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ABSTRACT 

This study derives new second derivative linear multistep methods with efficient criteria sufficient for the 

solvability of the stiff initial value problems by means of interpolation and collocation techniques. The hybrid 

predictors in the procedure are nested. The stiff initial value issues in ordinary differential equations were 

approximated by using power series as the basis function. The method's stability properties were examined 

and subsequently provided. The region of absolute stability of the novel schemes was studied using the 

boundary locus method. Through its combination as a block matrix, the resulting approaches are applied to 

solve a number of stiff initial value issues. The new techniques produced numerical findings and errors that 

compared favorably with  some existing methods in the literature.  
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INTRODUCTION 

Very few differential equations used to model problems in the 

physical sciences, engineering, biological sciences, and social 

sciences can be solved analytically. These problems arise in a 

variety of domains of applications. In situations where an 

analytical solution is unknown, we attempt to solve the 

problem by utilizing suitable numerical techniques to get an 

approximate solution. In this work, we want to determine the 

approximate solution of the initial value problem (IVP) of the 

first order differential equation of the form 

𝑦'(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑦(𝑥0) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏] 
𝑓: 𝑅 × 𝑅𝑚 → 𝑅𝑚; 𝑦: 𝑅 → 𝑅𝑚      (1) 

in a given interval of solution  were a and b are finite  

Physical quantities are represented by the above. The 

derivatives show the rates at which a function changes at a 

particular moment. 

There are two types of ordinary differential equations: stiff 

and non-stiff. Widely different time scales exist in stiff 

systems, where certain solution components degrade far more 

quickly than others. Stiff ordinary differential equations are 

found mostly in fields like chemical kinetics, nuclear reactors, 

vibrations, chemical reactions, control theory, quantum 

physics, and engineering, including electrical circuit theory, 

according to Okoughae and Ikhile (2012) and Babangida and 

Musa (2016). Since many stiff ordinary differential equations 

are not analytically solvable, numerical methods are used to 

solve them 

Curtis and Hischfelder (1952) discovered stiffness in 

differential equation problems for the first time when they 

created the Backward Differentiation Formula (BDF). 

According to Ajie (2016) and Abassi et al. (2014), the 

stiffness problem has been recognized for a while and can be 

resolved using implicit approaches, which are thought to work 

better than explicit methods. 

Ehiemua and Agbeboh (2019), Adoghe (2021), Abhulimen 

and Ukpebor (2019), Sabo et al. (2018, 2019) have all 

employed implicit Runge-Kutta and  linear multistep 

approaches to handle stiff initial value issues.  A possibly 

effective numerical technique for solving stiff ordinary 

differential equations needs to have a sufficiently wide region 

of absolute stability and good accuracy, according to 

Okoughae & Ikhile (2014). The stability property is A-

stability, according to Hairer and Wanner.  

For the purpose of solving stiff and non-stiff issues, Esuabana 

and Ekoro (2017) created a family of hybrid linear multistep 

algorithms using nested hybrid predictors. The second 

derivative approaches are A-stable.  According to Kulikov 

(2015), layered approaches can provide dense production of 

integration results of the accuracy as the order without 

requiring additional costs because they have sufficiently high 

stage and classical orders. He went on to say that the 

integration of stiff and non-stiff problems can be done 

effectively via nested approaches. This study aims to derive 

and develop methods for solving stiff and non-stiff problems 

using hybrid predictors in third derivative linear multistep 

approaches. 

 

MATERIALS AND METHODS 

The polynomials to be used to approximate the solution of   

problem (1) is given as  

𝑦(𝑥) = ∑ 𝑎𝑗
𝑁
𝑗=0 𝑥𝑗    (2) 

𝑦'(𝑥) = ∑ 𝑗𝑎𝑗
𝑁
𝑗=1 𝑥𝑗−1 = 𝑓(𝑥, 𝑦)   (3) 

𝑦''(𝑥) = ∑ 𝑗(𝑗 − 1)𝑎𝑗
𝑁
𝑗=1 𝑥𝑗−2 = 𝑓'(𝑥, 𝑦)  (4) 

