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ABSTRACT 

In this paper, a mathematical model for the Zika virus is suggested to investigate the transmission dynamics of 

infection based on humans, pregnant carrier mother, infected children and the reservoir (primates) in three 

connected populations. Vertical and direct transmissions from all people to primates are considered in the 

proposed model. The Zika virus then spreads from this reservoir of infection via the nonhuman primate 

population (infected mosquitoes) to other entities. This virus can be passed on to the human population through 

an infected mosquito. Therefore, the new model with ten compartmental models has been normalized as 

follows: The normalized model is analyzed in depth to explore linkages between mosquitoes, humans, and 

primates on the dynamics of Zika-Virus transmission. The mathematical analysis comprises positivity and 

boundedness of solutions, determination of the basic reproduction number R0 via next-generation matrix 

approach, existence and stability of all equilibria as well as sensitivity analysis. Local and Global Stability of 

the Disease-free Equilibrium. Finally, numerical simulations are performed to verify the analytical results 

obtained and exhibit the contribution of different model parameters on disease transmission dynamics. The 

results prove that the interaction of forest mosquitoes with primates has a significant effect on human-Zika-

Virus transmission dynamics among the susceptible population due to transitions to forested areas. Moreover, 

the findings suggest that the transmission probabilities and biting rates of mosquitoes on humans and primates 

are major parameters in transmitting the disease.  
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INTRODUCTION 

The Zika virus has recently grown to be a serious threat to 

human society. It is a disease carried by vectors that is 

contracted by mosquito-borne flavin infection. 1954 saw the 

first identification of this infection distinct from rhesus 

monkeys in the Zika forest in Uganda and Nigeria. It wasn't 

until 2007 that the disease began to spread throughout the 

human population (Olawoyin & Kribs, 2018). The greatest 

Zika virus outbreak happened in Polynesia, France, in 2013–

2014 (Biswas et al., 2020). Saiz et al., (2016), put together a 

report on the largest Zika outbreak in India that was made 

public in 2018. Zika infection is still a threat in some  of the 

world even though it has decreased in the Americas. The 

infection is dispersed by mosquito    species. Furthermore, 

several transmission pathways have been identified (e.g. both 

vertically sexually). Typically, a Zika infection results in a 

mild illness, that is mild symptoms like fever, headache, rash, 

arthralgia, and conjunctivitis are what define it. Nonetheless, 

alarming information regarding the potential correlation 

between the Zika Virus (ZIKV) and neonatal mutations 

(microcephaly) and Guillian-Barre syndrome (GBS) is being 

provided by a few regions that have recently been affected by 

the infection. As a result, on February 1st, 2016, the WHO 

declared a Public Health Emergency of  

International Concern, emphasizing the need to intensify 

efforts to reduce ZIKV infection, particularly in women who 

are pregnant or who are of childbearing age (Saiz et al., 2016). 

It will be necessary to move forward with center and 

speculation in order to advance Zika vaccination. Pregnant 

women's counteraction efforts include avoiding areas where 

Zika is actively spreading, avoiding mosquito bites if they live 

in or are visiting these areas, and getting protection against 

sexual transmission until a Zika antibody becomes available 

(Rasmussen & Jamieson, 2020). In summary, researchers 

from various fields are working towards apprehending the 

disease transmission dynamics. Mathematical models have 

shown to be useful in understanding the spread of infection 

for diseases. Though information regarding ZIKV carriers 

from animals is scant. 

A few publications on ZIKV detection in nonhuman primates 

propose that they can function as reservoirs of the virus. 

