
DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 402

8

DEFINING VARIATION OPERATOR FOR GRAMMAR REACHABILITY SEARCH BASED

VULNERABILITIES DETECTION

Umar Kabir

Department of Software Engineering, Faculty of Computing, Bayero University Kano.

*Corresponding authors’ email: ukabir.se@buk.edu.ng

ABSTRACT

In population-based search algorithm such as Evolutionary Programming (EP), the search process typically

involves seeding population of first generation with randomly generated individuals, selecting parents through

fitness evaluation, producing offsprings through variation of parents, and selecting parents and offsprings into

next generation of candidate solutions. Obviously, the quality of the variation operator is important in leading

the search process towards global optimal solution. In this paper, a high-quality variation operator is proposed.

The proposed variation operator has the capacity to bias search towards optimal solutions while ensuring

adequate balance between exploration and exploitation of the search space so as to facilitate discovery of

optimal solutions in fewer number of generations. The proposed variation operator was used in our published

work named EPSQLiFix. The proposed variation operator demonstrated high performance. Thus, it can as well

be applicable in other related problem domains.

Keywords: Variation Operator, Search Process, Vulnerabilities Detection, Grammar Reachability,

Evolutionary Programming

INTRODUCTION

Over the years, search algorithms have been widely used for

finding optimal solutions to class of problems for which

finding exact solution is not feasible (Hidalgo-Herrero, 2013).

These kinds of problems are termed as NP-hard problems or

simply called search problems.

There are local search algorithms which look for candidate

solutions within the neighborhood of a given individual

solution. Notable weakness of local search algorithms is that

they can only find a solution which is the best among its

neighborhood but not necessarily the best within the entire

search space. Thus, a local search algorithm may be trapped

within local optima (Alhijawi & Awajan, 2024). Local search

algorithms are usually individual based algorithm such as

Greedy Search, Tarbu Search, Ant Colony, and so on.

On the other-hand, there are global search algorithm which

has the capacity of looking for solution within the entire

search space. Thus, a global search algorithm has the potential

for finding solution which is the best possible solution in the

entire search space. Global search algorithms are mostly

population-based algorithms such as Genetic Algorithm,

Evolutionary Programming, Genetic Programming, Particle

Swarm, etc. (Alhijawi & Awajan, 2024; Obunadike et

al.,2018; Emmanuel et al., 2022).

For both local and global search algorithms, the search

process involves variation of parents to produce offsprings. In

some algorithms, beside variation operation, cross-over

operation may also be performed in the process of producing

offsprings from parents. Obviously, the success of search

algorithm is directly influenced by the quality of the

applicable variation operator that is applied to generate

modified copy of an individual (parent) in order to produce its

offspring.

In the literature, a number of variation operators were

proposed, each for specified task and problem domain.

However, a common quality factor of variation operator is its

capacity for increasing elitism of search process by ensuring

adequate balance between exploitation and exploration of the

search space.

This paper proposed variation operator that performs four

variation operations on individual so as to produce its

offspring. In our research work, detection of SQL injection

vulnerabilities for web application was modelled as Grammar

Reachability search problem in which individual candidate

solution is a sequence of grammar production rules that were

derived from the web page being analyzed. Details of our

problem formulation was reported in (Umar et al., 2018a).

The proposed variation operator ensures adequacy of search

space exploitation and exploration through randomization and

facilitates early discovery of optimal solutions through

biasness. The proposed variation operator has been used in

our earlier work EPSQLiFix, (Umar et al., 2018b), and it’s

performance was remarkable. Thus, the proposed variation

operator has potential applicability in related problem

domains.

The remaining of this paper is organized as follows. Review

of related literature is presented in the next section, followed

by presentation of Detection of SQL Injection Vulnerabilities

as Grammar Reachability Search Problem. This is followed

by presentation of the proposed variation operator, the Section

present definition and algorithm of the proposed variation

operator, as well as illustrative example of its applicability.

Lastly, the paper conclusion is presented.

In the literature, the terms variation operation and mutation

operation are used interchangeably. There is no single

variation or mutation operator that fits all, and there is no

defined procedure for formulating variation or mutation

operators. This section presents some research work which

proposed variation/mutation operators.

