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ABSTRACT 

Intestinal Parasitic Infections (IPIs) present a significant health challenge in many developing regions, 

including Northern Nigeria. Traditional diagnostic methods are often inadequate due to their labor-intensive 

nature and requirement for specialized expertise. This study explores the application of Machine Learning 

(ML) to improve the management of IPIs, by utilizing demographic information from 651 fecal samples 

collected from school-aged children. Two neural network techniques, Multi-layer Perceptron (MLP) and 

Radial Basis Function Network (RBFN), were employed. Significant Risk Factors assessment were conducted 

using Recursive Feature Elimination (RFE) and Lasso regression. The MLP-Lasso model demonstrated higher 

performance with an accuracy score of 0.83, a recall score of 0.87, and an AUC score of 0.92. These findings 

suggest that ML can significantly enhance diagnostic accuracy and efficiency, providing a valuable tool for 

public health interventions in resource-constrained settings.  
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INTRODUCTION 

Intestinal Parasitic Infections (IPIs) represent a significant 

public health challenge in many developing regions, including 

Northern Nigeria. These infections, primarily caused by 

protozoa and helminths, have a profound impact on public 

health, contributing to both morbidity and mortality. Children 

and immunocompromised individuals are particularly 

vulnerable to these infections. The prevalence of IPIs in 

Northern Nigeria is exacerbated by factors such as inadequate 

sanitation, lack of clean water, and insufficient healthcare 

infrastructure (Smith et al., 2019). Moreover, poor hygiene 

practices and limited access to medical care facilitate the 

spread of these parasites, leading to severe health 

consequences (Johnson & Adams, 2020). Among children, 

IPIs can cause malnutrition, stunted growth, and impaired 

cognitive development, further perpetuating the cycle of 

poverty and disease (WHO, 2021). In immunocompromised 

individuals, such as those living with HIV/AIDS, these 

infections can lead to more severe health complications and 

increased mortality rates (Brown et al., 2018).  

Traditional diagnostic methods for detecting intestinal 

parasites, such as microscopy and stool examination, are often 

time-consuming, labor-intensive, and require specialized 

expertise, which may be lacking in resource-constrained 

settings (Garcia, 2019). These conventional techniques 

involve examining stool samples under a microscope to 

identify parasitic eggs, larvae, or cysts, a process that 

demands significant training and experience to achieve 

accurate results (Fletcher et al., 2020). Furthermore, these 

methods can be susceptible to human error and variability in 

interpretation, leading to inconsistent diagnoses (Hall et al., 

2018). 

In many low-resource areas, the availability of trained 

personnel and adequate laboratory facilities is limited, further 

hindering the effectiveness of traditional diagnostic 

approaches (Nguyen & Taylor, 2021). Consequently, there is 

a pressing need for innovative, efficient, and accurate 

diagnostic techniques to improve the detection and 

management of IPIs. Advances in molecular diagnostics, such 

as Polymerase Chain Reaction (PCR) and Loop-Mediated 

Isothermal Amplification (LAMP), offer promising 

alternatives due to their high sensitivity and specificity 

(Verweij & Stensvold, 2019). These techniques can detect 

parasitic DNA in stool samples, providing more reliable and 

rapid results compared to traditional methods (Cimino et al., 

2020). 

Additionally, the development of Point-of-Care (POC) tests 

that are easy to use, cost-effective, and capable of delivering 

quick results can significantly enhance the ability to diagnose 

IPIs in field settings (Boadi et al., 2021). Integrating these 

advanced diagnostic tools into public health programs can 

lead to more effective disease surveillance, prompt treatment, 

and better management of IPIs, ultimately improving health 

outcomes in affected populations (Chalmers et al., 2018). 

Machine Learning (ML), a subset of Artificial Intelligence 

(AI), offers a promising solution to the challenge of enhancing 

parasite detection accuracy and efficiency from diagnostic 

and demographic data. ML leverages advanced computational 

algorithms and data-driven models, which can be trained on 

extensive datasets to recognize patterns and features 

indicative of various parasitic infections. By doing so, ML 

models can enhance diagnostic precision, reduce the reliance 

on human expertise, and streamline the diagnostic process, 

leading to faster and more reliable outcomes. 