Mathematical modeling of Zika virus transmission further 

suggest that there is a high probability for the establishment 

of sylvatic cycle in forest area of South America (Althouse et 

al., 2016). They add that, “On average, the simulation model 

suggests that there are higher chances of an increase in 

sylvatic cycle if a rapidly multiplying primate or other 

competent ZIKV host mammals were to be included.” It 

seems, then, likely that the existence of a possible ZIKV 

sylvatic process 35 could be sustained by an ecosystem. Some 

reports on ZIKV identification in nonhuman primates raise 

the prospect that they could serve as reservoirs. The creation 

of a sylvatic Zika cycle in the forest of South America is 

highly likely, according to mathematical models of Zika virus 

transmission, as discussed in (Althouse et al., 2016). This can 

be reinforced by a system of as rare as 6,000 primates and 

10,000 mosquitoes. Also, throughout the 2011 ZIKV 

amplification in Kedougou, field researchers discovered that 

the virus was existing in all main land cover classes in the 

region but was discovered substantially more frequently in the 

forest than in other land cover types. ZIKV has been detected 

in two of the three monkey species present in Kedougou: 

African green monkeys and Patas monkeys. After that, virus 

was found over a large part of tropical Africa through monkey 

serosurveys and by virus isolation from monkeys, as well as 

many species of sylvatic Aedes. Scientists, therefore, expect 
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monkeys infected with an American-amplified sylvatic cycle 

of another flavivirus, Yellow Fever, to have a high enough 

viremia and exhibit clinical signs that can be picked up by 

mosquitoes. The virus endured restricted to Africa and Asia's 

tropical areas, contaminating monkeys, arboreal mosquitoes, 

and humans on infrequent occasions. Most primates that were 

ZIKV-positive in the wild or lookout studies are from the Old 

World. According to phylogenetic analysis, humans are more 

closely related to Old World primate class, predominantly 

chimps and orangutans. Hence, the absolute danger often 

surges in diseases that can be spread among strictly related 

species. They also revealed that the ZIKV genome sequence 

in monkeys was indistinguishable to the ZIKV circulating in 

humans in South America. Moreover, scientists like Buechler 

et al., (2017) studied which ZIKV commonalities our team 

could find in wild African monkeys, how it has emerged and 

spread as well if there is any evidence for actual or when 

exposure to human illnesses. What these findings suggest, 

though, is that as many as 16% of the nonhuman primate 

groups they sampled may have been hit with ZIKV at one 

point or another. 

Best et al., (2017), in their work also predicted that study of 

ZIKV in Non-Human Primates (NHP) models can give us 

understanding about the viral dynamics and will be as useful 

tool for testing antiviral drugs and vaccines. All the key 

features of human Zika infection that were identified in NHP, 

including a rapid control of acute viremia, early invasion of 

the central nervous system, and persistent viral excretion and 

fetal pathogenesis in gravid animals have also been 

delineated. Furthermore, in their study also Al-Maqrashi et 

al., (2021), a mathematical model of humans’ movement 

between rural human communities and adjacent forests was 

established and analyzed to highlight the impact of human 

activity on disease transmission among human and vector 

populations of ZIKV. Consequently, according to the 

distribution of mosquito species, the vector compartment has 

been divided into areas situated in rural areas and areas close 

to forest zones. The authors continued their arguments to an 

infected person with only general flu-like symptoms carrying 

the virus from rural areas to adjacent forests in searches of 

food or employment. Unfavorable human interaction has also 

been taken into account as in the case of susceptible human 

mobility in the transmission of ZIKV. It is therefore clear that 

human penetration into forests from the rural sectors has 

negligible influence in raising the infected human and vector 

densities. Some authors argue that recovered humans are 

subjected to temporary immunity as it was confirmed that 

antibody coupled with COVID-19 may decrease in adults 

(Biswas et al., 2020). It is assumed that susceptible 

mosquitoes, Larva mosquitoes, and the susceptible humans 

get themselves infected through ingestion of the blood 

paroused by the bites of female infected mosquitoes with 

constant total vector populations. Mosquitoes are not 

biomodeled for detection of ZIKV because the common 

species of mosquitoes that transmits the virus has a short life 

span of 414 days (Biswas et al., 2020). These are presumed to 

continue having the disease to the end of their live span. The 

literature review supported by Althouse et al., (2016), 

revealed that various types of leaders adopted different 

measures towards their security team. As has been observed 

in monkeys, when infection develops, they show clinical 

symptoms plenty enough to pass the virus to the mosquito 

vectors (Bueno et al., 2016). Monkeys (primates) has immune 

response towards the virus and recovers at a fixed level 

(Althouse et al., 2016) and cannot be infected again when 

rechallenged (Dudley et al., 2016). 