Mutation testing involves changing a program in minor ways

by applying mutation operations, which results in modified

versions of the program (Wang et al., 2022). Crossover

operators and mutation operators play a very important role in

the development of an efficient search algorithm (Kumar et

al., 2021). Search base mutation testing was proposed by

(Uzunbayir & Kurtel, 2024). They presented novel approach

which combines genetic algorithms and ant colony

optimization to reduce test cases and enhance the

effectiveness of the test suit for mutation testing. Mutation

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 8 No. 3, June, (Special Issue) 2024, pp 402 - 408

DOI: https://doi.org/10.33003/fjs-2024-0803-2463

mailto:ukabir.se@buk.edu.ng
https://doi.org/10.33003/fjs-2024-0803-

DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 403

testing emerges as an invaluable method for evaluating a test

suite’s fault detection capability. Their approach uses

mutation operators to introduce minor changes to the code, to

optimize existing test suites, and to improve mutant detection

with fewer test cases, thus improving the overall testing

quality.

In the work of (Li et al., 2023) Many mutation operators have

been designed to address a variety of challenging optimization

issues. They proposed reinforcement learning based operator

selection strategy for improving exploration and exploitation

of the search space. They used the reinforcement learning to

control state transition, as well as to identify the appropriate

operator for each parent that maximizes its cumulative

improvement. Their method divides the state of population

search into four categories and selects the optimal operator

that varies with the change in population state. Al-Tashi et al.,

(2023) proposed integrated mutation operator that adds more

informative features which can assist in enhancing

classification accuracy. In their work, the continuous search

space was converted into binary space using the sigmoid

function, and they used wrapper-based Artificial Neural

Network (ANN) to evaluate the classification performance of

the selected feature subset.

It is interesting to mention that empirical evidences (Arcuri,

2008, 2011; Ackling et al., 2011) have shown that biasing of

variation operations is very effective in improving

effectiveness of search process for software repairs.

Moreover, it has been shown empirically that not all

variations result in valid programs (Arcuri, 2008; Ackling et

al., 2011). This is because variation operations may result in

syntax violation, logical incorrectness, or functional

degradation (Arcuri, 2008, 2011; Dominguez-Jimenez et al.,

2011). Moreover, in the literature, different techniques have

been used to bias variation to appropriate part of candidate

solution. For instance, Arcuri (2008, 2011) proposed a novel

variation operator that utilizes information extracted by

Tarantula (Ackling et al., 2011; Jones & Harrold, 2005) fault

localization tool to bias variation to most suspicious location

among n randomly selected nodes of candidate solution.

Ackling et al. (2011) proposed technique that combines the

above Tarantula approach and lookup tables for biasing

variation to most suspicious location as well as restricting

variation to only eligible nodes. Their approaches facilitate

evolvement of better fitness candidate solutions.

Detection of SQL Injection Vulnerabilities as Grammar

Reachability Search Problem

This section highlights the reformulation of SQL injection

vulnerabilities detection as grammar reachability search

problem, details of which was reported in our earlier work

titled Formulation of SQL Injection Vulnerability Detection

as Grammar Reachability Problem (Umar, 2018a). The

section begins by presenting source code of hypothetical

webpage example shown in Fig. 1. The hypothetical webpage

is used as running example in the remaining sections of this

paper. The example webpage performs basic user

authentication in a Java web application. As shown in the

figure, there are two data input fields namely “username” and

“password”. The data input field “username” is validated at

line 13 using the function toSQL(N), whereas the data input

field “password” is not validated at all. These two data input

fields are subsequently used in generation of dynamic query

string at line 14, and eventual dynamic execution of the query

at line 17. Consequently, lack of validation of “password”

makes the hypothetical webpage vulnerable to SQL injection.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

protected void doPost(HttpServletRequest request,

HttpServletResponse response) {

String N =””;

String Q = null;

String R = null;

java.sql.Statement stat = null;

stmt = conn.createStatement();

java.sql.ResultSet S = null;

N = request.getParameter("username");

String P = request.getParameter("userpass");

R = toSQL(N); // validation for N (i.e. Username)

Q = "select * from userstbl where uname='" + R + "' AND

passwd ='" + P + "'";

S = Stmt.executeQuery(Q);

 // exec qry at sensitive sink

}

Figure 1: Source code of Example Vulnerable Webpage (source: Umar, 2018a)

In addition to the above running example, three important

terminologies are repeatedly used in our presentation. The

first terminology is Application’s Entry Point (AEP), which

is a program statement at which input data gets into web

application. In a source code, an AEP is identified by

presence of data input function such as

request.getParameter("username") in line 11 of fig. 1. The

second terminology is Sensitive Sink (SS), which is a

program statement at which dynamic query is executed

(Medeiros et al., 2014; Halfond & Orso, 2005; Yan et al.,

2013). In a source code, an SS is identified by presence of

query execution command such as Stmt.executeQuery(Q) in

line 17 of fig. 1. Finally, the third terminology is Data

Validation Statement, which is a program statement that

performs validation of input data. For example, the statement

R = toSQL(N) in line 13 is a data validation statement which

uses the data validation function toSQL(N) to secure the

username input data.

