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ABSTRACT 

The growth of high-quality InN nanorods (NRs) on Si (111) by plasma-assisted molecular beam epitaxy 

(PAMBE) is reported.  X-ray diffraction and Raman spectroscopy investigations indicates that the NRs are 

wurtzite, c-axis oriented and single crystalline. Low temperature photoluminescence emissions with peak 

energy of ~ 0.75eV was observed indicating the high quality of the nanostructures. This study unravels a novel 

strategy for the successful growth of high-quality InN NRs on Silicon which is highly promising for 

applications in next generation nanodevices.  
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INTRODUCTION 

Indium Nitride (InN) materials have attracted increasing 

interest in the last few years due to their unique properties 

including light effective mass, high carrier mobility (Chang et 

al., 2009), relatively high absorption coefficient and the 

narrow direct bandgap energy (Junqiao, 2009). Remarkable 

improvement in growth strategies has resulted in a significant 

enhancement in its material property and growth of single-

crystalline InN resulting in the revision of its band gap from 

1.9eV to 0.7-0.8 eV (Wu et al., 2002). InN holds enormous 

potentials in various device applications including infrared 

photo detectors, ultrahigh speed transistors, Terahertz 

emitters (THz), lasers and solar cells (Ashraful Ghani et al., 

2003). Despite these huge potentials, the successful growth of 

InN NRs has been very difficult due to its low decomposition 

temperature, very high indium (In) migration rate, high 

equilibrium vapour pressure of nitrogen over indium, (Chang 

et al., 2009; Chang et al., 2010), narrow InN growth 

temperature window coupled with highly critical influence of 

N/III ratio and lack of suitable substrates. Although various 

growth techniques including pulsed laser deposition (Ohba et 

al., 2009), hydride vapor-phase epitaxy (Zeghouane et al., 

2020), sputtering (Sun et al., 2024), metal organic vapour 

phase epitaxy (MOVPE) and molecular beam epitaxy (MBE), 

have been explored  for the growth of single crystalline InN 

materials, MOVPE and MBE have been the most successful 

and extensively studied  (Imran et al., 2022, 2023; Johnson et 

al., 2004; Tessarek et al., 2016a, 2016b) with the growth of 

high-quality crystals of InN films.  InN materials are generally 

grown at low temperature compared to other nitrides in order 

to prevent its dissociation. This conflicting demand of high 

temperature to crack NH3 in MOVPE [otherwise known as 

metal organic chemical vapour deposition (MOCVD)] growth 

limits further development. Consequently, MBE has become 

a preferred alternative for the growth of high-quality InN due 

to its ability to independently set growth temperatures and 

generate nitrogen radicals from plasma sources(Nanishi et al., 

2003). This enables growth at optimum growth conditions 

resulting from the independent control of growth and 

precursor temperatures in the absence of decomposition. On 

the other hand, one-dimensional nanorods (NRs) materials are 

a promising alternative to their bulk counterparts due to 

several advantages including large surface-to-volume ratio, 

large density of electronic states, diameter-dependent band 

gap, improved optical absorption and nearly defect-free 

structures when grown on foreign substrates(Hochbaum & 

Yang., 2010; Tchernycheva et al., 2007). Moreso, the use of 

nanostructured InN material such as InN NanoRod (NR) can 

improve the solar cell efficiency due to enhanced light 

absorption, photo-carrier collection, meanwhile the use of 

InN NRs will reduce the cost of the resulting solar cells 

because of the less materials used for the cells (less than half 

of the materials used in conventional solar cells).  

Several substrates have been utilized for InN growth 

including sapphire, free standing GaN templates, GaAs, Si 

(100) and Si (111). However, the scalability, cleavability, low 

cost, relatively small lattice and thermal mismatch with InN, 

high-quality and availability in large sizes (up to 12 inches 

diameter) makes Si (111) substrate attractive for InN 

growth(Grandal et al., 2007). Given these obvious advantages 

of InN NRs growth on CMOS (complementary metal-oxide 

semiconductor) compatible and well-established Si 

technology (Anyebe, 2020) suitable for applications in 

integrated circuits, cost-effective and high-performance 

devices, there is need for extensive research activity to 

maximally exploit its advances over other substrates. This is 

in addition to the fact that there are limited reports (Feng et 

al., 2015; Sánchez‐García et al., 2006; Shen et al., 2006), of 

the MBE growth of InN NRs on Si. The MBE growth of InN 

NRs on Si (111) substrate is reported. 

 

MATERIALS AND METHODS 

InN NRs were deposited on Si (111) substrates by plasma 

assisted MBE. To remove the surface native oxide, the 

substrates were first chemically cleaned using 10% 

hydrofluoric acid solution. Then, they were quickly loaded 

into the MBE system and out- gassed at high temperatures. A 

nitrogen plasma power of 270W was utilized for the growth 

while the beam equivalent pressure (BEP) for N and In were 

fixed at 7.0 × 10−5 and 2.0 × 10−8 mbar,  respectively for a 

growth duration of ~1 hr. The In shutter was then opened for 

the deposition of a 5nm 2D equivalent layer  to create 

favourable NRs nucleation sites, then the InN film growth 

commenced with the simultaneous supply of both In and N 

growth precursors at a  temperature of 550 oC. The 

morphology of the as-grown sample was examined using a 

Sirion field emission gun scanning electron microscope 

(FEG-SEM). High resolution X-ray diffraction (HRXRD) 

was used for the structural investigation of the  sample. 

