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ABSTRACT 

The health benefits in the description and observation of quantitative contents of quality parameters present 

or contained in any water source cannot be underestimated as they determine selection of best choice from 

available water sources for different intended uses as well as resource consumption. It also helps to compare 

the observed quantity of the quality with the acceptable standards or limits to get desired results. Physical 

parameters like pH, temperature, electrical conductivity (EC) and total dissolved solids (TDS) among others 

are determined by present of other chemical properties like Cations (Mg2+, Ca2+, Na+, etc), Anions (Cl-, NO3
-, 

SO4
2+, etc), heavy metals and other dissolved materials during the course of its formation in different 

proportions and amounts. This study observed EC and TDS of 20 selected boreholes as two close and 

correlated water quality parameters as well as two of the major water quality parameters that account for 

overall quality of any water source, despite their different quantitative contents and physical features, they are 

likely determined by the same set of cations and anions with similar constraint equations. In contrast to linear 

programming, multiple criteria optimization models were fitted for EC and TDS using Response Surface 

Methodology via desirability techniques, optimal values obtained in this case measured against several 

criteria are found to lie between acceptable standards limits for drinking water, other numerical values and 

descriptive features in the final results reflect that the response equations obtained were well fitted. 

  

Keywords: Desirability Function, Electrical Conductivity, Optimal value, Response Surface Methodology, Total Dissolved 

Solids, Water Quality Parameters. 

 

INTRODUCTION 
Product optimization is an essential process in the fields of 

Science, Engineering and Technology as optimization of yields 

and productivities has been a major goal in biological and 

physical components since the very beginning of decision 

processes on industrial and production systems. Optimization is 

a technique that explores possible and likely behaviors of 

systems with numerous input responses with goal of 

identifying the best possible outcome, Cornell (1996). In 

mathematical terms, the ‘‘outcome’’ is the value of some 

functions, and ‘‘best possible’’ often is the maximum or 

minimum of the function which is the point with highest or 

lowest possible value. The function itself is often called 

objective function and its arguments are called control 

variables or at times input variables observed from various 

input responses that determine or account for quality of 

interest, Cornell (1996). In practices, if one multiplies the 

objective function by -1, the former maximum becomes 

minimum and vice versa. Thus, finding a maximum or a 

minimum is basically the same, and we talk generally about 

finding extremum or optimum.  Raymond, et al. (2016) 

affirmed that the objective function is controlled by some 

conditions of input factors or variable as defined by set of 

constraint functions that define boundaries or limits that 

guarantee each response viability or acceptable standards in the 

system. Thus, the constraints are dictated by system 

component, technical and economical factor among others to 

have final equilibrium output from objective function. A 

complete optimization to optimize a response of interest 

involves solving response of interest involved and validating of 

objective and constraint equations. Summarily, the 

optimization task with several system components typically 

reads;

 

Maximize: 1 2( , ,..., )hf X X X  

Subject to: 1( )  Constantf X   

  1 2( , )  Constantf X X 
                                                                                    (1)

 

  1 2 3( , , )  Constantf X X X   

  1 20, 0,..., 0hX X X  
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Multi-response Design and Model 

Multi-response experiment requires careful consideration of the 

multivariate nature of data observed together in a process. In 

fitting model for multi-response observation, Khuri and Cornell 

(1996) stated that response variables should not be investigated 

individually and independently of one another as 

interrelationships that may exist among them can render such 

investigation meaningless. Hill and Hunter (1966) cited several 

papers in which multiple response are investigated with desire 

to optimize several response functions simultaneously with a 

completely defined constraint equations with full information 

about the condition of constraints optimal solution has to 

satisfy. 

Representation of General Multi-response Model 

In (Cornell (1996), Way Kuo, et al. (2001)), it was supported 

that the design problem in the multi-response case is more 

complex than in the case of a single response as each of the 

response values has different set of input variables, at times 

when set of input variables are the same for some responses, 

the linear relationship or contrast may differ. In a system 

process of different components, the constraint conditions on 

input variables are the same irrespective of response value. In 

matrix form, 
thi response value at 

thu experimental run is 

represented by 

 

( , )       1,2,...,

                                     1,2,...,

ui u uiy f X u N

i r

   

           (2)

 