The key idea behind our formulation of SQL injection

vulnerabilities detection as grammar reachability search

problem is that, where data flow path can be established from

a given AEP (such as “password” in line 12 of Fig. 1.) and

ends in an SS (such as line 17 of Fig. 1.), if data validation is

performed along the path, then the associated AEP (such as

https://scholar.google.com/citations?user=3lB8Y8kAAAAJ&hl=en&oi=sra

DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 404

“username” in lines 11 of Fig. 1.) is said to be validated and

secure, otherwise, if data validation is NOT performed along

the path, then the corresponding AEP (such as “password” in

line 12 of Fig. 1.) is vulnerable to SQL injection.

The AEP-to-SS path can be represented as a sequence of

source code line numbers that shows corresponding data flow

across program statements for example L11, L13, L14, L17

depicts data flow from AEP parameter “username” to

dynamic query execution at SS in Line 17

Our strategy for vulnerabilities detection is to extract

grammar production rules from declaration and assignment

statements of the webpage, such that the nonterminal symbol

of the LHS (Left Hand Side) of each grammar production rule

represents the variable of the LHS of the corresponding

statement from which the grammar rule is extracted. The

extracted grammar rules are converted to context free

grammar (CFG) production rules. Then, the CFG rules are

used to test reachability from nonterminal symbol

representing AEP statement to nonterminal symbol

representing SS statement. However, in the extracted

grammar, the rule extracted from a SS statement is considered

as the start rule for tracking reachability. The Format of

Extracted Grammar Production Rules is shown in table 1.

Furthermore, corresponding CFG production rules extracted

from source code of Fig.1. are shown in Fig.2.

Table 1: Format of Extracted Grammar Production Rules

Example Description

𝑋𝑝 → 𝑋𝑞 Unit rule, nonterminal produce single nonterminal

𝑋𝑝 → α𝑋𝑞𝛽 𝑤ℎ𝑒𝑟𝑒 α, β ϵ (Σ ∪ N)∗ Nonterminal produce combinations of terminals and

nonterminals

𝑌𝑝𝑎 → 𝛾 𝑤ℎ𝑒𝑟𝑒 𝛾 ϵ Σ∗ Nonterminal produce sequence of terminal symbols

𝑋𝑝𝑏 → α 𝐟𝐮𝐧_𝐧𝐚𝐦𝐞(𝑋𝑞)𝛽 Nonterminal symbol produce function with one argument,

e.g. executeQuery(𝑋𝑝), toSQL(𝑋𝑝)

(source: Umar, 2018a)

Note that, in the table, 𝑋𝑎𝑏 and 𝑌𝑎𝑐 denotes nonterminal

symbols, the subscript 𝑎 = p, q, r are line numbers of

statements from which grammar rule is extracted, subscript

𝑏 = letter S or A or V and subscript 𝑐 = 𝑙𝑒𝑡𝑡𝑒𝑟 𝑎. Moreover,

𝐟𝐮𝐧_𝐧𝐚𝐦𝐞 represents function names, denoting sensitive

sink functions, AEP functions, and data validation functions.

𝑋17𝑆 → 𝐞𝐱𝐞𝐜𝐮𝐭𝐞𝐐𝐮𝐞𝐫𝐲(𝑋14)
𝑋14 → 𝑌14𝑎 𝑋13 𝑌14𝑏 𝑋12𝐴 𝑌14𝑐

𝑌14𝑎 → select * from userstbl where uname=' +

𝑌14𝑏 → + "′ AND passwd = ′" +

𝑌14𝑐 → + "′"

𝑋13𝑉 → 𝐭𝐨𝐒𝐐𝐋 (𝑋11𝐴)
𝑋11𝐴 → 𝐫𝐞𝐪𝐮𝐞𝐬𝐭. 𝐠𝐞𝐭𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫("username")

