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ABSTRACT 

This study employs multiphase simulations with OLGA software to investigate volume fractions of hydrate in 

an offshore gas system and develops machine-learning models to predict these fractions. Annually, substantial 

operating expenditures are allocated to hydrate prevention, with significant costs associated with inhibition 

(Wang et al., 2022). Hydrate formation along natural gas pipelines is recognized as a critical threat to the 

success of gas field operations. Despite the importance, no machine learning model has been validated for 

predicting volume fractions of hydrate in the Niger Delta study area, making this development crucial. Key 

findings indicate significant hydrate jamming risks in Niger Delta offshore flowlines and risers, with a peak 

volume fraction of 0.54, highlighting the need for proactive management strategies. Hydrate formation begins 

at 750 m where fluid temperatures fall below formation thresholds, with a sudden increase in volume at 2971 

m, peaking at 3022 m before declining. Machine Learning model comparisons show Random Forest's superior 

accuracy (correlation coefficient of 0.9391, mean absolute error of 0.0271), while Linear Regression provides 

interpretable insights for future predictions. All models perform well, with Random Forest leading in accuracy. 

Regression analysis reveals relationships between volume fractions of hydrate and various parameters, guiding 

management strategies. The Random Forest and Linear Regression models are valuable for estimating hydrate 

volumes and enhancing management approaches in natural gas pipelines due to their accuracy and 

interpretability. These findings underscore the importance of proactive hydrate management in offshore gas 

systems and the potential of Machine Learning models to optimize these strategies.  
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INTRODUCTION 

Natural gas hydrates are solid, non-stoichiometric crystalline 

compounds that occur when water molecules attach 

themselves by hydrogen bonding and create cavities filled by 

either a gas or volatile liquid molecule (Wang et al., 2022). 

Formation of hydrate requires like light ends of petroleum 

such as methane, ethane, propane, butane and adequate water 

in low temperature and high-pressure conditions (Seo et al., 

2021). The formation and accumulation of gas hydrate 

particles foster flow resistance in the pipeline, thus reducing 

the energy obtainable for conveying hydrocarbon fluids, 

requiring a higher operating pressure, key equipment 

destruction, and shutdown of production (Qin, 2020).  

In the oil and gas sector, gas hydrate is a major problem; it 

can form in the reservoir during enhanced oil recovery with 

carbon dioxide (Gbaruko, 2004). During wellbore drilling, it 

is also possible to create hydrates due to the kicking of gas 

(Barker, 1989). Hydrates may develop in pipelines during the 

extraction of oil (Dorstewitz, 1995) and due to Joule 

Thomson's cooling, hydrates can form when gas is expanded. 

Nonetheless, they can be handled well by means of hydrate 

inhibitors (Odutola et al., 2015).  Obstruction of flow by 

blockage of the pipeline caused by formation of hydrate may 

lead to monetary losses and certain environmental and safety 

problems (Saeed, 2021). Currently Nigeria has about 28.5 

billion barrels of crude oil and a gas reserve of more than 166 

trillion natural gas, according to the Nigerian National 

Petroleum Investment Management Services (NAPIMS, 

2023). Due to the frequent vandalism of onshore installations 

and large reservoirs which are normally located within the 

maritime environment, operators carry out a lot of oil 

exploration and production activities in Nigeria. While there 

is available technology to encourage offshore production in 

Nigeria, hydrate formation is however a significant issue in 

offshore production in the Niger delta. 

Hydrate formation caused the shutdown of production, which 

resulted in a massive revenue loss due to production 

interruption and dissociation of hydrate interventions 

(Odutola, 2022). Consequently, A precise prediction of the 

equilibrium conditions for gas hydrates needs to be made 

accordingly. 