The application of ML in detecting intestinal parasites 

involves using large datasets that include both medical data 

and risk factors. These datasets are used to train ML models 

to identify subtle patterns that might be missed by human 

diagnosticians. For example, ML algorithms such as 

Convolutional Neural Networks (CNNs) and Support Vector 

Machines (SVMs) have shown significant promise in image-

based diagnostics, where they analyze images of stool 

samples to detect the presence of parasites with high accuracy. 

In addition, ML can integrate demographic data to assess risk 

factors and predict the likelihood of infection in different 

populations, thereby enabling more targeted and effective 

public health interventions (Rajaraman et al., 2018; Li et al., 

2020). 
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Furthermore, ML-based approaches can continuously 

improve over time. As more data is collected and incorporated 

into the models, their predictive power and accuracy can 

increase, making them a valuable tool in ongoing parasite 

surveillance and control efforts. This capability is particularly 

important in low-resource settings where access to skilled 

medical professionals and diagnostic facilities may be limited 

(Beam & Kohane, 2018; Topol, 2019). Therefore, integrating 

ML into the diagnostic workflow can not only improve 

individual patient outcomes but also enhance overall public 

health strategies for managing intestinal parasitic infections. 

In Northern Nigeria, where the burden of IPIs is particularly 

high, implementing ML-based diagnostic tools can 

revolutionize public health efforts. The prevalence of IPIs in 

this region poses significant health challenges, especially 

among vulnerable populations such as children and 

immunocompromised individuals (Smith et al., 2019). By 

facilitating early and accurate detection of parasitic infections, 

ML can contribute to timely treatment and management, 

thereby reducing the disease burden and improving the overall 

health outcomes of the affected populations (Garcia, 2019). 

Machine learning algorithms, trained on large datasets of 

diagnostic data, can quickly and accurately identify parasitic 

elements, overcoming the limitations of traditional diagnostic 

methods (Esteva et al., 2017). This approach not only 

enhances diagnostic accuracy but also reduces the reliance on 

specialized expertise, making it particularly valuable in 

resource-constrained settings like Northern Nigeria (Liu et 

al., 2019). 

This study explores the potential of ML in detecting intestinal 

parasites, focusing on its application in Northern Nigeria. The 

primary aim is to develop and validate robust ML models 

capable of identifying common intestinal parasites from 

various image data. 

 

MATERIALS AND METHODS 

Sample Collection 

A total of 651 fecal samples were collected from school-aged 

children in Northern Nigeria with the assistance of trained 

research assistants. The samples were preserved and 

transported to the biological sciences laboratory at the Federal 

University Dutsin-ma for further assessment. This approach 

ensures the integrity of the samples and adherence to standard 

procedures for handling biological specimens. 

A comprehensive questionnaire was developed to collect data 

from the participants. This included demographic information 

(age, gender, etc.), hygiene practices, socio-economic status, 

and environmental factors. The questionnaire was designed to 

capture a broad range of variables that could potentially 

influence the prevalence of intestinal parasitic infections. 

 

Parasitic Examinations 

The collected stool samples were examined for helminths 

using the Kato-Katz technique, a widely used method for 

detecting soil-transmitted helminths as recommended by the 

World Health Organization (WHO, 2013). Thick smears of 

the stool samples were first prepared, which are then covered 

with cellophane soaked in a glycerol-malachite green 

solution. The solution clears the fecal material, making the 

helminth eggs more visible under a microscope. The prepared 

smears are examined microscopically to identify and 

helminthes, providing a reliable assessment of the presence of 

helminth infections within the samples. 

For protozoa detection, the stool samples were processed 

using the formol-ether concentration technique, which 

enhances the likelihood of detecting protozoan cysts and 

trophozoites. The preserved protozoa samples were mixed 

with ether and centrifuging them. The centrifugation process 

concentrates the protozoa in the sediment at the bottom of the 

tube. The concentrated sample is then collected and examined 

under a microscope for the presence of protozoan cysts and 

trophozoites (Garcia, 2007). 

 

Machine Learning Prediction 

Prior to training the machine learning models, significant 

factors were identified using Recursive Feature Elimination 

(RFE) and Lasso (Least Absolute Shrinkage and Selection 

Operator) to identify the most relevant factors. 