Where 
jX is the vector 

1 2( , ,..., )j j ukX X X being 
thu

 
the level of the 

thj  coded variables 

( 1, 2,..., ;  1, 2,..., ),u N j r   
 
is a vector of unknown parameters,

 ui  is a random error, and f  is a function of 

known form for the 
thi response and is assumed to be continuous. Similarly, response variables can be represented by polynomial 

regression models in the values of ix  within a certain region of . Hence, the 
thi  response model can be written in vector form 

as 

        1,2,...,i i i iY X i r   
          (3) 

Where iY  is an N 1 vector of observations on the 
thi  response, iX  is an N P matrix of rank P of known function of the 

setting of coded variables, 
 
is a P 1 vector of unknown constant parameters and i is a random error vector associated with 

thi  response  ( 1, 2,..., )i r . The assumptions on i  are that 

( ) 0

( )                 1,2,...,

( )         , 1,2,...,   

i

i ii N

i j ij N

E

V I i r

Cov I i j r i j



 

  



 

  
        (4)

 

The r r matrix whose ( , )thi j element is ,  ( , 1,2,..., )ij i j r  is denoted by  . 

Also, the r  equations in 3 can be represented by 

Y X   
      (5)

 

Water Quality Parameters As  A Multi-response 

Experiment 

As opposite to experiments with single response variables 

which are reffered to as single-response experiments. However, 

numerous experiments involve measurements associated with 

several response variables, in such cases number of responses 

are measured simultaneuosly for each setting of group of input 

variables which are reffered to as multi-response experiment by 

Khuri and Cornell (1996). There are numerous number of 

multiresponse experiments where researchers’ interest is to 

determine optimum combinations of various system 

components on the basis of acceptability, nutritional and 

economic value among other considerations. Like many other 

systems or processes that quality performance are determined 

by numerical contents or compositions of different or specific 

components of that system or process in which no single 

quality parameter can perform better in isolation. 

Water is natural substance that during the process of its 

formation, its contents, components and quality is determined 

by different organic and inorganic matters that have contact 

with during and after its formation e.g. different types of 

soluble and insoluble rocks, soils, atmosherical and biological 

matters. Different sources of water account for unequal 

compositions and contents of quality parameters and as a 

result, there are needs for its different users to make decisions 

on selected responses and factors of choice to meet their 

desired limits of acceptance for optimal condition subject to 

different response requirement with respect to their 

specification limits as constraints and to analzye the feasibility 

of optimal values to give desired product quality. 

 

An Overview of Multi-Response Optimization Approaches 

In the work of Raissi and Eslami (2009), this process is 

regarded as a multi-response optimization problem. Most of the 

common methods are incomplete in such a way that a response 

variable is selected as the primary one and is optimized by 

adhering to the other constraints set by the criteria. Among 
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methodologies developed to resolve the multi-response 

problems. Khuri and Cornell (1987) surveyed the multi-

response problem using a response surface method. Tai, et al. 

(1992) assigned a weight for each response to resolve the 

problem. Pignatiello (1993) made use of a squared deviation-

from-target and a variance to and from an expected loss 

function. Layne (1995) used a procedure capable of 

considering three functions: weighted loss function, desirability 

function and distance function. Myers and Montgomery (1997) 

referred to this as a popular approach to formulate and solve 

the problem as constrained optimization problem. Kim, et al. 

(2001) classified it as a priority based as is similar to bounded 

objective in the multi objective decision making problems 

where response with highest performance is chosen as the 

objective and the rest of the functions are considered as 

constraints. Myers and Carter (1973) first suggested the idea 

where he assumed two responses as a ‘Primary response’ and a 

‘Constraint response’ with goal to find condition on a set of 

design variables which maximize the primary response 

function subject to the constraint response function. Biles 

(1975) considered multiple process responses and extended the 

Myers and Carter’s idea. Del Castillo and Montgomery (1993) 

studied the approach later year. On designs with multiple 

response, Logothestis and Haigh (1988) discussed a 

manufacturing process with five responses, one of the five 

response variables was selected as primary and optimized the 

objective function while ignoring the possible correlations 

among the responses and considered the constraints of other 

determining input variables. Derringer and Suich (1980) 

proposed that a particular response iY  among other responses 

in the same experimental set up may be maximized or 

minimized, or assigned a target value. If ,   and i i iL U T  be 

lower, upper and target value respectively, the desired value for 

iY with set of constraints to get its optimal value could be 

obtained via desirability function ( )i id Y . 