Where 𝑁 is given as 2𝑘 + 2 and 2𝑘 + 3 respectively 

Interpolating the value 𝑦  with equation (2) at 𝑥 = 𝑥𝑛  and 

collocating at 𝑥 = 𝑥𝑛+𝑗 , 𝑗 = 0,1,
1

2
,
1

4
  to obtain a system of 

equation of the form 

𝑋 = 𝐴−1𝐵     (5) 

where 

 

𝑋 =

[
 
 
 
 
 
1 𝑥𝑛 𝑥𝑛

2 𝑥𝑛
3 𝑥𝑛

4. . . 𝑥𝑛
𝑁

. . . 1 2𝑥𝑛 . . . (2𝑘 + 2)𝑥𝑛
𝑁−2 (2𝑘 + 3)𝑥𝑛

𝑁−1

. . . . . . . . . . . . . . . . . .
0 1 2𝑘𝑥𝑛+𝑘 (2𝑘 + 1)𝑥𝑛+𝑘

𝑁−3 . . . (2𝑘 + 3)𝑥𝑛+𝑘
𝑁−1

. . . . . . . . . . . . . . . . . .
0 0 2 2(2𝑘 + 1)𝑥𝑛+𝑘

𝑁−4 3(2𝑘 + 2)𝑥𝑛+𝑘
𝑁−3. . . . 4(2𝑘 + 3)𝑥𝑛+𝑘

𝑁−2]
 
 
 
 
 

            (6) 
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The second interpolating polynomial to use is given as  

𝑦(𝑥) = ∑ 𝑎𝑗
2𝑘+2
𝑗=0 𝑥𝑗   (7)

 After the values of 𝑎𝑗'𝑠, 𝑗 = 0,2, . . .2𝑘 + 3are obtained by solving equation (5) for, they are entered into equation (2). 

Following a great deal of algebraic simplification, we arrived at the discrete techniques shown below. 

𝑦𝑛+1 = 𝑦𝑛 +
1

10
ℎ𝑓𝑛 +

71

270
ℎ𝑓𝑛+1 +

2

5
ℎ𝑓

𝑛+
1

2

+
32

315
ℎ𝑓

𝑛+
1

4

−
1

45
ℎ

2𝑓𝑛+1
'        (8) 

𝑦
𝑛+

1

2

= −
109

67
𝑦𝑛 +

176

67
𝑦

𝑛+
1

4

−
115

536
ℎ𝑓𝑛 +

31

536
ℎ𝑓𝑛+1 −

1

67
ℎ

2𝑓𝑛+1
'        (9) 

 

𝑦
𝑛+

1

4

=
189

256
𝑦𝑛 +

67

256
𝑦𝑛+1 +

27

256
ℎ𝑓𝑛 −

15

128
ℎ𝑓𝑛+1 −

9

512
ℎ

2𝑓𝑛+1
'      (10) 

 

Analysis of the properties of the new methods 

Order of the methods  

In this section we derived the order of the methods in (7--9) 

 The methods in (7-9) is rewriting in the following form: 

𝑦𝑛+1 − 𝑦𝑛 =
1

10
ℎ𝑓𝑛 +

71

270
ℎ𝑓𝑛+1 +

2

5
ℎ𝑓

𝑛+
1
2
+

32

315
ℎ𝑓

𝑛+
1
4
−

1

45
ℎ

2𝑓𝑛+1
'  

𝑦
𝑛+

1
2
+

109

67
𝑦𝑛 −

176

67
𝑦

𝑛+
1
4

= −
115

536
ℎ𝑓𝑛 +

31

536
ℎ𝑓𝑛+1 −

1

67
ℎ

2𝑓𝑛+1
'  

𝑦
𝑛+

1

4

−
189

256
𝑦𝑛 −

67

256
𝑦𝑛+1 =

27

256
ℎ𝑓𝑛 −

15

128
ℎ𝑓𝑛+1 −

9

512
ℎ

2𝑓𝑛+1
'         (10) 

Equations (10-12 are put in the matrix form as follows 

[

0 0 −
189

256

0 0
109

67

0 0 −1

] [

𝑦
𝑛−

1

2

𝑦
𝑛−

1

4

𝑦𝑛

] + [

1 0 −
67

256

−
176

67
1 0

0 0 1

] [

𝑦
𝑛+

1

4

𝑦
𝑛+

1

2

𝑦𝑛+1

] =

[
 
 
 
 0 0

27

256

0 0 −
115

536

0 0
1

10 ]
 