To date, temperatures and pressures of gas hydrate 

equilibrium have been acquired from experiments, 

thermodynamics models (Moradi, 2013), empirical 

correlations (Kummamuru et al., 2021), and artificial 

intelligence techniques (Zhong et al., 2019). In certain cases, 

the costs and time needed for experimental measurements of 

gas hydrate equilibrium conditions are high while the 

thermodynamic models do not do not provide valid forecasts 

at low temperatures or higher pressures (Garapati, 2014). A 

new model with a high degree of efficiency and accuracy 

should therefore be proposed. Artificial intelligence is the 

collection of algorithms and techniques that are used to create 

computer systems which can learn from data in order to make 

forecasts or predictions (Swamynathan, 2017).The field of 

Artificial Intelligence comprises subareas symbolizing 

different methods for development of systems that can 

understand and learn from data. This information can 

thereafter be utilized by the system to solve jobs and reach 

certain goals (Kaplan & Haenlein, 2019). Machine Learning 

(ML), which is an essential part and subfield of AI, involves 

methods that help the software to learn with no programming 

so as to have a clear understanding of patterns and more 

complicated information coming out of data. Nazifi et al., 

(2024) stated that ML models are trained on datasets to 

identify patterns, allowing them to execute tasks for instance 

classification, clustering or regression,. 

In recent years, several researchers have researched the use of 

machine learning in the development of prediction models 

due to the fact that these techniques are very promising in 
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prediction accuracy (Zarei  et al., 2021). One of the fastest 

growing areas of computer science is machine learning as a 

branch of artificial intelligence, which aims to imitate human 

intelligence by learning from the environment  (Yu & Tian, 

2022). 

In summary, the study makes significant contributions to 

knowledge in the field of hydrate-blocking risk management, 

spanning from the identification of risks to the development 

of predictive models. It offers practical insights and tools for 

industry practitioners to improve operational safety and 

efficiency. 

 

MATERIALS AND METHODS 

Description and Simulation of System 

This study involved the modelling of an offshore natural gas 

production system consisting of a wellbore, wellhead, 

flowline, riser and topside, for an existing gas platform 

located in the offshore Niger Delta field by utilizing 

Schlumberger’s Multiphase dynamic flow software, OLGA 

(Schlumberger, 2022). The system conveys multiphase fluids 

in offshore natural gas production. The offshore system 

comprises a well tubing pipeline with a 2800 m true vertical 

depth, a 160 m long wellhead pipe, a 3200 m flowline 

extending to a 400 m vertical riser and a 120 m long 

horizontal topside pipe. The entire production is managed 

using the choke. The well has an inlet and outlet ambient heat 

of 52 °C and 4.5 °C respectively. A temperature of 4.5 °C 

exists in both the riser and flow line. A pressure of 210 bara 

exists in the reservoir while the temperature is 52 °C. The 

temperature of seawater is 4.5 ℃. The heat transmission 

coefficient on external and internal walls is adjusted to 500 

W/m2K and 10 W/m2K respectively. The pipeline internal 

diameter is 0.3048 m, while the roughness 0.000045 m. The 

pipeline is subdivided into 22 sections. The schematic of the 

model is shown in Figure 1. 

 

 
Figure 1:Schematic of the modelled offshore gas system 

 

Simulation 

The curve for hydrate formation (Figure 3) was obtained 

using MultiFlash according to the composition of the fluid 

(Infochem, 2015). The calculated equilibrium hydrate data 

was exported into a table with Pressure-Temperature data. 

OLGA brought in the table and computed the fluid properties 

at specific pressures and temperatures as needed for the 

simulations through interpolation in the PT tables. Ordinarily, 

continuous inhibitor injection is employed to prevent hydrate 

formation. Consequently, this research presumed no 

inhibitors were injected, and formation of hydrate could 

occur. Therefore, the simulation was conducted and the 

results are shown in Figure 4. The fluid constitution is 

predominantly gas, as shown in Table 1, as such it is a gas 

well. The temperature of the fluid can be lower than the flow 

line hydrate temperature. To forestall hydrate blocking risks, 

sections susceptible to high hydrate blockage risks should be 

identified. The methodology utilized is shown by Figure 2. 
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Figure 2: Workflow employed in the study 