𝑋12𝐴 → 𝐫𝐞𝐪𝐮𝐞𝐬𝐭. 𝐠𝐞𝐭𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫("userpass")

Figure 2: CFG rules extracted from the running example (source: Umar, 2018a)

The extracted CFG rules are analyzed for establishing

possible flow paths from AEPs to SSs by testing for grammar

reachability. Where such reachability is found, we analyze the

associated “reachability productions sequence” for detection

of SQLIV. If data validation is found along productions

sequence, then the associated AEP parameter is secured and

not vulnerable, otherwise, absence of data validation along

such productions sequence means that the associated AEP

parameter is not secured, and thus, SQLIV is found.

By reformulating detection of SQL injection vulnerabilities as

grammar reachability search problem using evolutionary

programming (EP) algorithm, individual candidate solutions

are formed as sequence of CFG production rules. Figure 3

show some candidate solutions for the running example in

Fig.1. The search process evolves candidate solutions by

application of the proposed variation operator and fitness

evaluation through generations until optimal solutions are

found. Details of the proposed variation operator is presented

in the next section.

i. 𝑋14 , 𝑋12𝐴

ii. 𝑋14
iii. 𝑋17𝑆 , 𝑋14 , 𝑋13𝑉 , 𝑋11𝐴

Figure 3: Example of Candidates for the running example web

application (source: Umar, 2018a)

Proposed Variation Operator

The grammar reachability search process using evolutionary

programming (EP) algorithm begins with seeding population

of first generation with candidates, each consisting of a single

randomly selected CFG production rule. The candidates grow

along the search process through application of variation

operations and fitness evaluation. In this section, we present

the proposed variation operator that performs four variation

DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 405

operations to produce offsprings. For instance, the variation

operation could be “to append” a grammar production rule to

a candidate or “to replace” an existing grammar production

rule within a candidate.

Given a set of variation operations, and a pool of all

production rules extracted from webpage WP containing SS

and some AEPs, it is important that there exists a sequence of

variation operations that can select set of rules which establish

SS-to-AEPs reachability. If such sequence of operations

exists, then it would be possible to find all reachability

derivations for detection of SQLIVs in a given web page.

However, the fact that such reachability exist does not mean

that it is easy to establish it.

For instance, the variation operations must be performed with

caution so as to avoid destructive operations. Obviously, not

all forms of variations are constructive or even feasible, for

example, replacement of appropriate production rule with an

inappropriate rule within a candidate would only lead to less

fit candidate. Moreover, since the population of first

generation is seeded with candidates formed from single

randomly selected production rules, it is very obvious that

cross-over between two of such candidates could only be very

destructive. This is because cross-over would result in

exchanging different portions of grammar rules from the two

candidates involved. The result would naturally be a

candidate containing distorted and/or meaningless production

rule. Consequently, our grammar reachability search

approach excludes cross-over from applicable variation

operations. Considering the above caution and the kind of task

at hand, i.e., “searching for productions sequences that

establish SSs-to-AEPs reachability”, the following four

variation operations are feasible: -

i. Append Head: this operation appends a production rule

to the head, i.e., begin of a candidate. The newly added

rule becomes the start rule in productions sequence.

ii. Append Tail: this operation appends a production rule

to the tail, i.e., end of a candidate. The newly added rule

becomes the last rule in productions sequence.

iii. Replace Head: this operation replaces the current start

rule in a candidate with another production rule. The

newly added rule becomes the start rule in productions

sequence.

iv. Replace Tail: this operation replaces the current last rule

in a candidate with another production rule. The newly

added rule becomes the last rule in productions

sequence.

The above four variation operations are meant to lead the

search process to optimal solutions. However, in the literature

of search-based software testing other types of variation

operations such as delete, and insert are commonly applicable

during search process, nevertheless, they may not be helpful

in our task.

It is necessary to mention that there are some scenarios where

some of the above listed four operations could be very

destructive to the search process. For example, the “Append

head” operation should not append a grammar rule when the

current head rule already contains sensitive sink function.