Therefore, the present paper expands from Al-Maqrashi et al. 

(2021) and offers a mathematical model that incorporates 

three demographic categories, specifically human (adults, 

carrier pregnant mother and infected children), mosquito, and 

monkeys. Thus, three approaches to the means of 

transmission are identified: direct, on the level of departments 

of the same hierarchical level, and on the level of different 

hierarchies. The mobility of susceptible humans, and pregnant 

women to areas prone to Aedes mosquitoes connecting the 

forests with monkeys to the zika-virus transmission to the 

rural areas that may have vulnerable residents shall be 

evaluated in the proposed model. This paper is organized as 

follows: the general description of the used model is provided 

in Section 2. This section provides a detailed description of 

the case analysis of the proposed model. The following are the 

features of Mathematical analysis: Solution normalization, 

positivity and boundedness of the solution, Sensitivity 

analysis, and the stability of both local and global Disease-

free equilibrium states. Simulation of the model as described 

in the preceding section is carried out in section 4, and an 

analysis of the influence of variation of some model 

parameters on the transmission dynamics of the disease is 

provided. In conclusion, the discussion of all the findings will 

be made in Section 5. 

 

MATERIALS AND METHODS 

Model Description and Formulation  

This section suggests a model regarding human (Adults, 

Carrier Mother and Infected Children) mosquito, and primates 

(Monkey) interactions for Zika virus transmission. Examples 

of the populations and the interactions between them are 

given below in Fig 1. The total human population is assumed 

to remain constant and is classified into five compartments: 

vulnerable, contagious, the pregnant ladies, affected kids, and 

the restored. We assume that nonhuman primate – organisms’ 

reservoir, are monkeys and divided into three together with 

having the overall population of a constant value. The four 

species dwell specifically in the forests and can be infected 

only from the female Aedes mosquitoes.  

 

Model Assumptions 

i. Natural mortality rate of both human and vectors: 

This lapse indicates the natural death and survival 

rates of both the infected human, primate population 

and the vectors.  

ii. Identical recruitment rates of both susceptible human 

and vector populations are recruited at the same rate. 

iii. It directly affects humans in the sense that, persons 

who are vulnerable can become infected with ZIKV 

through a bite from a female mosquito. ZIKV also 

directly affects people through vector transmission. 

iv. Direct transmission through sexual transmission, or 

transfer through blood transfusion of infected Blood 

as well as through vertical transmission in which the 

mother passes on the virus to her baby during birth. 

v. We estimate the proportion spending vulnerable 

advancement to the pregnant women class, part of 

newborns to Infected children bearing Zika. There are 

studies to support that this fraction is approximately 

2/3 (Bonaldo et al., 2020). 

vi. A fraction  of the infected children progresses to the 

infected individual (adult) class. 

vii. Thangamani et al., (2016) claim that the zika virus 

transverses in the mosquito vector and is the entry 

way that takes the virus through the colder months. 

viii. The insecticide sprays and draining the water can 

prevent vectors.  
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Figure 1: Schematic representation of the relationship between human, vectors and primate populations 

 

The above in Fig 1 is the projected model given by the resulting set of equations: 
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    (1) 

subjected to non-negative initial conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0
T

h h c h h v v p p pS P I I R S I S I R          . 

The table below provides the model (1)'s parameter values.  
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Table 1: Lists the parameters and variables that were employed, along with their daily values. 

Variables Descriptions Variables Descriptions 

hS  Susceptible Humans (adult) 
vS  Susceptible vectors (mosquitoes) 

hI  Infected Humans (adult) 
vI  Infected vectors (mosquitoes) 

hR  Recovered Human (adult) 
pS  Susceptible Primates  

hP  Pregnant Mothers  
pI  Infected Primates  

cI  Infected Children 
pR  Recovered Primates 

    

Symbol Description Value Source 

h  and 

p  

The corresponding birth rates for humans and 

primates. 