 

Table 1: Constituents of fluid 

Constituents Amount (moles) 

Nitrogen 0.72 

Carbon Dioxide 1.31 

Methane 85.91 

Ethane 6.74 

Propane 3.12 

N-Butane 0.90 

I-Butane 0.71 

N-Pentane 0.59 

Water 10 

 

 
Figure 3: Equilibrium hydrate curves 

 

Following the flow of fluid in the flowline, it dipped down to 

a subcooling temperature, below the equilibrium temperature 

of hydrates. Following subcooling, the system temperature 

increased swiftly to the temperature of hydrate development, 

and additional hydrate development was restrained by the 

removal of heat from the flowline. Given that the formation 

of hydrate is exothermic, as the heat is released, it raises the 

fluid temperature.  Hydrate started appearing at about 750 m, 

where the temperature of fluid fell below the temperature of 

hydrate formation.  At a length of 2971 m from the wellhead, 

the volume of hydrate in the pipeline increased suddenly, and 

peaked at 3022 m, with a maximum fraction of 0.54. This 

means that 54% of the flowline is covered by gas hydrates. 

After 3022 m, the rate of hydrate development began to 

decline. The temperature, meanwhile, stayed unchanged, 

however the pressure kept on dwindling. With the force 

driving hydrate development diminishing, the volume of 

hydrate eventually fell to 0 at about 3600 m. The full 

simulation cycle was 5 hours as shown in Figure 4.  

Field data (Fluid constituents, offshore gas system 
geometry)

Input fluid data into MultiFlash to generate hydrate 
formation curves.

Import hydrate formation curve into OLGA 
Multiphase dynamic simulator and run simulation.

Export simulation data to Excel.

Import Excel data to WEKA and develop Machine 
Learning models
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Figure 4: Simulation of the offshore gas system after 5 hours 

 

Predicting of Volume fraction of gas hydrate using 

Machine Learning Models 

Four models were used to predict the Volume fraction of 

hydrate, observed in the simulation data. Variables like water 

cut, mixture velocity, hydrate formation temperature, hydrate 

formation rate, fluid temperature, hydrate formation pressure, 

pipeline length, pressure, and pressure drop were employed as 

input variables to the models. The models’ outputs were the 

Volume fraction of hydrate in the pipe. Figures 5 and 6 depict 

the parameters employed in developing the linear regression 

model and the other three models respectively. The cross-

validation results are shown in Figure 7, where the Volume 

Fraction of hydrate forecasted by the models were charted 

against the actual volume fraction of hydrate obtained in the 

simulation.   

 

RESULTS AND DISCUSSION 

Linear Regression Model 

𝐻𝑦𝑑𝑟𝑎𝑡𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛
= 0.0001 ∗ 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ + 0.0442 ∗ 𝐻𝑦𝑑𝑟𝑎𝑡𝑒 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 − 0.5472
∗ 𝑀𝑖𝑥𝑡𝑢𝑟𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 0.011 ∗ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 0.0049 ∗ 𝐹𝑙𝑢𝑖𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 0.1375 

 

(1) 

 

 
Figure 5: Parameters employed by Linear regression model to predict volume fraction of hydrate 

 

Equation 1, is a linear regression model (models that 

simulates a linear relationship in one response variable and an 

explanatory variable (Hackeling, 2014) that provides an 

interpretation of the nature of the dependence of the Volume 

fraction of hydrate on the independent variables. A positive 

correlation between the Volume fraction of hydrate and 

pipeline length, hydrate formation rate, pressure, and fluid 

temperature is obtained, whereas a negative correlation is 

obtained between the Volume fraction of hydrate and Mixture 

velocity. The signs of the regression equation help in the 

interpretation of the type of relationship between the 

dependent and independent variables. Equation 1 aids in 

understanding of how increasing pipeline length, hydrate 

formation rate, pressure, and fluid temperature can increase 

the Volume fraction of hydrate, but decreasing mixture 

velocity can decrease the Volume fraction of hydrate. 

