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ABSTRACT 

Attacks are actions that attempt to break one of the following properties of the computer system: 

confidentiality, integrity, and availability. The immense increment in the amount of internet applications and 

the appearance of modern networks has created the need for improved security mechanisms. Internet of Things 

(IoT) is a system that uses the Internet to facilitate communication between sensors and devices. Several 

approaches have been used to build attacks detection system in the past. This study built two ensemble models 

for the classification of attacks using Random Forest and Adaboost algorithms respectively. Feature 

importance was used for selecting promising attributes from the IoT intrusion dataset. Thereafter, the results 

of the classification models were evaluated and compared. The models were evaluated based on when feature 

selection technique was applied and without respectively.  For Random Forest-based classification model with 

feature selection, 99.0% ,0.95,0.88,0.82, were obtained for accuracy, recall, f1-score, and precision 

respectively while without feature selection 69.0%,0.86,0.76,0.64 were obtained respectively. For Adaboost-

based classification model with feature selection 99.0%.0.69,0.61,0.66 were obtained for accuracy, recall, f1-

score and precision respectively. Without feature selection the Adaboost model recorded 58.0%,0.58,0.48,0.50 

respectively. The results showed that both models achieved high rates with feature selection technique used, 

with Random Forest performing slightly better, both learning models showed promised performances in 

classifying attacks in IoT environments. This study concluded that the use of the chosen feature selection 

method helped improve the performances of the two ensembles in the classification of attacks in the IoT 

dataset.  
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INTRODUCTION 

Attacks are activities that aim to violate one of the hardware 

or software system's confidentiality, integrity, or availability 

requirements. Attacks are in various forms due to the threats 

that are pervasive in networks and the cyber space (Ibitoye, 

Shafiq & Matrawy., 2019) In recent time machine learning 

(ML) algorithms are getting popular for classifying attacks in 

network (Oyelakin et al., 2020). The internet of things is a 

network of connected devices that can link without human 

involvement, thanks to the enormous growth in the number of 

online applications and the development of contemporary 

technology. IoT enables a large number of items with sensors 

(including bicycles, coffee makers, lights, and many more 

items). 

IoT applications are transforming our work and lives by 

connecting to the internet in sectors such as healthcare, 

agriculture, transportation, etc. Additionally, it offers 

countless benefits and countless chances for the sharing of 

knowledge, innovation, and progress (Alsamiri & Alsubhi, 

2019). IoT technology can collect, analyze, and comprehend 

data about the environment, allowing for modernizations that 

raise living standards. By making new types of 

communication between machines and people simpler, smart 

cities can be created (Tasnim, Hossain, Tabassum & Parvin, 

2022). In the modern world, IoT technology is used in a 

variety of ways. Everything has become intelligent, including 

entry doors, window blinds, watches, TVs, fans, lightbulbs, 

and refrigerators. The amount of device engagement is 

growing daily. Their reliance is increasing as a result. 

Attackers may not directly hack the target system, but they 

can easily alter the behavior of other interdependent devices 

or the surrounding environment to achieve their objectives. 

Again Some compact IoT devices are missing a memory 

management unit (MMU). These devices employ a variety of 

complex encryption and authentication techniques, which 

consume excessive processing power and result in a 

noticeable delay, impairing normal operation and lowering 

performance, especially for real-time IoT devices. Because of 

this, it is easy for attackers to compromise these devices by 

taking advantage of memory flaw (Tasnim et al., 2022) 

IoT devices have proliferated greatly in recent years, and it is 

anticipated that by 2020, there will be close to 30 billion of 

them on the market. The market competitiveness and 

technical constraints, however, make it difficult to increase 

the security of these devices. Even worse, default usernames 

and passwords are frequently left unchanged, which makes 

these devices a prime target for attack by attackers. A 

continual danger to the ever-expanding IoT world, new 

botnets like Hajime and Reaper demonstrate how adversaries 

are always changing their tactics to avoid detection. These IoT 

botnets can swiftly develop into a potent collection of 

weapons to seriously harm a number of stakeholders. They 

also exploit a manufacturer's default settings to scan the 

Internet for other devices (Shaikh, Bou-Harb, Crichigno, & 

Ghani, 2018). 

IoT nodes are unlike other traditional networks in that they 

lack manual controls, have minimal capacity, and few 

resources. Additionally, IoT security challenges are becoming 

increasingly problematic due to the widespread use and rapid 

proliferation of IoT devices in daily life, necessitating the 

creation of network-based security solutions. While the 

existing methods do a good job of detecting some threats, it is 
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still difficult to find others. There is no doubt that there is 

room for more advanced techniques to improve network 

security as network attacks rise in number and the amount of 

information present in networks multiplies dramatically 

(Alsamiri et al., 2019). Unauthorized individuals may take 

advantage of a network vulnerability in order to obtain 

sensitive data and harm the network (Alladi, Chamola, Sikdar 

& Choo, 2020). This study compered random forest and 

adaboost machine learning algorithms for classifying attacks 

in internet of things and focuses on how to achieve improved 

ensemble based attacks classification models in Internet of 

Things environment. 

 

MATERIALS AND METHODS 

The methodology used in this research is collection of data 

from kaggle online repository, 

https://www.kaggle.com/datasets/azalhowaide/iot-dataset-

for-intrusion-detection-system-ids. pre-process and analyse 

it to improve machine learning results by combining two 

models. This approach allows the production of better 

predictive performance compared to a single model. Basic 

idea is to learn a set of classifiers.  

Each step of the methodology is logically detailed 

corresponding with the activities to accomplish each objective 

of the study. 