0.0461 & 0.752 Fitted 

,h v   

and 
p  

The natural mortality rates of humans, vectors, and 

primates respectively 

1

60 ∗ 365
,  

1

14
, 

1

14
 

Fitted, (Bonyah & Okosun, 2016) 

1 ,  

2  and 

3  

The biting rate of mosquitoes on humans, primates, 

and pregnant mothers respectively 

[0.33-1], [0.3-

0.9], and [0.33-1] 

(Olawoyin & Kribs, 2018), 

(Althouse et al., 2016), Fitted 

1  Probability of infection transmission from 

infectious mosquitoes 

 [0.10-0.75] (Maxian et al., 2017) 

2  Probability of infection transmission to mosquito [0.30-0.75] (Maxian et al., 2017) 

3  Probability of infection transmission from Mother 

to Infant 

[0.5-0.86] Fitted 

1  Direct (sexual) transmission rate between humans 0.005 Fitted 

2  Direct (sexual) transmission rate between primates 0.05 Fitted 

1 , 2  Recovery rates of humans and primates 

respectively 

0.1667, 0.2     (Suparit et al., 2018), (Althouse et 

al., 2014) 

h  rate of waning of immunity for humans  0.05 Fitted 

1  and 

2  

Probability of vertical transmission in humans and 

primates respectively 

0.67, 0.06    (Bonaldo et al., 2020), (Lai et al., 

2020) 

h  Rate of transmission from susceptible human to 

infected human 

0.06  (Lai et al., 2020) 

v  Rate of transmission from susceptible mosquito to 

infected mosquito 

0.06  (Lai et al., 2020) 

v  Rate of hatching larva 0.275 Fitted 

  Progression rate of a pregnant mother 0.07143 Fitted 

Κ Fraction of infected children to infected human 0.3 Fitted 

 

In this section, we normalize the proposed model (1). The 

normalized form of the model is (3). Next, two crucial topics, 

the positivity of solutions and invariant set, follow, and then 

the basic reproduction number and sensitivity analysis are 

introduced. The Equilibrium points, their local stabilities and 

Numerical Analysis are also discussed. 

 

Model Normalization  

From the proposed model (1), let 

Given 

( )1, 1, 1 2H H C H H V V P P PS P I I R S I S I R+ + + + = + = + + =

     (2) 

Hence, the normalized model is prearranged by:  
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where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 0
T

H H C H H V V P P PX S P I I R S I S I R=  . 

 

Positivity of Solutions and Positively Invariant Set  

The non-negativity and boundedness of the state variables are established in the theorem below:  

Theorem 1 The solution 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , , , , , , , ,
T

H H C H H V V P P PX t S t P t I t I t R t S t I t S t I t R t= of the system (3) with non-negative initial 

condition 𝑋(0) remains positive for all time t > 0, in a positively invariant closed set 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( )10 : 0 , , , , , , , , , 1 4H H C H H V V P P PX t R S t P t I t I t R t S t I t S t I t R t+ =      (4) 

proof  

Assume that system (3) has a non-negative initial condition 𝑋(0). Let 𝜏 = 𝑠𝑢𝑝{ 𝑡 > 0; 𝑋(𝑡) > 0}. Then, 𝑆𝐻
′  can be written as 

( ) ( )1 1 1 2 5H h h h v H h h H h HS R I S I S S         = + − − − +      (5) 

where, 
1 1 1 1 2v h hg I I  = + . It follows that 
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Integrating both sides over (0, t), we have;  
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Also, 𝑆𝐻(𝑡) is positive since 𝑆𝐻(0) ≥ 0. Similar calculations can be done for 𝐼𝐻
′ , 𝐼𝐶

′ , 𝑃𝐻
′  and HR , we get 
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       (9) 

subsequently initial conditions are non-negative. Likewise, one can confirm that the remaining mechanisms of 𝑋(𝑡) are 

positive at t . Using continuity of solution and 𝑋(0) ≥ 0, we observed that  𝑡 cannot be supremum and hence, the solution 

will remain positive for all 𝑡 > 0.  