Furthermore, the prediction accuracy of the Linear regression 

model was very good, yielding a Correlation coefficient of 

0.9307. The regression results are presented in Error! 

Reference source not found.. 
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Table 2: Results from the linear regression model to forecast volume fraction of hydrate 

Predictor Coefficients Standard Errors t p-value (significance) 

Intercept 0.13745 0.32581 0.422 0.675 

Pipeline length [m] 7.15E-05 1.01E-05 7.08 < .001 

Hydrate formation rate 

per unit volume [kg/m3-s] 
0.04415 0.01782 2.477 0.017 

Mixture velocity (m/s) -0.54724 0.03187 -17.171 < .001 

Pressure (bara) 0.01097 0.00501 2.191 0.034 

Fluid temperature [oC] 0.0049 0.00275 1.781 0.082 

 

The outputs of regression in Table 2 indicate that mixture 

velocity, pipeline length, hydrate formation rate, pressure and 

fluid temperature are significant statistically owing to the 

elevated t-statistic and lower P-values as employed by 

Srivastava (2018). Figure 7 presents a chart for the predicted 

and actual Volume fraction of hydrate values. Figure 7 

implies that a linear model is capable of accurately forecasting 

the actual volume fraction of hydrate obtained in the 

simulation. 

 

 
Figure 6: Parameters employed by the other three models to predict the volume fraction of hydrate 

 

 

 

 

 

 

 

 

Table 3 presents the results of predictions of the four (4) 

models. A bar chart is plotted to show the accuracy of the 

models concerning the Correlation Coefficient and Mean 

Absolute Error (Figure 8). The correlation coefficient values 

are plotted in blue while the mean absolute error values are in 

orange.  

Based on the results obtained from our analysis comparing 

different regression models, it is evident that each model 

exhibits varying degrees of predictive performance. 

The Decision Tree model demonstrates a moderate 

correlation coefficient of 0.6244 and a mean absolute error 

(MAE) of 0.0583. While it shows some level of predictive 

capability, its performance falls short compared to other 

models evaluated. 

In contrast, Linear Regression, Multi-Layer Perceptron 

(MLP), and Random Forest models showcase significantly 

higher correlation coefficients, indicating stronger linear 

relationships between the features and target variable. Among 

these models, Random Forest exhibits the highest correlation 

coefficient of 0.9391, closely followed by the MLP and 

Linear Regression with correlation coefficients of 0.931 and 

0.9307, respectively. This suggests that these models are 

better able to capture the underlying patterns in the data. 

Additionally, when considering the mean absolute error 

(MAE), which measures the average magnitude of errors 

between predicted and actual values, it is observed that both 

Random Forest and Linear Regression models outperform the 

others, with lower MAE values of 0.0271 and 0.0237, 

respectively. The MLP follows closely with an MAE of 

0.0314. The models were ranked in the following order of 

prediction accuracies: Random Forest > Linear Regression > 

Multilayer Perceptron > Decision Tree. These results agree 

with the findings of the preceding investigation by Yu & Tian, 

(2022), which emphasized the superiority of Random Forest 

in hydrate forecasting. 
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Table 3: Volume fraction of hydrate Predictions using four models 

