values in column 

two.  

 

Algorithm 

This subsection presents algorithm of the proposed variation 

operator for applying the four variation operations to produce 

offspring during the search process. The algorithm as shown 

in Fig. 4. below, begins by getting the parent candidate into 

variable C, and randomly chooses one of the four variation 

operations (variable Opr). The algorithm determines the 

anchor-rule, and then obtains the best neighbor rule through 

tournament selection over randomly chosen q rules.  

Thereafter, the algorithm initializes the child as exact copy of 

the parent, and then bias application of the chosen variation 

operation accordingly to produce a child that differs from the 

parent. Finally, the child is added to the offspring collection. 

 

 

Algorithm searchOperator(parent candidate) 

 

begin 

1. // parent candidate 

2. C ← parent candidate 

3. //chose variation Opr at random 

4. Opr ← randomly chosen variation operation 

5. RP ← ϕ    // ϕ contains all extracted grammar rules 

6. tmpRulesArray ← random q rules from RP 

7. If (Opr = Append head or Replace head) { 

8.  anchor_rule =  headOf(C) 

9. } else { 

10.  anchor_rule =  tailOf(C) 

11. } 

12. // apply tournament with respect to anchor-rule 

13. best_neighbour_rule = tournamentOf(tmpRulesArray) 

14. // initialize child to exact copy of parent 

15. child ← C 

16. // now bias variation 

17. // append head operation 

18. If (Opr = Append head) { 

19.  If(sizeOf(C) = 1) { 

20.  child ←append best_neighbour_rule to head of C 

21.  } 

22.   else if ( fprod(second_ruleOf(C)) = 0 and fcom(first_ruleOf(C)) = 5 ){ 

23.  child ←append best_neighbour_rule to head of C 

24.  } 

25. }  

26. // replace head operation 

27. If (Opr = replace head) { 

28.  if (fprod(second_ruleOf(C)) = 1 ){ 

29.  child ←replace head of C  with best_neighbour_rule  
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30.  } 

31. }  

32. // append tail operation 

33. If (Opr = Append tail) { 

34.  If(sizeOf(C) = 1) { 

35.  child ←append best_neighbour_rule to tail of C 

36.  } 

37.   else if ( fprod(iast_ruleOf(C)) = 0 and fcom(last_ruleOf(C)) = 5 ){ 

38.  child ←append best_neighbour_rule to tail of C 

39.  } 

40. }  

41. // replace tail operation 

42. If (Opr = replace tail) { 

43.  if (fprod(last_ruleOf(C)) = 1 ){ 

44.  child ←replace tail of C  with best_neighbour_rule  

45.  } 

46. }  

47. // add child to offspring 

48. off − springs ←  +child 

end 

 

Figure 4:  Algorithm of the Proposed Variation Operator 

 

The following section illustrates how the proposed variation 

operator is applied. 

 

Example Application 

For illustration purpose, let us use the proposed variation 

operator to apply variation operations to the example 

candidates defined earlier in Fig. 3. This exercise, as shown 

in table 3, would produce offspring for the candidates.  

The first column of the Table 3. shows values of parameters 

which are required by the proposed variation operator. Note, 

the value assign to Opr is randomly selected from the four 

variation operations. Also, tournamentOf(q) apply 

tournament selection over q randomly selected rules and 

returns best neighbor of the anchor-rule. 

 

Table 3: Applying Variation Operations to Example Candidates 

Variation Operator Parameters Testing Eligibility Condition Offspring Produced 

𝐶 =  𝑋14 , 𝑋12𝐴 

Opr = "Append head" 

anchor − rule = 𝑋14  
tournamentOf(q) = 𝑋17𝑆 

fcom(X14) = 5 and fprod(X12) =

0 

(Condition Satisfied) 

𝑋17𝑆 , 𝑋14 , 𝑋12𝐴 

 

𝐶 = 𝑋14 

Opr = "Append tail" 

anchor − rule = 𝑋14  
tournamentOf(q) = 𝑋11𝐴 

 

fcom(X14) = 5,  k = 1 

(Condition satisfied) 

𝑋14, 𝑋11𝐴 

C =  𝑋17𝑆  , 𝑋14 , 𝑋13𝑉 , 𝑋11𝐴 

Opr = "Replace tail" 

anchor − rule = 𝑋11𝐴   
tournamentOf(q) = 𝑋12 

fprod(X11A) = 0 

(Condition Not Satisfied) 

𝑋17𝑆  , 𝑋14 , 𝑋13𝑉 , 𝑋11𝐴 

(No change, offspring same as parent) 

 

The second column shows values of fitness components that 

are used to check eligibility of the chosen variation operation 

with respects to the candidate. In first and second row, the 

eligibility conditions are satisfied, thus the proposed variation 

operator performs the biased variation using the chosen 

operation in Opr, and produce offspring accordingly. 

However, in the last row, the eligibility condition is not 

satisfied, and consequently, the proposed variation operator 

ignores application of the chosen variation operation and 

returns an offspring that is exact copy of the parent. This 

strategy helps to bias operations to neighborhood as well as to 

eligible operations that avoids destructive variations. 

The third column shows the resulting offspring. Observe that, 

in the first row, the variation has resulted in offspring that is 

an optimal solution, which reveals SQLIV with respect to 

AEP “password” of the running example. The offspring 

produced in second row contains two grammar rules, showing 

example of how candidates grow during the search process. 

In the last row, the offspring is exact copy of the parent, this 

happens when the randomly chosen variation operation is 

likely to results in a destructive variation, and is thus ignored. 

This is a good way of ensuring elitism of the search process. 

 

CONCLUSION 

The efficiency of search process can be greatly improved by 

the quality of the variation operations which are applied for 

producing offsprings as well as the quality of the fitness 

evaluation strategy that is used for selecting better candidate 

solutions. In this paper, we define novel variation operator 

that forms part of evolutionary programming method which 

employs grammar reachability search process for detection of 

vulnerabilities. The proposed variation operator is able to 

perform four variation operations on candidate solution in 

order to produce its offspring. The proposed variation 

operator is able to bias application of variation operation 

towards better fitness candidates as well as eligible and non-
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destructive variations, thus, improving elitism of the search 

process by ensuring adequate balance between exploration 

and exploitation of the search space. The proposed variation 

operator was used in EPSQLiFix which is an evolutionary 

programming method for SQL injection vulnerabilities 

detection and removal in web application. The proposed 

variation operator demonstrated remarkable performance in 

EPSQLiFix. Thus, we are optimistic that the ideas presented 

in defining the proposed variation operator can as well benefit 

research communities in improving performance of search 

process across related problem domains. 
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