Now, adopt that ( ) ( ) ( ) ( )( )1 2 3, ,
T

t t t t   = where, 

( )

( )

( )

( ) ( ) ( ) ( ) ( )
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      (10) 

then, we have  

( )
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( )
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1

2
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2

. 11
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t t
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        (11) 

Thus, solving for each component, we have: 
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( )
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where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 20 0 0 0 0 0 , 0 0 0 ,H H H C H V VS I P I R S I = + + + + = + and 

( ) ( ) ( ) ( )3 0 0 0 0P P PS I R = + + . Thus, 

( ) 1i t   if  ( )0 1i  , i = 1, 2, 3. 

Hence, the set Ω is a positively invariant set ( )0 1t  . Moreover, if ( )0 1   

then ( )lim 1
t

t
→

=  and then the set Ω is a globally attractive set.  

Equilibria 

In this model, there are two s e t s  o f  equilibrium points, that is, t h e  Zika-virus-free equilibrium point and the Zika-virus 

present equilibrium point. Setting the right-hand side of equation (3) equal to zero. 

The Zika-virus-free equilibrium is realized in the absence of disease 
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   (13) 

The Zika-virus-present equilibrium is achieved in the presence of disease 
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where, ( ) ( ) ( )( )
2

1 1 4 1 1 2 1 1v hZ A A I A     = − − + + , ( ) ( )( )( )2 1 2 1 1 22 v hZ A A A I     = − − − + ,
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2 2 2
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1 hA  = + , 
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The Basic Reproduction Number  

The model has two equilibrium positions: disease-free equilibrium and endemic equilibrium. The disease-free equilibrium 

exists and is given by 𝐸0 = (𝑆𝐻
0 ,  0, 𝑃𝐻

0,  0,  0, 𝑆𝑉
0,  0, 𝑆𝑃

0,  0,  0), where, 𝑆𝐻
0 =   𝑃𝐻

0 = 𝑆𝑉
0 = 𝑆𝑃

0 = 1. The threshold quantity 

𝑅0 is well-defined as the average number of secondary infections produced by one event in an entirely susceptible population. 

It is calculated using the Next Generation Method by Van den Driessche & Watmough, (2002).  

The appearance of new infections in the compartments is: 

( ) ( )
1 2 1 1 1

1 2 2

2 1 2 2 2

0

0 0 17
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    

   

    

− 
 

= +
 
 − 

      (17) 

 

and Movement in and out of the compartment 
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 − 

      (18) 

then, the next generation matrix 𝐹𝑉−1 is  

( )
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=  
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 
 − + − + + 

     (190 

The basic reproduction number R0 is the spectral radius 𝐹𝑉−1 given by the followings; 

( )
( )1 2 21 2 1 2 2 2

0 0 0

1 2 2

, , 20
v

H V P

h v v v p p

R R R
        

        

+− −
= = =

+ − + − + +
     (20) 

where 𝑅0𝐻,   𝑅0𝑉 ,   𝑅0𝑃 are the basic reproduction numbers for humans, mosquitos and primates respectively. 

 

Sensitivity Analysis of the Basic Reproduction Number 

In this section, we have illustrated a brief of the sensitivity analysis of the basic reproduction number R0. This enables the 

determination of the parameters that will give a rigorous shift in the threshold ratio R0 of the model, this means that a change 

in a sensitive parameter will yield a great quantitative difference in R0 and may bring about qualitative changes. These 

parameters should be considered worthy of attention by the management and the development of control activities. Here, the 

index of forward sensitivity analysis called the elasticity index (Rodrigues et al., 2013) is applied and it is defined as the 

proportion between the absolute change of R0 and the absolute change of the parameter corresponding to the relative change 

as the follow: 