Renishaw inVia Raman microscope equipped with an 830 nm 

laser was utilized for Raman investigation of the sample. To 

better understand the optical properties of the sample, 

Photoluminescence (PL) measurement was carried out using 

the 532nm line excitation wavelength from a Nneodymium-
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doped yttrium aluminum garnet (Nd: Y3Al5O12) laser with 

InGaAs detector. 

 

RESULTS AND DISCUSSION 

Figure 1 shows the SEM image of InN NRs confirming the 

successful growth of the nanostructures. The as-grown NRs 

with lateral dimension of 165-205 nm and height 50-85nm. 

Interestingly, they are vertically aligned and non-tapered. The 

NRs also possess low aspect ratio with relatively large 

diameters which is attributable to an enhanced lateral surface 

migration of Indium at a moderately high growth temperature. 

For a further increase in growth temperatures, InN films with 

micro grains morphology would usually emerge(Hsiao et al., 

2005) due to a further increase in lateral In adatom migration. 

Note that this is highly dependent on other growth conditions 

such as the V/III ratio.  

 

 
Figure 1:SEM images of InN Nanorods 

 

 
Figure 2: XRD of InN Nanorods 

 

Figure 2 shows the XRD pattern of the NRs. The presence of 

the dominant (0002) diffraction peak with comparable 

intensity to the Si(111) peak indicates that the NRs are  c-axis 

oriented, Wurtzite and single crystalline. The observable 

weak signal at around 30.5° can be attributed to the (222) peak 

of In2O3
 (Chen et al., 2019a; Su et al., 2022; Tian et al., 2024; 

Zhang et al., 2022) resulting from the part oxidation of indium 

at moderately high temperature (Biju & Jain, 2009; Lee et al., 

2007). The intensity of the (0 0 0 2) peak when compared to 

the low intensity In2O3 peak indicates that the NRs were 

preferentially grown along the [0001] direction. The small full 

width at half maximum (2 theta = 0.15o) indicates its high 
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crystalline quality. These observations were further 

confirmed by room temperature macro-Raman spectrum 

(Figure 3).  It has been reported(Agulló-Rueda et al., 2000) 

that zinc blende InN exclusively possess two Raman-active 

phonons modes F2 (TO) and F2 (LO) whereas Wurtzite InN 

display six Raman active phonons: A1 (TO), A1 (LO), E1(TO), 

E1(LO) and 2E2. Beside the broad peak at 520 cm-1 associated 

with the Si(111) substrate, four other active peaks positioned 

at 448cm-1, 475cm-1, 490 cm-1 and 585 cm-1 were observed 

and assigned to A1(TO), E1(TO)(Agulló-Rueda et al., 2000; 

Inushima et al., 1999)(Davydov, Klochikhin, et al., 

1999)(Davydov, Emtsev, et al., 1999), E2 (high) 489(Chen et 

al., 2019b)(Cheng et al., 2005), and A1 (LO)(Davydov, 

Klochikhin, et al., 1999)(Davydov, Emtsev, et al., 1999) 

respectively as shown in Figure 3.  The frequency of the 

A1(TO) phonon at 448cm-1 is consistent with previously 

reported values (Davydov, Emtsev, et al., 1999)(Davydov, 

Klochikhin, et al., 1999)(Agulló-Rueda et al., 2000; Kim et 

al., 1996).  Note that the E1(TO) and the A1(TO) are both 

forbidden for backscattering along the hexagonal c-axis 

[(Agulló-Rueda et al., 2000). The absence of conspicuous 

E1(TO) and A1(TO) peaks clearly indicates that the InN NRs 

were preferential grown along the c-axis which is in perfect 

agreement with the XRD result. Usually, the E2 mode is 

sensitive to the strain in the c-plane. Wang et al(2006) 

determined the Raman frequencies of MBE grown strain free 

hexagonal InN of the E2 high and A1(LO) modes of InN 

epilayers to be 490.1 ± 0.2 and 585.4 ± 0.4 cm-1 respectively. 

The observation of both peaks at these frequencies for as-

grown samples clearly demonstrates that the NRs are strain 

free and completely relaxed, which further corroborates the 

result of X-ray analysis. 

 

 
Figure 3: Raman of InN Nanorods 

 

The 4K, PL spectra of the InN NRs is shown in Figure 4. 

Bright emissions at ~ 0.75eV (1.65µm) from the NRs are 

clearly visible which is in agreement with the revised energy 

band gap of single crystalline InN(Wu et al., 2002). This 

reveals the high crystalline quality and low defects 

concentration of the NRs. 

 

 
Figure 4: Photoluminescence of InN Nanorods 
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CONCLUSION 

The growth of InN NRs on Si (111) by plasma assisted 

molecular beam epitaxy (PAMBE) have been investigated. X-

ray and Raman studies have demonstrated that the NRs are 

single crystalline, Wurtzite and c-axis oriented. Bright PL 

emissions with a peak energy of 0.75eV was observed from 

the InN NRs indicating their high quality.  This study unravels 

a strategy for the successful growth of high-quality InN NRs 

on Silicon which is highly promising for applications in next 

generation nanodevices.  
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