Actual Linear regression Multi Layer Perceptron Random Forest Decision Tree 

0 -0.016 -0.04 0.004 0.078 

0.025 0.035 0.019 0.027 0.078 

0 -0.013 -0.035 0.004 0.078 

0.023 0.035 0.036 0.025 0.078 

0.019 0.036 0.01 0.045 0.078 

0.039 0.044 0.047 0.036 0.036 

0.032 0.036 0.051 0.036 0.036 

0.067 0.036 0.063 0.073 0.036 

0.005 -0.002 0.002 0.003 0.036 

0 -0.016 -0.008 0.003 0.036 

0.019 0.037 0.01 0.042 0.066 

0.014 0.021 0.005 0.015 0.066 

0 -0.006 0.029 0.031 0.066 

0.009 0.015 0.004 0.008 0.066 

0.54 0.436 0.474 0.363 0.066 

0.203 0.086 0.06 0.049 0.025 

0.021 0.036 0.026 0.024 0.025 

0.448 0.508 0.517 0.296 0.436 

0.066 0.285 0.233 0.147 0.436 

0.382 0.458 0.463 0.433 0.436 

0.125 0.07 0.092 0.123 0.024 

0.025 0.024 0.065 0.044 0.024 

0.127 0.063 0.082 0.118 0.024 

0 -0.013 0.016 0.002 0.024 

0.029 0.025 0.067 0.041 0.024 

0 -0.049 -0.002 0.003 0.03 

0.036 0.046 0.008 0.026 0.03 

0.043 0.049 0.006 0.028 0.03 

0.022 0.034 0.026 0.025 0.03 

0.002 0.001 -0.004 0.005 0.03 

0.018 0.027 0.015 0.017 0.003 

0.044 0.035 0.076 0.044 0.028 

0.487 0.432 0.449 0.397 0.343 

0.024 0.035 0.054 0.024 0.028 

0.002 0.006 0.006 0.006 0.016 

0 0.004 0.006 0.002 0.027 

0.022 0.039 0.03 0.023 0.027 

0.003 -0.007 0.001 0.002 0.027 

0.007 0.01 0.002 0.007 0.027 

0.028 0.037 0.028 0.03 0.027 

0.002 0.007 -0.052 0.014 0.016 

0.033 0.035 -0.013 0.029 0.039 

0.116 0.141 0.276 0.114 0.152 

0.014 0.053 0.04 0.059 0.152 

0.28 0.175 0.203 0.129 0.19 

0.001 0 -0.01 0.006 0.001 

0.008 0.022 0.018 0.013 0.19 

0.006 0.004 0.025 0.004 0.003 
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Figure 7: Predicted volume fraction of hydrate using the four models 

 

 
Figure 8: Accuracy of models' predictions 

 

In a nutshell, while the Decision Tree model shows some 

predictive capability, its performance is overshadowed by the 

other models evaluated. Linear Regression, Multi-Layer 

Perceptron, and Random Forest models exhibit stronger 

predictive performance, as evidenced by their higher 

correlation coefficients and lower mean absolute errors. 

Among these models, the Random Forest model stands out as 

it achieves the highest correlation coefficient and the lowest 

mean absolute error, suggesting its superiority in capturing 

the underlying relationships within the data and making 

accurate predictions. Therefore, for this particular regression 

task of forecasting the volume fraction of hydrates, the 

Random Forest model may be the most suitable choice.  

 

CONCLUSION 

This study examined the volume fraction of hydrates in an 

offshore gas system using multiphase simulations and 

machine learning models. Simulations indicated significant 

hydrate formation risk in the Niger Delta offshore gas 

flowlines, with a peak volume fraction of 0.54, necessitating 

management measures. Hydrate formation began at 750 m, 

peaked at 0.54 around 3022 m, and dropped to zero by 3600 

m, with pressures decreasing and temperatures stable. The 

Random Forest model achieved the highest accuracy 

(correlation coefficient of 0.9391, mean absolute error of 

0.0271), while Linear Regression offered better 

interpretability. All ML models performed well, with Random 

Forest ranked highest. Regression analysis showed longer 

pipeline lengths, higher hydrate formation rates, pressures, 

and fluid temperatures increase hydrate volume fraction, 

while higher mixture velocities decrease it. Random Forest 

and Linear Regression are recommended for their accuracy 

and interpretability, aiding in advanced hydrate management 

techniques and improving operational safety and efficiency. 
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