The RFE employs an iterative factors selection method that 

fits a model and removes the least significant factors until the 

specified number of significant risk factors is reached. The 

RFE technique is provided in equation 1. 

𝑅𝐹𝐸 (𝑋, 𝑦) = 𝑎𝑟𝑔𝑆⊆{1,…..𝑝},|𝑆|=𝐾𝑚𝑜𝑑𝑒𝑙_𝑠𝑐𝑜𝑟𝑒(𝑋𝑠,𝑦)    (1) 

where X is the factor matrix, y is the target vector, S is the 

subset of factors, and model_score evaluates the model's 

performance with the selected risk factors. 

The Lasso on the other hand performs both factor selection 

and regularization to enhance the prediction accuracy. The 

Lasso optimization problem is defined as in equation 2. 

�̂� = arg min (
1

2𝑛
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )2 +  𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1

𝑛
𝑖=1 ) 

           (2) 

where 𝛽 represents the coefficients, λ is the regularization 

parameter, 𝑥𝑖𝑗 are the factor values, and 𝑦𝑖 are the observed 

responses. 

To predict the likelihood of intestinal parasitic infections 

among participants, two neural network techniques, Multi-

layer Perceptron (MLP) and Radial Basis Function Network 

(RBFN), were employed using scikit-learn. 

MLP is a class of feedforward artificial neural network. An 

MLP consists of at least three layers of nodes: an input layer, 

a hidden layer, and an output layer. Each node, except for the 

input nodes, is a neuron that uses a nonlinear activation 

function as presented in equation 3: 

𝑦 ̂ = 𝑓(𝑊2 . 𝑓(𝑊1 .  𝑋 + 𝑏1) 𝑏2 )      (3) 

where 𝑋 is the input vector, 𝑊1 and 𝑊2 are weight matrices, 

𝑏1 and 𝑏2 are bias vectors, and 𝑓 is the activation function. 

The Radial Basis Function Network (RBFN) is a type of 

artificial neural network that uses radial basis functions as 

activation functions. It has an input layer, a single hidden 

layer with a non-linear RBF activation function, and a linear 

output layer. The output 𝑦y is given by equation 4: 

𝑦 ̂ =  ∑ 𝑤𝑖
𝑁
𝑖=1  . 𝜙(||𝑋 − 𝐶𝑖||)      (4) 

where 𝑤𝑖 are the weights, 𝜙 is the radial basis function, 𝑋 is 

the input vector, and 𝐶𝑖 are the centers of the RBF neurons. 

The performance metrics were then analysed using the 

Accuracy Scores, F1, Recall and Precisions. The results were 

presented in tables and figures. 

 

RESULTS AND DISCUSSIONS 

The analysis revealed that younger children, specifically those 

aged 6 to 9 years, are more susceptible to intestinal parasitic 

infections. Both Lasso and Recursive Feature Elimination 

(RFE) highlighted age as a significant factor, which aligns 

with findings from previous studies that indicate younger 

children are at a higher risk due to their developing immune 

systems and higher likelihood of engaging in behaviors that 

increase exposure to parasites (Haque et al., 2003; Bethony et 

al., 2006). 

Family size emerged as another significant factor, with larger 

families, particularly those with more than six members, 

showing a higher prevalence of IPIs. This finding was 

consistent across both Lasso and RFE analyses, suggesting 

that larger household sizes may contribute to increased 
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transmission opportunities due to closer living conditions and 

shared resources. Similar observations have been reported in 

other studies, where overcrowded living conditions were 

associated with higher infection rates (Alum et al., 2010). 

The education level of parents, particularly fathers, was found 

to significantly influence the prevalence of IPIs. Children 

whose fathers had no formal education had higher infection 

rates, underscoring the role of parental education in 

promoting hygiene practices and awareness of infection 

prevention. This finding is supported by literature indicating 

that parental education is crucial in reducing the risk of 

parasitic infections among children (Strunz et al., 2014). 

Mother's education, while significant in the Lasso analysis, 

was not found to be significant in RFE, indicating some 

variability in its importance. This suggests that while maternal 

education plays a role, other factors may also be at play, and 

its impact might be context-specific. Previous research has 

shown mixed results regarding the influence of maternal 

education, with some studies highlighting its importance and 

others suggesting it is less critical compared to other 

socioeconomic factors (Balen et al., 2010). 