 

 
Figure 1: The Methodological Flow of the Proposed Random Forest and Adaboost Model 

 

Figures 1 is used to illustrate the different stages in the 

machine learning-based classification of attacks in internet of 

things. Python Programming language was used for the 

implementation of various stages in the proposed model. The 

basic stages in the machine learning-based model classified in 

the implementation. 

 

Evaluation Metrics 

Evaluation of the two model Random Forest and Adaboost 

were perform using accuracy, precision, recall and f-

measure.  

The percentage of accurate predictions to all other guesses is 

known as accuracy. The percentage of all normal and attack 

data that are correctly classified serves as a measure of a 

model's overall effectiveness.  

Accuracy= 
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (1)       

Precision The ratio of successfully predicted positive data to 

all anticipated positive data, including True Positive and False 

Positive Values, is what is meant by this term. The amount of 

successfully predicted positive data, including True Positive 

and False Positive values, is proportional to the total amount 

of anticipated positive data. It measures a model's overall 

effectiveness by counting how many of all attack scenarios 

are true.  

Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

The proportion of accurately predicted positive data to all 

anticipated True Positive and False Negative values is known 

as recall. Recall is defined as the proportion of correctly 

predicted positive data to all expected True Positive and False 

Negative values. Models that identify False Negative Values 

have an impact on the recall metrics 

 Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

F-measure is an evaluation statistic used to describe how well 

a machine learning model (or classifier) is performing. It 

provides a model's precision and recall information in 

combination. This means that a high F1-score denotes a strong 

recall and precision value.  F-measure is a classification 
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evaluation metric that is defined as the harmonic mean of 

recall and precision. It is a metric used in statistics to assess 

how accurate a test or model is. It is expressed as follows in 

mathematical equation,  

F-measure= 
𝟐∗𝑹𝒆𝒄𝒂𝒍𝒍∗𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

𝑹𝒆𝒄𝒂𝒍𝒍+𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏
   (4) 

Data Pre-processing 

Missing Values was used as the pre-processing technique for 

this study. Missing values were handled by dropping rows 

with missing values. The specific columns affected by 

missing values are listed, 

 

Table1: Identifying Rows With Missing Values 

Missing Values  Number of Missing Values in the Dataset: 

Flow duration       0 

Header Length     0 

Protocol Type       0 

Duration            0 

Rate                0 

Srate              0 

Drate              0 

UDP                 0 

DHCP               0 

ARP                 0 

ICMP                0 

IPv                 0 

LLC                0 

Tot sum             0 

Min                 0 

Max                0 

AVG                0 

Std                 0 

Tot size         0 

IAT                 1 

Number              1 

Magnitue            1 

Radius              1 

Table 1: is used to depict the columns (feature) with missing values. The missing values were handled. 

 

Table 2: Results of IoT Attack Classification Models 

Models Accuracy Recall F1-score Precision 

Random Forest Classifier with feature selection 0.99 0.95 0.88 0.82 

Random without feature selection  0.69 0.86 0.76 0.64 

AdaBoost Classifier with feature selection 0.99 0.69 0.61 0.66 

AdaBoost without Feature selection Report 0.58 0.58 0.48 0.50 

 

These outcomes offer valuable insights into the models 

performance in classifying attacks within IoT environments. 

Notably, the Random Forest Classifier and AdaBoost 

Classifier, both incorporating feature selection, achieved the 

highest accuracy rates. Conversely, models lacking feature 

selection demonstrated comparatively lower performance, 

especially in terms of precision and F1-score. These results 

underscore the substantial influence of judicious feature 

selection on the efficacy of models in the realm of IoT attack 

classification. 
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Figure 2: Performance of the Attack Detention Models 

 

Summary and Findings 

This study focuses on a comparative analysis of Random 

Forest and Adaboost learning models for classifying attacks 

in the Internet of Things (IoT). The objective is to investigate 

the performance of these algorithms in detecting different 

types of attacks prevalent in IoT networks. The IoT 

environment poses unique security challenges due to the 

interconnection of various devices with limited resources and 

memory capacity. Traditional security approaches may not be 

directly applicable in IoT due to these constraints. The 

research aims to collect and preprocess an IoT dataset, apply 

feature importance techniques for selecting relevant 

attributes, and then use Random Forest and Adaboost to 

classify attacks. The models' performance was  evaluated 

using metrics such as accuracy, recall, and f1-score, precision. 

The study compared Random Forest and Adaboost machine 

learning models for classifying attacks in the Internet of 

Things (IoT). The models were evaluated using a dataset of 

IoT network traffic data, including normal and attack 

instances. Both models achieved high accuracy rates, with 

Random Forest performing slightly better in accuracy, and 

Adaboost showing higher precision and recall. Feature 

selection techniques significantly influenced model 

performance. Overall, both models showed promise in 

detecting and classifying attacks in IoT environments, with 

potential for future ensemble techniques to further enhance 

performance.   

 

CONCLUSION 

In this study, two ensemble machine learning algorithms are 

used for the classification of attacks in the IOT environment. 

Then, the results of the models were evaluated and compared.  

Performance measures were conducted to test the accuracy of 

the two models in the classification of different types of 

attacks that were found in the chosen dataset.   The metrics 

used for the evaluation are accuracy, recall, f1-score and 

precision respectively. Though both models achieved 

promising results when feature importance was applied as 

attribute selection method, the results for without feature 

selection were not too good.  For the former, it was found out 

that the Random Forest Classifier outperformed AdaBoost 

Classifier. Based on these findings, it can be said that the 

Random Forest Classifier for the targeted is more effective 

and trustworthy. 
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