( )0 0

0

21
R R

R


 = 


      (21) 

Since 𝑅0𝐻,   𝑅0𝑉 ,   𝑅0𝑃 are the basic reproduction number for humans, mosquitos and primates respectively. The sensitivity 

analysis of R0 to each of its parameters will be evaluated via the sensitivities of each 𝑅0𝐻,   𝑅0𝑉 ,   𝑅0𝑃 such that  

( )0 0 0

1 2 3

0 0 3 01 2

0 1 0 2 0 3

, , 22H V PR R RH V P

H V P

R R R

R R R

  
 =   =   = 

  
    (22) 

where ℓ1,   ℓ2,  ℓ3 denotes the parameter related to 𝑅0𝐻 ,  𝑅0𝑉 , and 𝑅0𝑃, respectively. Via the obvious expression of the basic 

reproduction number R0 per the baseline values of parameters enumerated in Table 1, the values of the sensitivity’s indices are 

shown in Table 2. 

 

Table 2. Sensitivity indices of 𝑅0𝐻,   𝑅0𝑉 , and 𝑅0𝑃. 

Parameter Sign ϒ𝓵𝟏

𝑹𝟎𝑯 Parameter Sign ϒ𝓵𝟐

𝑹𝟎𝑽 Parameter Sign ϒ𝓵𝟑

𝑹𝟎𝑷 

𝛽1 +ve 1.0256 𝛽1 +ve 0.3448 𝛽2 +ve 1.1515 

𝜃2 +ve 1.0256 𝛽2 +ve 0.6552 𝜃2 +ve 1.1515 

𝜂1 -tve 0.0256 𝜃2 +tve 1.0000 𝜂2 -tve 0.1515 

𝛾1 -tve 0.9997 𝜀𝑣 +tve 1.3004 𝜋𝑝 -tve 2.5200 

𝜇ℎ -tve 0.0003 𝜋𝑣 +tve 0.3004 𝜀2 -tve 2.5200 

   𝜇𝑣 -tve 1.3004 𝜇𝑝 +tve 0.4000 

      𝛾2 +tve 1.1200 
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The values of the sensitivity indices are discussed based on 

the magnitudes as well as its signs. As shown in the table, the 

sensitivity indices indicate that increasing in those parameters 

will lead to an increase in the epidemic’s basic reproduction 

number R0 or to its decrease in case of their decrease. On the 

other hand, it rises (drops) as the parameters with negative 

sensitivity indices decrease (increase). However, sensitivity 

indices indicate the overall level of significance concerning 

such factors that define the spread of the disease. In the human 

population 𝛽1, 𝜃2 biting rate of humans by the mosquito and 

probability of transmission of infection to a mosquito are 

those parameters which carries the maximum positive effect 

on efficacy value 𝑅0𝐻. The most sensitive parameter for the 

given form of the basic reproduction number of the primates 

and vectors are 𝛽2, 𝜃2. In addition, the results assert that θ1, 

and θ2 the probabilities of transmission of the virus from 

human to mosquito and vice versa are equally crucial as biting 

rates of the mosquito to both human and primate populace. 

Also, the short life span of mosquitoes will result in less 

numbers of people getting infected and therefore, decrease the 

reproduction rate R0. Therefore, to mitigate the spread of the 

Zika virus, it is recommended to maintain the mosquito 

population while addressing the mosquito breeding areas near 

house in rural regions. 

 

 
Figure 2: Sensitivity indices of R0 (Human) concerning the model parameters. 

 
Figure 3: Sensitivity indices of R0 (Vector) concerning the model parameters 
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Figure 4: Sensitivity indices of R0 (Primate) concerning the model parameters 

 

Local Stability of the Disease-Free Equilibrium  

Now, we discuss the local stability of the disease-free equilibrium 𝐸0 by obtaining the eigenvalues of the linearized system of 

ODE (3). The product is given in the following theorem: 

Theorem 2 The Disease-Free Equilibrium (DFE, given by 𝐸0, the model (3) is locally asymptotically stable if R0 < 1. 