 
 
 

[

𝑓
𝑛−

1

2

𝑓
𝑛−

1

4

𝑓𝑛

] +

[
 
 
 
 0 0 −

15

256

0 0
31

536
32

135

2

5

71

270 ]
 
 
 
 

[

𝑓
𝑛+

1

4

𝑓
𝑛+

1

2

𝑓𝑛+1

] +

ℎ
2

[
 
 
 
 0 0

9

512

0 0 −
1

67

0 0 −
1

45]
 
 
 
 

[

𝑓'
𝑛+

1

4

𝑓'
𝑛+

1

2

𝑓'𝑛+1

]         (11) 

 
 

From equation (10) we shall define the following parameters 

𝛼0 = [
0
0
0
] , 𝛼1 = [

0
0
0
] , 𝛼2 =

[
 
 
 
 −

189

256
109

67
−1 ]

 
 
 
 

, 𝛼3 = [

1

−
176

67
0

] , 𝛼4 = [
0
1
0
] , 𝛼5 = [

−
67

256
0
1

] 

𝛽0 = [
0
0
0
] , 𝛽1 = [

0
0
0
] , 𝛽2 =

[
 
 
 
 
 

27

256

−
115

536
1

10 ]
 
 
 
 
 

, 𝛽3 = [

0
0
32

135

] , 𝛽5 =

[
 
 
 
 
 −

15

128
31

536
71

270 ]
 
 
 
 
 

 

𝛿3 = [
0
0
0
] , 𝛿4 = [

0
0
0
] , 𝛿5 =

[
 
 
 
 
 

9

512

−
1

67

−
1

45]
 
 
 
 
 

 

 

The linear operator 𝐿 associated with the nested method is given as  

𝐿[𝑦(𝑥); ℎ] = ∑ [𝛼𝑗
𝑘
𝑗=0 𝑦(𝑥 + 𝑗ℎ) − ℎ𝛽𝑦'(𝑥 + 𝑗ℎ) − ℎ

2𝛿𝑗𝑦''(𝑥 + 𝑗ℎ)] (12) 

 

The Taylor series expansion of (12) yield 

[𝑦(𝑥𝑛); ℎ] = ∑𝛼𝑗

𝑘

𝑗=0

[𝑦(𝑥) + 𝑗ℎ𝑦'(𝑥) +
(𝑗ℎ)2

2!
𝑦''(𝑥)+. . . ] 

−∑ ℎ𝛽𝑗
𝑘
𝑗=0 [𝑦'(𝑥) + 𝑗ℎ𝑦''(𝑥) +

(𝑗ℎ)2

2!
𝑦'''(𝑥)+. . . ]       (13) 

 

−ℎ
2𝛿𝑗 [𝑦''(𝑥) + 𝑗ℎ𝑦'''(𝑥) +

(𝑗ℎ)2

2!
𝑦''''(𝑥𝑛)+. . . ] 
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Collecting terms in powers of h. we 

𝐿[𝑦(𝑥𝑛); ℎ] = ∑𝛼𝑗

𝑘

𝑗=0

𝑦(𝑥𝑛) + ∑𝑗𝛼𝑗

𝑘

𝑗=0

− 𝛽𝑗)ℎ𝑦'(𝑥𝑛) 

+∑
𝑗2

2!
𝛼𝑗

𝑘
𝑗=0 − 𝑗𝛽𝑗 − 𝛿𝑗)ℎ

2𝑦''(𝑥𝑛)  (14) 

+∑
𝑗3

3!
𝛼𝑗

𝑘
𝑗=0 −

𝑗2

2!
𝛽𝑗 − 𝑗𝛿𝑗)ℎ

3𝑦'''(𝑥𝑛)+. ..    