Lastly, the father's occupation was not found to be a 

significant factor in predicting IPIs. This suggests that the 

type of occupation of the father does not directly influence the 

prevalence of IPIs among children, possibly because 

occupation-related income and associated socioeconomic 

status might not directly correlate with hygiene practices and 

living conditions that affect infection rates. This finding is in 

line with some studies that have reported no significant 

association between parental occupation and children's health 

outcomes (Brooker et al., 2008). 

 

Table 1: Demographic Related Risk-Factors 

Risk Factors Categories Positive Negative LASSO RFE 

Age 06 – 09 Years 128 77 2.86e-04** 1.21e-04** 

10 – 12 Years 100 133 

13 – 15 Years 117 96 
      

Family Size 3 20 55 1.50e-14** 8.53e-16** 

4 37 102 

5 48 75 

6 79 36 

7 67 25 

8 67 9 

9 27 4 
      

Father Education No Education 119 63 2.67e-07** 1.08e-08** 

Informal 133 53 

Primary 37 45 

Secondary 33 49 

Tertiary 23 96 
      

Mother Education No Education 160 55 1.48e-04** NS 

Informal 68 48 

Primary 31 39 

Secondary 71 39 

Tertiary 15 125 
      

Father Occupation Business/Trader 83 105 NS NS 

Farmer 89 16 

Handwork 110 61 

Salary Earner 63 124 

** Significance, NS = Not Significant 

 

Both Lasso and Recursive Feature Elimination (RFE) 

analyses did not identify the type of toilet as a significant 

factor. This finding suggests that while the type of toilet 

facility might influence hygiene and sanitation, it may not 

directly correlate with the prevalence of IPIs in this context. 

Previous studies have shown mixed results regarding the 

impact of sanitation facilities on parasitic infections. For 

instance, a study by Freeman et al. (2017) highlighted the 

importance of improved sanitation in reducing parasitic 

infections, but also noted that merely having a latrine does not 

guarantee reduced infection rates unless accompanied by 

proper usage and maintenance. 

Similar to the type of toilet, the water source was not 

identified as a significant factor by both Lasso and RFE 

analyses. While the water source is crucial for determining the 

quality and safety of water, the results suggest that other 

factors, such as the method of water collection and storage, 

and personal hygiene practices, might play a more critical role 

in the transmission of IPIs. Research by Gundry et al. (2004) 

supports this view, emphasizing that the safety of drinking 

water is influenced by multiple factors beyond the source, 

including contamination during storage and handling. 

Both Lasso and RFE analyses did not consider the presence 

of pets as a significant risk factor. This might be due to the 

varying levels of interaction between pets and humans and the 

different hygiene practices observed by pet owners. Studies 

have indicated that while pets can be carriers of certain 

parasites, the risk of transmission to humans can be 

minimized through proper pet care and hygiene practices 

(Robertson et al., 2000). 
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Table 2: Socioeconomic Related Risk-Factors 

Risk Factors Categories Positive Negative LASSO RFE 

Type of Toilet Home Yard Pit 76 17 NS NS 

Private Latrine 151 254 

Public Latrine 118 35 

      

Water Source Stream 35 5 NS NS 

Tap Water 229 261 

Well Water 81 40 

      

Presence of Pet at Home No 107 102 NS NS 

Yes 238 204 

** Significance, NS = Not Significant 

 

While Lasso did not identify this factor as significant, RFE 

analysis showed a significant relationship (p-value: 4.10e-

01). This suggests that consistent hand washing after toilet use 

may help reduce the risk of IPIs, aligning with findings from 

several studies that emphasize the importance of hand hygiene 

in preventing the spread of infectious diseases (Curtis & 

Cairncross, 2003). 

Neither Lasso nor RFE found this factor significant. This 

might indicate that while the use of soap is generally 

recommended for effective hand hygiene, its impact on 

reducing IPIs in this population may not be substantial, 

possibly due to other overriding hygiene behaviors or 

environmental factors. Research by Aiello et al. (2008) 

suggests that soap use is effective when combined with proper 

handwashing techniques and other hygiene practices. 

Both Lasso (p-value: 1.64e-11) and RFE (p-value: 1.65e-12) 

found this factor highly significant, indicating that not 

washing hands before eating greatly increases the risk of IPIs. 