Also, both “Replace head” and “Replace tail” operations

should avoid replacing an appropriate production rule with an

inappropriate one within a given candidate. Handling these

challenges require systematic application of variations in a

very novel ways that improves the performance of the search

process. Consequently, the proposed novel variation operator

takes into account the existing production rules in a candidate

solution and the candidate’s fitness information to

systematically bias application of the variation operations. In

order words, the proposed variation operator aims at

improving elitism for the search process while maintaining

balance between exploration and exploitation of the search

space (Floudas & Pardalos, 2014). definition of the variation

operator is presented in the next subsection

Definition

The variation operator chooses any of the four variation

operations with equal probability of 0.25. Once an operation

is randomly chosen, the novel operator bias application of the

chosen operation in two ways. First, it uses the notion that “a

program statement is more likely to pass data to (i.e. to

interact with) other statements within its neighborhood” and

consequently, bias application of variation operations to

neighborhood of production rules. Second, the variation

operator uses candidate’s fitness information to bias

application of eligible variation operation, so as to avoid

destructive variations.

In the EP based grammar reachability search process, biasing

search to neighborhood may not be as straight forward,

because variation operations can affect only head rule or tail

rule of a candidate. We call this rule as “anchor-rule”. For

append head and replace head operations, the anchor-rule is

the current head rule, while for append tail and replace tail

operations, the anchor-rule is the current tail rule.

Consequently, the proposed variation operator biases the

search to the neighborhood of the anchor-rule of candidate as

follows: First, q rules are randomly selected from the pool of

production rules for possible consideration. Second,

tournament is applied to the q rules for choosing the rule

which is nearest to the anchor-rule. The chosen rule is

considered as best neighbor. Finally, the operation is applied

using the best neighbor rule. Thus, the proposed variation

operator is defined as three tuples using Equ. 1.

Sopr = {Opr, C, tournamentOf(q)} (1)

Where 𝑂𝑝𝑟 is the randomly chosen variation operation, 𝐶 is

the candidate solution, and 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑂𝑓(𝑞) is a function

that applies tournament selection on q rules and returns the

best neighbor rule accordingly.

This technique allows the proposed variation operator to bias

the search to the neighborhood. However, the application of

the chosen operation using best neighbor rule needs to be

further biased to eligible operations guided by candidate’s

fitness information so as to avoid destructive variations.

As discussed earlier, certain variation operations are not

eligible in some scenarios. For example, “append head” is

only eligible in a candidate whose current head rule is not

sensitive sink rule 𝑋𝑖𝑆. Also, the “append tail” is only eligible

in a candidate whose current tail rule does not contain AEP

function. Fortunately, the type of production rule in

candidate’s head and tail position can be determined from the

candidate’s “productions sequence completeness” fitness

values given by Equ. 2 and 3 respectively. The two equations

are shown below. Details on formulation of these fitness

equations is reported in our work (Umar et al., 2018a)

𝑓𝑐𝑜𝑚(𝑋1) = {
0 𝑋1 → 𝑠𝑠_𝑓𝑢𝑛(𝛾)

5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

𝑓𝑐𝑜𝑚(𝑋𝑘) = {
0 𝑋𝑘 → 𝑎𝑒𝑝_𝑓𝑢𝑛("𝑎𝑒𝑝_𝑛𝑎𝑚𝑒")

5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

Using the fitness equations shown above, if fitness 𝑓𝑐𝑜𝑚(𝑋1)

evaluates to 0, it means the current head rule is a sensitive sink

rule S and thus “append head” is not eligible. Similarly, if

fitness 𝑓𝑐𝑜𝑚(𝑋𝑘) evaluates to 0, it means the current tail rule

contains AEP function and thus “append tail” is not eligible.

Consequently, from these fitness values, the proposed

variation operator can know the type of rule in current head

or current tail positions in a candidate solution and bias the

DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 406

search process towards application of eligible variation

operations.

In addition, the proposed variation operator needs to avoid

replacement of appropriate production rule in a candidate with

an inappropriate one. The proposed variation operator

considers the “production fitness” of the anchor-rule that is

about to be replaced. This fitness is given by Eq. 4. Using the

equation, if the production fitness has value of 0, it means the

anchor-rule is in an appropriate position, and should be

maintained, otherwise it can be replaced.

𝑓𝑝𝑟𝑜𝑑(𝑋𝑖) = { 0 𝑋𝑖−𝑥

+
⇒ 𝛼𝑋𝑖𝛽

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑤ℎ𝑒𝑟𝑒 𝑖 > 1, 𝑖 > 𝑥, 𝑎𝑛𝑑 𝑥 > 0 (4)

During the search process, both production fitness and

completeness fitness of a candidate are considered so as to

achieve highly effective biasing to eligible variation

operations. The way in which the proposed variation operator

uses the fitness information to bias application of eligible

variation operations is summarized in Table 2.