 

Optimizing Through the Desirability Function Approach 

An analytic technique for optimization of multi-response 

design based on the concept of utility or desirability of a 

property associated with a given response objective function 

introduced by Harrington in 1965. This approach uses an 

estimated response such as 𝑦𝑖(𝑥) transformed to a scale free 

value id  that is called desirability which ranges from 0 to 

1and also allows users to specify minimum and maximum 

acceptable values for each response. In Harrington (1965) 

desirability ( )D  is also in the [0,1]  interval is obtained by 

combining all desirabilities ( )id . Derringer and Suich (1980) 

extended the idea and presented a method to construct an 

overall desirability. There are three scenerios as in the case of 

response surface work and any one serves as a specific goals 

for each of the input variables. As sugested by Taguchi (1987) 

an approach that provides information about the mean and 

variance of observations, the summary statistic is computed 

across for observations which is called Signal-to-Noise Ratio 

(SNR) and emphasis on variance reduction. Each of the three 

scenarios depends on the choice of experimenter and or the 

nature or goal of the variable to optimised which can be as; 

 

The Smaller The Better (STB), the experimenter wishes to 

minimize the response, in this case the SNR is given by 
2

s

1

SNR   = 10log
n

i

i

y

n

         (6) 

The Larger The Better (LTB), the experimenter wishes to 

maximize the response, this case is treated in the same fashion 

as the STB case, but iy  in equation 6 is replaced by 1
iy
 . 

Thus, we have  

2

l

1

1

SNR   = 10log
n

i

i

y

n

     (7) 

Nominal The Better (NTB) or The Target is Best, the 

experimenter wishes to achieve a particular value for the 

response, in this case we are attempting to determine value of x 

that achieves a target value for the response, the SNR used by 

Taguchi is given by 
2

sSNR   = 10log s
     (8) 

where 

   
𝑠2 = ∑

(𝑦𝑖 − �̅�)
2

(𝑛 − 1)
⁄𝑛

𝑖=1    (9) 

Thus s2 is the sample variance.
 

The desirability function id  for the three scenarios of optimization problems are illustrated as 

 

STB      𝑑𝑖     =      [
𝑦𝑖
𝑚𝑎𝑥−𝑦𝑖(𝑥)

𝑦𝑖
𝑚𝑎𝑥−𝑦𝑖

𝑚𝑖𝑛]
𝑟

                𝑦𝑖
𝑚𝑖𝑛 ≤ 𝑦𝑖(𝑥) ≤ 𝑦𝑖

𝑚𝑎𝑥    

 

NTB di    =      

{
 

 [
yi(x)-yi

min

ti-yi
min ]

r1

                yi
min ≤ yi(x) ≤ ti

[
yi
max-yi(x)

yi
max-ti

]
r2

                ti ≤ yi(x) ≤ yi
max

                                   (10) 

                                      

LTB 𝑑𝑖     =      [
𝑦𝑖(𝑥)−𝑦𝑖

𝑚𝑎𝑥

𝑦𝑖
𝑚𝑎𝑥−𝑦𝑖

𝑚𝑖𝑛]
𝑟

                𝑦𝑖
𝑚𝑖𝑛 ≤ 𝑦𝑖(𝑥) ≤ 𝑦𝑖

𝑚𝑎𝑥  
                

 

The min and max indexes on the iy  denote the lower and 

upper limits accepted for 𝑦𝑖(𝑥) respectively. The 

1 2,   and r r r  are weights specified by user for their different 

specific situations and t  is the target value. The advantages of 
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this approach over other approaches are that easy to use, 

understand and model. 

The overall desirability D  is maximized with respect to the 

controllable factors using a geometric mean function as 
1

1 2( ,  x ,  x ... ) k
kD d d d

 

1 2

1

1 2(  ... ) jj www w

jD d d d 
    (11) 

wi is the number of similar di’s 

The approach is based on the idea that the quality of a product 

or process must meet all k  quality characteristics. In adopting 

the approach for solving the problems of optimization of 

several responses is the use of a multicriteria methodology 

which is applied when various responses have to be considered 

at the same time and it is necessary to find optimal 

compromises between the total number of input variables taken 

into account at a time. The Derringer function or desirability 

function of Harrington, (1965) is the most important and most 

currently used multicriteria methodology in the optimization of 

analytical procedures by constructing a desirability for each 

individual response. In summary, the measured properties 

related to each response are tranformed into dimensionless 

individual desirability ( id ) scale. Through the individual 

functions, the analysis showcases the specifications that each 

response must fulfil in the measuring procedure. The scale of 

the individual desirability function ranges between 0id  , 

for a completely undesirable response, and 1id  , for a fully 

desired response, above which further improvement would 

have no importance. The benefit of this transformation is that it 

makes it possible to combine the results obtained for properties 

measured on different orders of magnitude. 