Otherwise, it is unstable. 

proof  

Then, the linearized matrix of the system of ODE (3) at the disease-free equilibrium 𝐸0 is given as 
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where, 
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The above Jacobian has seven, negative eigenvalues, which are: 
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The remaining eigenvalues is given in the characteristic equation P(λ) = 0, which is given by  
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Since all parameters are positive, we say that 𝑎1, 𝑎2, 𝑎3 > 0 for 𝑅0 < 1. 

 Thus, the necessary conditions for stability via the Routh Hurwitz stability criterion by Sambariya & Prasad, (2012) are 

satisfied. The sufficient conditions, namely, 𝐻1 = 𝑎1 > 0, and  
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(after simplification) and 𝐻3 = 𝑎3 > 0. 
Hence, we conclude that the eigenvalues of p(λ) = 0 have negative real parts, whenever R0 < 1, which suggests that the Disease-

Free Equilibrium (
0E ) is locally asymptotically stable.  

 

Global Stability of the Disease-Free Equilibrium 

The global stability of the disease-free equilibrium (𝐸0) will guarantee that the disease is removed under all initial conditions. 

Hence, the following theorem:  

Theorem 3 The disease-free equilibrium, given by 𝐸0 the model (3) is globally asymptotically stable if R0 < 1.  

proof  

Using the Castillo-Chavez theorem (Chavex et al., 2002). Let 𝑋(𝑡) and 𝑌(𝑡)represent the compartments define the uninfected 

and infected classes of the system (3), respectively:  
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      (27) 

Thus, system (3) can be written as  

( ) ( ) ( ) ( ), , , , ,0 0 28
dX dY

F X Y G X Y G X
dt dt

= = =       (28) 

where F and G are the conforming right-hand sides in the system (3). According to Castillo-Chavez theorem, to pledge the 

global asymptotic stability of the DFE (𝐸0), the following two conditions (H1) and (H2) must be satisfied:  

ˆ ( ) ( )0

1 1,1,0,1,1,0
T

H E = is globally asymptotically stable ( ),0
dX

F X
dt

=
. 

ˆ ( )2 0H G  , where ( ) ( ), ,G X Y AY G X Y= − and ( )0 ,0YA D G X= −  is an Metzler  

matrix ( ),X Y   
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For the first condition (H1), we have, 
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Assuming recruitment and death rates are equal, the behaviour of each compartment can be determined by solving the above 

system (27), hence, we have. 
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as t → ∞ That is, the first condition is satisfied. For the second condition, (H2):  
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We have, 
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( )

( )( ) ( )

( )

( )( )

( )( )( )

( )

1 2 1 1

3 3

2 1 2

2 1 2 2

1 1

1
, 33

1

1

h v h h h h

c h

v v v

p v p p

S I I I P

I P
G X Y

I S

I I I S

    

 

   

   

 − − − − 
 

− 
=  + −
 
 + − −
 

     (33) 

It is obvious that since 0G   ∀(𝑋, 𝑌) ∈ 𝛺 where 0 ≤ (𝑆ℎ, 𝑃ℎ, 𝑆𝑣, 𝑆𝑝) ≤ 1 thus the proof is complete, hence 𝐸0 is the 

globally asymptotically stable only if 𝑅0 < 1. 

 

Numerical Analysis  

In this section, numerical simulations are performed in order to illustrate the theoretical investigation results obtained for the 

Zika-Virus model (3) as well as to investigate the impact of some model parameters which are involved in transmitting the 

disease to the human population. Since the system is a nonlinear model, we shall assume a baseline value of the parameters as 

summarized below in Table 1 and some suitable initial conditions. 
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Figure 5: Graph showing dynamics 3  with respect to Carrier Mother class 

 

Figure 6: Graph showing dynamics 3  with respect to Carrier Mother class 

 
Figure 7: The dynamics of Susceptible Infected and Recovered human class. 
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Figure 8: Graph showing the dynamics 𝛽1 with respect to the Infected human class 