This finding corroborates the critical role of hand hygiene in 

preventing the ingestion of parasites through contaminated 

hands, as highlighted in studies by Luby et al. (2005). 

Both Lasso (p-value: 2.58e-09) and RFE (p-value: 3.88e-10) 

indicated that fingernail cleanliness is a significant factor. 

Unclean fingernails can harbor dirt and pathogens, increasing 

the risk of infection. This aligns with findings by Taha et al. 

(2013), which emphasize the importance of nail hygiene in 

reducing gastrointestinal infections. 

This factor was not significant in both Lasso and RFE 

analyses. While raw vegetables can be a source of parasitic 

infections if contaminated, the study's results suggest that 

other factors may play a more critical role in the prevalence 

of IPIs in this population. This is consistent with research 

indicating that the risk from raw vegetables varies greatly 

depending on washing and preparation practices (WHO, 

1998). 

Both Lasso (p-value: 3.84e-03) and RFE (p-value: 2.62e-03) 

found nail-sucking to be a significant factor. Sucking 

fingernails can introduce pathogens directly into the mouth, 

significantly increasing the risk of IPIs. This finding is 

supported by studies indicating that nail-biting and similar 

habits are associated with higher rates of parasitic infections 

(Anwar et al., 2011). 

 

Table 3: Hygiene Habits Related Risk – Factors  

Risk Factors Categories Positive Negative LASSO RFE 

Hand Washing after Toilet Use No 231 179 NS 4.10e-01** 

Yes 114 127 

      

Soap for Hand washing after Toilet No 290 266 NS NS 

Yes 55 40 

      

Hand Washing before Eating No 243 116 1.64e-11** 1.65e-12** 

Yes 102 190 

      

Fingernails Cleanliness Cleaned 113 221 2.58e-09** 3.88e-10** 

Unclean 232 85 

      

Eating of Raw Vegetables No 203 184 NS NS 

Yes 142 122 

      

Sucking Fingernails No 144 215 3.84e-03** 2.62e-03** 

Yes 201 91 

** Significance, NS = Not Significant 

 

Both Lasso and Recursive Feature Elimination (RFE) 

analyses did not find taking off shoes while playing to be a 

significant factor. This may suggest that while taking off 

shoes could theoretically increase exposure to soil-

transmitted parasites, other hygiene and environmental 

factors might play a more critical role. Previous research has 

shown mixed results regarding the impact of footwear on 

parasitic infections, with some studies indicating a potential 

protective effect of wearing shoes (Kirwan et al., 2009). 

Both Lasso (p-value: 1.42e-08) and RFE (p-value: 9.03e-09) 

identified playing with soil as a highly significant factor. This 

finding is consistent with literature indicating that soil, 

particularly in areas with poor sanitation, can be a major 

reservoir for parasites like helminths, which can infect 
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children through contact with contaminated soil (Hotez et al., 

2008). 

Both Lasso (p-value: 3.47e-03) and RFE (p-value: 2.85e-03) 

found eating while playing to be a significant factor. This 

behavior likely increases the risk of ingesting parasites due to 

contamination on hands or food. Similar findings have been 

reported in studies highlighting the risk of parasitic infections 

from eating with contaminated hands (Strunz et al., 2014). 

Both Lasso (p-value: 5.22e-07) and RFE (p-value: 4.07e-07) 

indicated that open defecation is a highly significant risk 

factor for IPIs. This practice can lead to widespread 

environmental contamination with human feces, which in turn 

increases the risk of transmission of soil-transmitted 

helminths and other parasites. Numerous studies have 

documented the association between open defecation and 

higher prevalence of parasitic infections, underscoring the 

need for improved sanitation facilities (Spears et al., 2013). 