Table 2: Biasing of Variation Operations

Variation

Operation
Eligibility Condition Interpretation

Append Head fcom(X1) = 5 and fprod(X2) = 0 if k > 1

fcom(X1) = 5, if k = 0

Append head if first rule is not 𝑋𝑖𝑆, but it

is connected to second rule

Replace Head fprod(X2) = 1 Replace head if first rule is not connected

to second rule

Append

Tail
fcom(Xk) = 5 and fprod(Xk) = 0, if k > 1

fcom(Xk) = 5, if k = 0

Append tail if last rule does not contain

“AEP fun”, but is appropriate

Replace Tail fprod(Xk) = 1 Append tail if last rule is not appropriate

In Table 2, the first column shows variation operations that

can be applied to candidate. The second column shows the

values of candidate’s fitness for which the corresponding

variation operation is eligible. The last column provides

explanation of what is done based on fitness values in column

two.

Algorithm

This subsection presents algorithm of the proposed variation

operator for applying the four variation operations to produce

offspring during the search process. The algorithm as shown

in Fig. 4. below, begins by getting the parent candidate into

variable C, and randomly chooses one of the four variation

operations (variable Opr). The algorithm determines the

anchor-rule, and then obtains the best neighbor rule through

tournament selection over randomly chosen q rules.

Thereafter, the algorithm initializes the child as exact copy of

the parent, and then bias application of the chosen variation

operation accordingly to produce a child that differs from the

parent. Finally, the child is added to the offspring collection.

Algorithm searchOperator(parent candidate)

begin

1. // parent candidate

2. C ← parent candidate

3. //chose variation Opr at random

4. Opr ← randomly chosen variation operation

5. RP ← ϕ // ϕ contains all extracted grammar rules

6. tmpRulesArray ← random q rules from RP

7. If (Opr = Append head or Replace head) {

8. anchor_rule = headOf(C)

9. } else {

10. anchor_rule = tailOf(C)

11. }

12. // apply tournament with respect to anchor-rule

13. best_neighbour_rule = tournamentOf(tmpRulesArray)

14. // initialize child to exact copy of parent

15. child ← C

16. // now bias variation

17. // append head operation

18. If (Opr = Append head) {

19. If(sizeOf(C) = 1) {

20. child ←append best_neighbour_rule to head of C

21. }

22. else if (fprod(second_ruleOf(C)) = 0 and fcom(first_ruleOf(C)) = 5){

23. child ←append best_neighbour_rule to head of C

24. }

25. }

26. // replace head operation

27. If (Opr = replace head) {

28. if (fprod(second_ruleOf(C)) = 1){

29. child ←replace head of C with best_neighbour_rule

DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 407

30. }

31. }

32. // append tail operation

33. If (Opr = Append tail) {

34. If(sizeOf(C) = 1) {

35. child ←append best_neighbour_rule to tail of C

36. }

37. else if (fprod(iast_ruleOf(C)) = 0 and fcom(last_ruleOf(C)) = 5){

38. child ←append best_neighbour_rule to tail of C

39. }

40. }

41. // replace tail operation

42. If (Opr = replace tail) {

43. if (fprod(last_ruleOf(C)) = 1){

44. child ←replace tail of C with best_neighbour_rule

45. }

46. }

47. // add child to offspring

48. off − springs ← +child

end

Figure 4: Algorithm of the Proposed Variation Operator

The following section illustrates how the proposed variation

operator is applied.

Example Application

For illustration purpose, let us use the proposed variation

operator to apply variation operations to the example

candidates defined earlier in Fig. 3. This exercise, as shown

in table 3, would produce offspring for the candidates.

The first column of the Table 3. shows values of parameters

which are required by the proposed variation operator. Note,

the value assign to Opr is randomly selected from the four

variation operations. Also, tournamentOf(q) apply

tournament selection over q randomly selected rules and

returns best neighbor of the anchor-rule.