Thus we have that 

𝐶0 = ∑𝛼𝑗

𝑘

𝑗=0

 

𝐶1 = ∑(𝑗𝛼𝑗

𝑘

𝑗=0

− 𝛽𝑗) 

𝐶2 = ∑
𝑗2

2!
𝛼𝑗

𝑘

𝑗=0

− ∑𝑗𝛽𝑗

𝑘

𝑗=0

− ∑𝛿𝑗

𝑘

𝑗=0

 

𝐶3 = ∑
𝑗3

3!
𝛼𝑗

𝑘

𝑗=0

− ∑
𝑗2

2!
𝛽𝑗

𝑘

𝑗=0

− ∑𝑗𝛿𝑗

𝑘

𝑗=0

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

𝐶𝑝 = ∑
𝑗𝑝

𝑝!
𝛼𝑗

𝑘

𝑗=0

− ∑
𝑗𝑝−1

(𝑝 − 1)!
𝛽𝑗

𝑘

𝑗=0

− ∑
𝑗𝑝−2

(𝑝 − 2)!
𝛿𝑗

𝑘

𝑗=0

 

𝐶𝑝+1 = ∑
𝑗𝑝+1

(𝑝 + 1)!
𝛼𝑗

𝑘

𝑗=0

− ∑
𝑗𝑝

(𝑝)!
𝛽𝑗

𝑘

𝑗=0

− ∑
𝛿𝑗𝑗

𝑝−1

(𝑝 − 1)!

𝑘

𝑗=0

 

 
The methods has order is as follows   

 

𝑦
𝑛+

1
4
−

189

256
𝑦𝑛 −

67

256
𝑦𝑛+1 =

27

256
ℎ𝑓𝑛 −

15

128
ℎ𝑓𝑛+1 −

9

512
ℎ

2𝑓𝑛+1
'  

𝑝 = 4, 𝐶𝑝+1 =
−9

40960
 

𝑦
𝑛+

1
2

= −
109

67
𝑦𝑛 +

176

67
𝑦

𝑛+
1
4
−

115

536
ℎ𝑓𝑛 +

31

536
ℎ𝑓𝑛+1 −

1

67
ℎ

2𝑓𝑛+1
'  

𝑝 = 4, 𝐶𝑝+1 =
163

513560
 

𝑦𝑛+1 = 𝑦𝑛 +
1

10
ℎ𝑓𝑛 +

71

270
ℎ𝑓𝑛+1 +

2

5
ℎ𝑓

𝑛+
1
2
+

32

315
ℎ𝑓

𝑛+
1
4

−
1

45
ℎ

2𝑓𝑛+1
'  

𝑝 = 5, 𝐶𝑝+1 =
1

57600
 

 

Consistency of the Method 

The method is consistent since it has order 𝑝 ≥ 1 

 

Stability of the methods 

Zero stability of method 

Definition: An LMM is a said to be zero stable if no root of 

the first polynomial𝜌(𝜆) has modulus greater one and if every 

root with modulus one is simple 

Definition: An LMM when applied to the differential equation 

𝑦' = 𝜆𝑦 where 𝜆a complex constant with negative is real part 

is said to be A- stable if all the solution of the method tends 

to zero as 𝑛 → ∞ . That is if 𝜆 is complex, the region of 

absolute stability is the entire left half of the ℎ𝜆 − plane  

The zero stability of the method is concerned with stability of 

the difference equation as ℎ → 0 

𝐴(0)𝑌𝑚 = 𝐴(1)𝑌𝑚−1 + ℎ(𝐵(0)𝑌𝑚 + 𝐵(1)𝑌𝑚−1) + ℎ
2[𝐶(0)𝑌𝑚]    

     (15) 

As ℎ → 0 the difference equation becomes  

𝐴(0)𝑌𝑚 − 𝐴(1)𝑌𝑚−1 = 0        (16) 

The characteristic polynomial of the above is  
(0) (1)( ) det( )R RA A = − =  

𝑑𝑒𝑡

(

 
 
 

𝑅

[
 
 
 
 1 0 −

67

256

−
176

67
1 0

0 0 1 ]
 
 
 
 

−

[
 
 
 
 
 0 0

27

256

0 0 −
115

536

0 0
1

10 ]
 
 
 
 
 

)

 
 
 

= 𝑅2(𝑅 − 1) = 0 

 

  Thus                     𝑅 = 0,0,1 

The method is zero stable since 𝜌(𝑅) = 0 and since we have 
|𝑅𝑖| ≤ 1, 𝑖 = 1,2,3 

 

Region of Absolute Stability of the Methods 

The region of absolute stability of the new method can be 

determined by substituting the test equations  

𝑦' = 𝜆𝑦, 𝑦'' = 𝜆2𝑦 

Thus we obtain 

(𝐴(0) − ℎ
_

𝐵(0) − (ℎ
_

)2𝐶(0)) − (𝐴(1) + ℎ
_

𝐵(1))     (17) 