 

Table 4: Environmental Related Risk – Factors  

Risk Factors Categories Positive Negative LASSO RFE 

Taking-off Shoes while Playing No 265 247 NS NS 

Yes 80 59 

      

Playing with Soil No 96 216 1.42e-08** 9.03e-09** 

Yes 249 90 

      

Eating While Playing No 84 179 3.47e-03** 2.85e-03** 

Yes 261 127 

      

Open Defecation No 115 219 5.22e-07** 4.07e-07** 

Yes 230 87 

** Significance, NS = Not Significant 

 

The Accuracy Score measures the proportion of correctly 

predicted instances out of the total instances. The MLP-

LASSO model achieving an accuracy score of 0.83 aligns 

with findings from other studies where neural network 

models, combined with feature selection techniques like 

LASSO, tend to perform well in classification tasks (LeCun 

et al., 2015). The lower performance of the RBNF-LASSO 

model with an accuracy score of 0.55 suggests that the 

combination of radial basis function networks and LASSO 

may not be as effective for this specific dataset, as also noted 

by Haykin (2009) in his exploration of neural network 

architectures. 

Recall, or sensitivity, is crucial in contexts such as medical 

diagnostics where identifying true positive cases is vital. A 

high recall score of 0.87 for the MLP-LASSO model indicates 

its robustness in identifying infected cases, which is essential 

for effective disease management (Powers, 2011). The 

RNBF-RFE model's recall score of 0.72, while lower, still 

demonstrates a relatively good ability to identify true 

positives. The lowest recall score of 0.54 for RBNF-LASSO 

underscores its inadequacy in this domain, corroborating 

findings by Ling and Sheng (2003) who emphasized the 

importance of recall in health-related predictive models. 

Precision is particularly important in scenarios where the cost 

of false positives is high, such as in medical treatment, where 

incorrect predictions can lead to unnecessary treatments and 

anxiety.  
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Figure 1: ROC Curve Performance of the Models 

 

The RBNF-LASSO model's highest precision among radial 

basis function models (0.65) still falls short compared to 

MLP-LASSO, emphasizing the superior performance of the 

latter in reducing false positives. 

The F1-Score, which balances precision and recall, is a 

comprehensive metric for evaluating model performance. The 

highest F1-Score of 0.83 for the MLP-LASSO model 

indicates its balanced performance in identifying and 

correctly predicting positive cases. This aligns with findings 

by Saito and Rehmsmeier (2015), who advocate for the use of 

F1-Score in scenarios requiring a balance between precision 

and recall. The RNBF-RFE model's lower F1-Score of 0.64 

suggests it is less effective, though still moderate, in 

maintaining this balance. 

 

Table 5: Performance Metrics of the Model on the Predictions of IPIs 

Items Accuracy Score Recall Score Precision Score F1-Score AUC Socre 

MLP-LASSO 0.83 0.87 0.79 0.83 0.92 

MLP-REF 0.76 0.76 0.77 0.77 0.87 

RBNF-LASSO 0.55 0.54 0.65 0.59 0.55 

RNBF-REF 0.65 0.72 0.65 0.64 0.67 

 

The AUC score, reflecting the model's ability to distinguish 

between classes, is particularly valuable in evaluating binary 

classification models (Table 5). The highest AUC score of 

0.92 for the MLP-LASSO model indicates excellent 

discriminative ability, which is critical in medical diagnostics 

for distinguishing between infected and non-infected cases 

(Hanley and McNeil, 1982). The poor AUC score of 0.55 for 

the RBNF-LASSO model indicates a performance close to 

random guessing, highlighting its inadequacy in this context. 

 

Table 5: Performance Metrics of the Model on the Predictions of IPIs 

Items Accuracy Score Recall Score Precision Score F1-Score AUC Socre 

MLP-LASSO 0.83 0.87 0.79 0.83 0.92 

MLP-REF 0.76 0.76 0.77 0.77 0.87 

RBNF-LASSO 0.55 0.54 0.65 0.59 0.55 

RNBF-REF 0.65 0.72 0.65 0.64 0.67 

 

CONCLUSION 

This study demonstrates that a machine learning-based 

approach, specifically utilizing the MLP-Lasso model, can 

significantly enhance the diagnostic accuracy of intestinal 

parasitic infections in Northern Nigeria. By overcoming the 

limitations of traditional diagnostic methods, ML provides a 

faster, more reliable alternative that does not rely heavily on 

specialized expertise. The continuous improvement 

capabilities of ML models, driven by large datasets, offer a 

sustainable solution for ongoing parasite surveillance and 

control. Implementing ML in public health strategies can lead 

to better health outcomes and more efficient disease 

management, particularly in resource-limited settings. 
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