From equation 10, there is need to transform into a 

dimensionless individual desirability, id  in the desirability 

function. There are two cases for transformation to consider: 

one-sided and two-sided transformations. One-sided 

transformations are used when the goal is to either maximize or 

minimize the response. Two-sided transformations are used 

when goal is for the response to achieve some specified target 

value. The goal on the 
thi  response for individual value of 

response gives corresponding individual desirability by 

equation 10. 

 

Second Order Response Surface Model 

If all factors represent quantitative variables, the most 

informative model to assist analysis of the yields or response is 

a function of input variables, i.e.  

 

1 2( , ,..., )hY f X X X
     (12) 

 the ordinary polynomials, the second order in particular have 

been extensively employed in exploring response surfaces. 

This is because it is generally accepted for its simple 

computation, easy to work with, easy to locate the optimum 

response. However, they exhibit the undesirable problems of 

unboundness, symmetry about the optimum. These polynomial 

models have been used in many biometry researches. In 

applying the response surface methodology, the dependent is 

viewed as a surface to which a mathematical model is fitted. 

For the development of regression equation related to various 

quality characteristics, the second order response surface may 

be assumed as 

 

2

0

1 1 2

h h h

i i ii i ij i j r

i i i j

Y B B X B X B X X e
   

         
              (13)

 

Where re is a random error, the parameter 'B s are called 

regression coefficients which are to be estimated and obtained 

by the design technique. The assumed surface Y contains 

linear, squared and cross-product terms of variables 'iX s. In 

order to estimate the regression coefficients, a number of 

experimental design techniques are available. Box and Hunter 

(1957) proposed that the scheme based on central composite 

rotatable, design fit second-order response surfaces very 

accurately. Many literatures on multi-response experiments 

utilized a second-order models. Also when restricting the 

response surface problem to response optimizaton, to select a 

design that will provide a good fitted model to the data, and in 

particular provide reliable parameter estimates, which can be 

used for prescise prediction, second-order models are primarily 

used for these purposes. 

In matrix form, equation 13 can be written as  

Y X E 
          (14)

 

Where Y is defined to be a h 1 vector of coeficients of 

measured values or vector of observations, X is a hN 

matrix of known coefficients,  and E are vectors of N 1 

of unknown parameters and h 1 of errors respectively. In 

general matrix model form, equation 14 can be also be written 

as 
2( , , )NY X I  . Where NI is the identity matrix and 

2 is a constant error (variance) which is fixed but unknown 

population constant and property which can only be estimated, 

for a well behaved model its characteristics depend on the error 

terms, under the model we assume that er ̴ N(0,σ2) that is er ̴ 

N(0,σ2) that E( re ) = 0 does not mean that 0re  for every r, 

that is the errors are not consistent. The solution of equation 14 

can be obtained by least square matrix approach as 
1 1 1( )X X X Y       (15) 

1( )X X  is a moment matrix and variance-covarianve matrix 

of   is 

1 1 2var( ) ( )X X   (16) 

In this study, estimation case is a straightforward non linear 

regression techniques in which researchers and beneficiaries of 

quality water can compute to compare existing acceptable 

water standards limits for different intended users of the 

resources with the results from the fitted observed data. The 

techniques used showcase a contribution to estimate and 
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monitor quality of water parameters as it recognizes existing 

commercial limits as adherence to quality ptoduct is becoming 

National prioroty in health sector. 