The stability polynomial 𝑅(𝑡, ℎ
−

) is evaluated by  

𝑑𝑒𝑡( (𝐴(0) − ℎ
_

𝐵(0) − (ℎ
_

)2𝐶(0))𝑡 − (𝐴(1) + ℎ
_

𝐵(1))) = 0  (18) 

Where ℎ
−

= ℎ𝜆 = 𝑧 

Thus we have 

𝑅(𝑡, ℎ
−

) =
3

20
𝑡3𝑧2 −

1039

670
𝑡3𝑧 + 𝑡3 −

2

5
𝑡2𝑧 − 𝑡2 −

1

60
𝑡3𝑧3 −

1

20
𝑡2𝑧2 = 0       (19) 

By setting 𝑧 = 0 , we have 

 

𝑅(𝑡, ℎ
−

) = 𝑡3 − 𝑡2 = 0    (20) 

Equation (19) can also be solved to obtain zero stability of the 

method  

where   

The region of absolute stability of the method is defined as  

Where    𝑡 = 0,0,1 

The  region of absolute stability of the method is shown  in 

the diagram below 
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Figure 1: Region of Absolute Stability of the new method 

 

Numerical Experiment 

In this section we test the solvability of equation (1) using our 

method. We shall do so by combiningthe three methods as 

block matrix . We give following definitions: 

Definition:The error in an approximate solution is the 

difference between the exact solution 𝑦(𝑥𝑛+𝑗) at 𝑥 = 𝑥𝑛+𝑗 

and the computed solution 𝑦𝑛+𝑗 as determined by the 

numerical method 

𝑒𝑟𝑟𝑜𝑟 = 𝑦(𝑥𝑛+𝑗) − 𝑦𝑛+𝑗 

 

Maximum error = MAXE = 𝑚𝑎𝑥
1≤𝑖≤𝑁𝑆

(𝑒𝑟𝑟𝑜𝑟(𝑖)) 

Where NS is the total number of steps 

The new method is tested on some stiff ODEs and the error in 

our method compared  some existing mrthods: 

2BBDF=   Fifth order 2-point block BDF method  

2OBBDF= 2 point block BDF method with off –step points 

of order 5 

NSDM= New second derivative method with hybrid 

predictors 

Problem 1 

𝑦' = −100𝑦 + 9.901𝑧, 𝑦(0) = 1 

𝑧' = 0.1𝑦 − 𝑧, 𝑦(0) = 10

         

𝑦(𝑥) = 𝑒−
99𝑥

100, 𝑧(𝑥) = 10𝑒−
99𝑥

100 

 

Table 1: Errors in the use of our method for problem 1  

H N Exact soln 
Computed sol Error in our method 

YN ZN YN ZN 

0.125 

 

5 

10 

100 

0.538617288 

0.290108584 

0.000004223 

0.538617289 

0.290108585 

0.000004223 

5.386172899 

2.901085850 

0.000042228 

1.342e-009 

1.456e-008 

2.131e-013 

1.360e-009 

1.465e-008 

2.133e-013 

0.0625 5 

10 

100 

0.733905504 

0.538617289 

0.002054958 

0.733905504 

0.538617288 

0.002054958 

7.339055038 

5.386172886 

0.020549577 

2.187e-010 

1.426e-010 

6.89e-013 

2.450e-010 

3.595e-010 

1.370e-011 

0.03125 5 

10 

100 

0.856682849 

0.733905504 

0.04533164 

0.856682849 

0.733905504 

0.045331641 

8.566828489 

7.339055037 

0.453316415 

2.970e-010 

3.113e-010 

8.241e-010 

6.631e-010 

1.136e-010 

7.020e-010 

 

Problem 2 

𝑦' = 198𝑦 + 199𝑧, 𝑦(0) = 1 
𝑧' = −398𝑦 − 399𝑧, 𝑦(0) = −1𝑦(𝑥) = 𝑒−𝑥 , 𝑧(𝑥) = −𝑒−𝑥 , 𝑥 ∈ [0,10] 
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Table 2: Numerical Result of problem2 