Table 3: Applying Variation Operations to Example Candidates

Variation Operator Parameters Testing Eligibility Condition Offspring Produced

𝐶 = 𝑋14 , 𝑋12𝐴

Opr = "Append head"

anchor − rule = 𝑋14
tournamentOf(q) = 𝑋17𝑆

fcom(X14) = 5 and fprod(X12) =

0

(Condition Satisfied)

𝑋17𝑆 , 𝑋14 , 𝑋12𝐴

𝐶 = 𝑋14

Opr = "Append tail"

anchor − rule = 𝑋14
tournamentOf(q) = 𝑋11𝐴

fcom(X14) = 5, k = 1

(Condition satisfied)

𝑋14, 𝑋11𝐴

C = 𝑋17𝑆 , 𝑋14 , 𝑋13𝑉 , 𝑋11𝐴

Opr = "Replace tail"

anchor − rule = 𝑋11𝐴
tournamentOf(q) = 𝑋12

fprod(X11A) = 0

(Condition Not Satisfied)

𝑋17𝑆 , 𝑋14 , 𝑋13𝑉 , 𝑋11𝐴

(No change, offspring same as parent)

The second column shows values of fitness components that

are used to check eligibility of the chosen variation operation

with respects to the candidate. In first and second row, the

eligibility conditions are satisfied, thus the proposed variation

operator performs the biased variation using the chosen

operation in Opr, and produce offspring accordingly.

However, in the last row, the eligibility condition is not

satisfied, and consequently, the proposed variation operator

ignores application of the chosen variation operation and

returns an offspring that is exact copy of the parent. This

strategy helps to bias operations to neighborhood as well as to

eligible operations that avoids destructive variations.

The third column shows the resulting offspring. Observe that,

in the first row, the variation has resulted in offspring that is

an optimal solution, which reveals SQLIV with respect to

AEP “password” of the running example. The offspring

produced in second row contains two grammar rules, showing

example of how candidates grow during the search process.

In the last row, the offspring is exact copy of the parent, this

happens when the randomly chosen variation operation is

likely to results in a destructive variation, and is thus ignored.

This is a good way of ensuring elitism of the search process.

CONCLUSION

The efficiency of search process can be greatly improved by

the quality of the variation operations which are applied for

producing offsprings as well as the quality of the fitness

evaluation strategy that is used for selecting better candidate

solutions. In this paper, we define novel variation operator

that forms part of evolutionary programming method which

employs grammar reachability search process for detection of

vulnerabilities. The proposed variation operator is able to

perform four variation operations on candidate solution in

order to produce its offspring. The proposed variation

operator is able to bias application of variation operation

towards better fitness candidates as well as eligible and non-

DEFINING VARIATION OPERATOR… Kabir FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 3, June (Special Issue), 2024, pp 402 - 408 408

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

destructive variations, thus, improving elitism of the search

process by ensuring adequate balance between exploration

and exploitation of the search space. The proposed variation

operator was used in EPSQLiFix which is an evolutionary

programming method for SQL injection vulnerabilities

detection and removal in web application. The proposed

variation operator demonstrated remarkable performance in

EPSQLiFix. Thus, we are optimistic that the ideas presented

in defining the proposed variation operator can as well benefit

research communities in improving performance of search

process across related problem domains.

REFERENCES

Ackling, T., Alexander, B. & Grunert, I. (2011, July 12–16).

Evolving patches for software repair. In Proceedings of the

13th Annual Conference on GECCO. Dublin, Ireland: ACM.

Alhijawi, B., & Awajan, A. (2024). Genetic algorithms:

Theory, genetic operators, solutions, and applications.

Evolutionary Intelligence, 17(3), 1245-1256.

Al-Tashi, Q., Shami, T. M., Abdulkadir, S. J., Akhir, E. A. P.,

Alwadain, A., Alhussain, H., Alqushaibi, A., Rais, H. M. D.,

Muneer, A., Saad, M. B., Wu, J., & Mirjalili, S. (2023).

Enhanced Multi-Objective Grey Wolf Optimizer with Lévy

Flight and Mutation Operators for Feature Selection.

Computer Systems Science and Engineering, 47(2), 1937–

1966. https://doi.org/10.32604/csse.2023.039788

Arcuri, A. (2008, May 10 - 18). On the automation of fixing

software bugs. In Proceedings of the 30th International

Conference on Software Engineering. (pp. 1003-1006).

Leipzig, Germany: ACM. DOI: 10.1145/1370175.1370223

Arcuri, A. (2011, June). Evolutionary repair of faulty

software. Journal of Applied Soft Computing, 11 (4), 3494–

3514. DOI: 10.1016/j.asoc.2011.01.023.

Dominguez-Jimenez, J. J., Estero-Botaro, A., Garcia-

Domingueze, A. & Medina-Bulo, I. (2011, Octorber).