 

MATERIALS AND METHODS 

Borehole water samples were collected from 20 different 

locations across Akinyele Local Government, Oyo State, 

Nigeria. Each sample collected was analysed with the aid of 

Atomic Absorption Spectrophotometer and various quality 

parameters were measured to obtain different response quality 

values. Samples were analysed by appropriate certified and 

acceptable standard methods (APAH, 1998). The parameters of 

interest for the work are Electrical Conductivity (EC), Total 

Dissolve solutes (TDS), Chloride, Calcium and Magnesium ion 

contents. EC and TDS are taken as primary responses while 

Chloride, Calcium and Magnesium ions are set as contraint 

variables for each of primary responses. The Software 

application Design-Expert® 8 (Stat-Ease, Inc, Minneapolis, 

MN) was used in data analysis; it showcased the values of R2, 

adjusted-R2 and predicted-R2 among others parameters 

estimated for fitted models. 

 

Electrical Conductivity (EC) and Total Dissolve solutes 

(TDS) 

Electrical conductivity of water is the measurement of its 

ability to carry an electric current and can be regarded as a 

crude indicator of water quality for primary purposes. It 

reflects the extent of solubility of mobile cations and anions 

and is related to the sum of ionised solutes or total dissolved 

solids which is the sum of cations and anions as well as organic 

and inorganic substances in water that can pass through a 2 

micron filter. The relationship between EC and TDS is directly 

proportional and anyone can be estimated fairly accurately 

from other via a linear correlation and regression equation. 

However, as a rough approximation, the relationship between 

EC and TDS commonly used is 

 
1TDS( / )   =   EC( )    0.67mg l Scm  

  (17) 

The value k = 0.67  in the above equation is for drinking water 

sources and varies for other sources for different uses and 

ranges from 0.54 to 0.96 irrespective of water sources and uses

 

 Figure 1: Showing relationship between Electrical Conductivity and Total Dissolved Solids of  drinking water 

 

High content of any of the parameters in drinking water posses serious health dangers, this is the main reason why they are used 

to monitor quality in drinking water through their acceptable limits guideline for use. For borehole water, EC value greater than 

500 µScm-1 indicate that the water may be polluted, although, values as high as 2000 µScm-1 may be acceptable for farming, but 

for drinking water EC should not be more than 500 µScm-1 as water with higher value may have quality problem and be 

unpleasant to drink. For TDS, water with TDS greater than 1200mg/l is very unusable. 
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Table 1: Some Physical Properties of Parameters of Borehole Water Samples 

 

Borehole 

Calcium, 

Ca 2+ (mg/l) 

X1 

Magnesium, 

Mg 2+ (mg/l) 

X2 

Chloride, 

Cl + (mg/l) 

X3 

Electrical 

Conductivity, 

EC(μS/cm) 

Y1 

Total  

Dissolved Solid, 

TDS(mg/l) 

Y2 

1 27.2 16.6 18.0 180.0 200.0 

2 53.6 53.7 30.0 355.0 370.0 

3 27.1 15.7 60.0 245.0 260.0 

4 80.0 34.2 90.0 490.0 510.0 

5 92.0 12.2 49.0 315.0 340.0 

6 67.6 30.0 46.0 350.0 375.0 

7 57.6 19.6 50.0 280.0 290.0 

8 0.8 8.30 30.0 110.0 110.0 

9 14.0 23.4 30.0 115.0 120.0 

10 51.2 9.77 10.0 195.0 210.0 

11 40.8 37.2 48.0 330.0 350.0 

12 29.6 18.0 35.0 180.0 200.0 

13 62.4 23.0 80.0 305.0 325.0 

14 76.0 20.0 88.0 340.0 360.0 

15 27.2 20.0 26.0 180.0 200.0 

16 36.0 25.2 80.0 295.0 310.0 

17 68.0 57.6 122.0 715.0 750.0 

18 50.4 16.6 58.0 280.0 296.0 

19 35.2 17.1 12.0 185.0 190.0 

20 51.2 10.2 12.2 416.0 440.0 

 

Table 2: Descriptive Statistic of Parameters 

 

Parameters Minimum Maximum Mean 
Standard 

Deviation 

Acceptable limits 

Upper Lower Penalty 

EC 110.0 715.0 293.0 136 100 0 
Maximum 

Allowable 

TDS 110.0 750.0 310.0 142.0 500 0 
Maximum 

Allowable 

Ca 2+ 14.0 92.0 47.4 22.7 75.0 0 
Maximum 

Allowable 

Mg 2+ 9.77 57.6 23.4 13.1 50.0 0 
Maximum 

Allowable 

Cl + 10.0 122.0 54.2 32.5 250 0 
Maximum 

Allowable 

 