H NS Exact soln 
Computed sol MaxError in our method 

YN ZN YN ZN 

0.1 5 

10 

100 

1000 

0.538617288 

0.367879441 

0.000045399 

5.549701× 10−44 

0.538617289 

0.367879438 

0.000045399 

5.549701× 10−44 

5.386172899 

-0.367879438 

-0.000045399 

-5.549701e-44 

1.342e-09 

3.166e-09 

3.71e-12 

4.498e-50 

1.360e-09 

3.341e-09- 

3.753e-12 

4.501e-50 

 

0.01  5 

10 

100 

1000 

0.951229424 

0.904837418 

0.367879441 

0.0000453999 

0.951229426 

0.904837421 

0.367879457 

0.000045399 

-0.951229425 

-0.904837421 

-0.367879457 

-0.000045399 

 

1.608× 10−09 

1.426e-10 

1.650e-08 

2.065e-11 

1.051e-09 

3.595e-10 

1.653e-08 

1.370e-11 

0.001 5 

10 

100 

0.995012479 

0.990049834 

0.904837418 

0.995012482 

0.990049840 

0.904837495 

-0.995012480 

-0.9900498385 

0.90483749251 

2.924e-09 

6.692e09- 

7.648e-08 

1.532e-09 

4.795e-09 

7.447e-08 

 

Problem 3:  

𝑦' = −20𝑦 − 19𝑧, 𝑦(0) = 2 
𝑧' = −19𝑦 − 20𝑧, 𝑧(0) = 0𝑦(𝑥) = 𝑒−𝑥 + 𝑒−39𝑥 , 𝑧(𝑥) = −𝑒−𝑥 + 𝑒−39𝑥, 𝑥 ∈ [0,20] 
 

Table 3: Numerical Result for problem 3 

H NS METHOD MAXE 

0.01 2000 2BBDF(5) 8.81087e-2 

  2OBBDF 7.00088e-2 

  NSDM 9.20950e-12 

0.001 10000 2BBDF(5) 1.40157e-2 

  2OBBDF 1.39480e-2 

 20000 NSDM 9.1464e-13 

 

Problem 4 

𝑦' = −20𝑦 + 20 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥 𝑦(0) = 1 
𝑦(𝑥) = 𝑠𝑖𝑛 𝑥 + 𝑒−20𝑥 , 𝑥 ∈ [0,2],   
 

Table 4: Numerical results of problem 4 

H NS METHOD MAXE 

0.01 200 2BBDF(5) 8.85478e-2 

  2OBBDF 8.05923e-2 

  NSDM 9.5389e-011 

    

0.001 2000 2BBDF(5) 1.40157e-2 

  2OBBDF 1.39480e-2 

  NSDM 3.6485e-09 

    

0.0001 20,000 2BBDF(5) 1.46428e-3 

  2OBBDF 1.46355e-3 

  NSDM 1.5144e-08 

 

Problem 5 

𝑦' = −100𝑦 + 100𝑥 + 1𝑦(0) = 1 
𝑦(𝑥) = 𝑥 + 𝑒−100𝑥 , 𝑥 ∈ [0,10]

 Table 5: Numerical results of problem 5

 

H NS METHOD MAXE 

0.01 1000 2BBDF(5) 1.96146e-2 

  2OBBDF 1.95754e-2 

  NSDM 4.75E-12 

0.001 10000 2BBDF(5) 5.6931e-02 

  2OBBDF 5.5942e-02 

  NSDM 2.0952e-09 
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RESULTS AND DISCUSSION 

Programs developed using MAPLE 18 was used to implement 

our methods.Results obtained are as presented in tables 1 to 5 

above. In tables 1 and 2 results were obtained using different 

step-lengths . The results shows that as the step-length tends 

to zero the errors  arising from using the new become smaller 

thereby showing the efficiency of the method.  The 

performance of the new scheme are compared with some 

existing methods in the literature  as seen in tables 3-5 and as 

observed in the tables the new method compared favorably in 

terms accuracy and error 

 

CONCLUSION 

A new second derivatives method with nested hybrid 

predictors of orders (4,4,5)is formulated in this paper. The 

developed method is used for solving stiff ODEs with 

simultaneous to production one solution value with off-step 

points at each iteration. The method is shown to be A-stable 

and convergent. Accuracy of the derived method are 

compared with some existing method in the literature. Our 

method was found to be competitive in terms of accuracy. 
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