Evolutionary mutation testing. Journal of Information and

Software Technology, 53 (10), 1108–1123, doi:

org/10.1016/j.infsof.2011.03.008.

Emmanuel, S., Okoye, I., Ezenweke, C., Shobanke, D., &

Adeniyi, I. (2022). Estimating nonlinear regression

parameters using particle swarm optimization and genetic

algorithm. FUDMA Journal Of Sciences, 6(6), 202-213.

Floudas, C. A., & Pardalos, P. M. (2014). Recent advances in

global optimization.

Halfond, W. G. J., Orso, A. & Manolios, P. (2006b,

November). Using positive tainting and syntax-aware

evaluation to counter sql injection attacks. In Proceedings of

the of the Symposium on the Foundations of Software

Engineering (FSE 2006).

Hidalgo-Herrero, M., Rabanal, P., Rodriguez, I., & Rubio, F.

(2013). Comparing problem solving strategies for NP-hard

optimization problems. Fundamenta Informaticae, 124(1-2),

1-25.

Jones, J. A, & Harrold, M. J. (2005, November 07-11).

Empirical evaluation of the tarantula automatic fault

localization technique. In Proceedings of the 20th

International Conference on ASE '05. (pp. 273-282). Long

Beach, CA: IEEE/ACM. doi: 10.1145/1101908.1101949.

Kumar, R., Memoria, M., Gupta, A., & Awasthi, M. (2021).

Critical Analysis of Genetic Algorithm under Crossover and

Mutation Rate. Proceedings - 2021 3rd International

Conference on Advances in Computing, Communication

Control and Networking, ICAC3N 2021, December, 976–

980. https://doi.org/10.1109/ICAC3N53548.2021.9725640

Li, W., Liang, P., Sun, B., Sun, Y., & Huang, Y. (2023).

Reinforcement learning-based particle swarm optimization

with neighborhood differential mutation strategy. Swarm and

Evolutionary Computation, 78(February), 101274.

https://doi.org/10.1016/j.swevo.2023.101274

Medeiros, I., Neves, N. F., & Correia, M. (2014). Automatic

detection and correction of web application vulnerabilities

using data mining to predict false positives. In Proceedings of

the 23rd International Conference on World Wide Web. (pp.

63-74) New York: IEEE. DOI: 10.1145/2566486.2568024.

Obunadike, G., John, A., & Ismaila, I. (2018).

OPTIMIZATION OF K-MODE ALGORITHM FOR DATA

MINING USING PARTICLE SWARM OPTIMIZATION.

FUDMA JOURNAL OF SCIENCES, 2(3), 24-33.

Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., &

Abdullah, M. T. (2018a, July). Formulation of SQL Injection

Vulnerability Detection as Grammar Reachability Problem.

In 2018 International Conference on Information and

Communication Technology for the Muslim World (ICT4M)

(pp. 179-184). IEEE Computer Society.

Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., &

Abdullah, M. T. (2018b). Comparing Web Vulnerability

Scanners with a New Method for SQL Injection

Vulnerabilities Detection and Removal EPSQLiFix.

International Journal of Engineering & Technology, 7(4.31),

40-45.

Uzunbayir, S., & Kurtel, K. (2024). EvoColony: A Hybrid

Approach to Search-Based Mutation Test Suite Reduction

Using Genetic Algorithm and Ant Colony Optimization.

International Journal of Intelligent Systems and Applications

in Engineering, 12(1), 437–449.

Wang, X., Yu, T., Arcaini, P., Yue, T., & Ali, S. (2022).

Mutation-based test generation for quantum programs with

multi-objective search. In GECCO 2022 - Proceedings of the

2022 Genetic and Evolutionary Computation Conference

(Vol. 1, Issue 1). Association for Computing Machinery.

https://doi.org/10.1145/3512290.3528869

Yan, L., Li, X., Feng, R., Feng, Z. & Hu, J. (2013, October

29th). Detection method of the second-order SQL injection in

web applications. In Proceedings of the Third International

Workshop on SOFL+MSVL. (pp. 154–165). Queenstown,

New Zealand: Springer. DOI: 10.1007/978-3-319-04915-

1_11.

https://creativecommons.org/licenses/by/4.0/