 

 
Figure 9: Graph showing the dynamics 𝜃1 with respect to the Infected human class 

 
Figure 10: The dynamics 𝜃2 with respect to the Infected human class 
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Figure 11: Dynamics of Susceptible and Infected vector class 

 

 
Figure 12: Graph showing the dynamics 𝜀𝑣 with respect to the Infected vector class 

 

Finally, through graphical methods, we examine the 

behaviors of the model by portraying the solution of Pregnant 

women against 𝛽3 and 𝜃3respectively. Figures 5 gives the 

relationship between the number of mosquito bites and 

pregnant mothers depicting that as the former increases, the 

latter decreases. Similarly, figure 6 gives the relationship 

between mother to infant transmission rate and pregnant 

mothers indicating that as the former increases, the latter 

decreases. From the figure 7 depicting the SIR model of the 

population in the adult human class, it is evident that all 

populations are affected by disease when the basic 

reproduction number is greater than unity. Figures 8, 9 and 10 

analyze how the measure Dynamics of infected humans 

depends on at some specified values of 𝛽1 , 𝜃1 and 𝜃2. Figure 

8 depicts the impact of changing the values of the biting rate 

of rural mosquitoes on the level of human infection with this 

disease as the figure shows the correspondence between the 

increase in biting rates and the number of infected humans, 

Figures 8 & 9 also depicts that as the probabilities of 

transmission by the infectious mosquitoes and the probability 

of getting infected by the mosquitoes rises, more humans are 

infected. The last two figures include figure 11 where the 

relation between susceptible and infected vectors is depicted, 

and finally figure 12 that indicates if 𝜀𝑣 the transmission from 

susceptible mosquitoes to infected ones is increased, the 

number of infected humans would also rise. This poses a big 

risk as it increases chances of contact between the humans and 

the Zika Virus if people move closer to the forest areas. Thus, 
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in terms of controlling the spread of Zika-Virus within forests, 

the control strategies as discussed earlier should put measures 

like limiting human mobility from healthy areas to infected 

forest regions. 

 

CONCLUSION 

Human-to-mosquito transmission with carrier Mother and 

Infected Children and vertical transmission with monkey 

primate and mosquito has also been addressed mathematically 

with suitable parameters. There has also been consideration 

given to the transfer of the human being back to the natural 

setting of the primates, that is the forest area. This model was 

examined and comprehensively reviewed to identify the 

effects of Extracting and Moving Primates and Humans in the 

Forest on the Zika-virus. The properties of non-negativity and 

stability of the solution and the boundedness of the region 

containing the solution were examined. The basic 

reproduction number R0 was estimated/quantified in three 

perspectives including human transmission 𝑅0𝐻, mosquitoes 

𝑅0𝑉 (Vector) and Monkey 𝑅0𝑃, (Primate). The proposed 

model was found to have two equilibria: basic reproduction 

number R0; an outbreak phase in which the disease is 

produced by an individual not infected with the initial group; 

a disease-free equilibrium (DFE); and an endemic equilibrium 

(EE) characterizing an endemic area which occurs when R0 > 

1. Next, the study undertook an examination of the robustness 

of R0 through a sensitivity analysis showing that some 

parameters are highly sensitive than all other model 

parameters either positively or negatively. Nonetheless, the 

most positive influential parameters are; 𝛽1 and 𝛽2 while the 

most negative influential parameter is .h  The sensitivity 

analysis also revealed that the parameters affecting the 

stability of the dynamic system include; the recovery rate of 

primates, the rate of transmission of the infection to the 

mosquitoes, and the rate of transmission of the disease among 

the primates. A stability of disease-free equilibrium, both 

local and global was postulated and proved. As illustrated 

before, the effect of the transmission probabilities has been 

simulated numerically in order to determine the degree of 

influence it has. At last, some numerical studies have been 

overview to explain the results which have been calculated 

theoretically and to analyze the impact of some parameters 

involved in the disease transmission model. 
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