RESULTS AND DISCUSSION 

The second order response surface models fitted for each 

response are significant, the model incorporates interactive 

terms between three input factors X1, X2 and X3 that estimated 

each of responses Y1 and Y2 fitted as: 

Effects on Electrical Conductivity 
2

1( ) 1 2 3 1 2 1 3 2 3 380.30 2.34 2.09 0.814 0.0889 0.0380 0.0255 0.0190ECY X X X X X X X X X X       

         
(18) 

Summary of ANOVA Table 3 shows that the model is 

significant at 0.05 with all single factors found significant 

(p<0.05), two factor interaction were also found significant 

except for one while quadratic term was significant were 

retained. The three R2 statistics values in Table 5 also explain 

the significant of the fitted model as predicted R2 of 82.0% is 

in reasonable agreement with adjusted R2 of 96.5%. 
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Table 3: Summary of ANOVA results for response surface model of Electrical Conductivity on Calcium, Magnesium and 

Chloride 

Source                 Sum of Squares        df                 Mean Square                 F- Value       p-value 

Model       3.63E+005       7  5.18E+004             75.9   < 0.0001 

X1-Calcium      1.18E+004       1  1.18E+004             17.4      0.00131 

X2-Magnesium      5.18E+004       1  5.18E+004             75.9   < 0.0001 

X3-Cloride     4.36E+004       1  4.36E+004             63.9   < 0.0001 

X1X2      3.41E+003       1  3.41E+003             5.01      0.0450 

X1X3      3.75E+003       1  3.75E+003             5.50      0.0370 

X2X3      2.51E+003       1  2.51E+003             3.68      0.0791 

X3
2      7.11E+003       1  7.11E+003            10.4      0.00723 

Residual         8.18E+003       12  682.0 

Total           3.71E+005       19 

 

Effects on Total Dissolved Solids 

2( ) 1 2 3 1 2 1 3 2 3392 112 106 133 78.9 68.4 52.1TDSY X X X X X X X X X      
 
               (19) 

From equation 19, it may be observed that from ANOVA table 4 that all the single terms are significant while all interaction terms 

not significant, no quadratic term found significant as the model has only 0.01% chance that its value could due to noise, the 

three R2 statistics in Table 5 indicate suitability of the model. 

 

Table 4: Summary of ANOVA results for response surface model of Total Dissolved Solids on Calcium, Magnesium and 

Chloride  

 

Source                 Sum of Squares df               Mean Square         F-Value       p-value 

Model                         3.85E+005                  6                      6.42E+004               46.5             <0.0001 

X1-Calcium     1.22E+004         1    1.22E+004    8.80           0.0109 

X2-Magnesium     5.55E+004         1   5.55E+004    40.2          <0.0001 

X3-Cloride     5.31E+004         1  5.31E+004    38.4         <0.0001 

X1X2                   3.09E+003         1  3.09E+003    2.24            0.159 

X1X3      2.61E+003         1  2.61E+003    1.89            0.192 

X2X3      6.14E+003         1  6.14E+003    4.44            0.0550 

Residual                   1.80E+004         13               1.38E+003 

Total                   4.03E+005         19 

 

Table 5: Parameters of the fitted Response Surface Model EC and TDS 

Response F-Value P-Value R2 Adj. R2 Pred. R2 Adeq. Pred. COV 

Y1(EC) 75.9 <0.0001 0.978 0.965 0.820 36.4 8.91% 

Y2(TDS) 46.5 <0.0001 0.955 0.935 0.774 27.2 12% 

  

Optimization Results and Validation 

During the optimization stage, the desirability function 

approach was used to obtain the best compromise with respect 

to each response acceptable limits as constraints. The second 

order polynomial model was fitted to each response observed 

data to obtain optimal values shown in Table 6. The goal was to 

minimize i.e. Smaller The Better (STB) scenario which reflects 

the optimum condition values for EC and TDS containing 

minimum amount of Calcium, Magnesium and Chloride. 

 

 

Table 6: Criteria and Output for Numerical Optimization of Selected Water Quality Parameters 

Criteria Goal Observed limits Acceptable limits Output 

Electrical Conductivity, Y1  Minimized 110 – 715   0 – 100 80.3 

Total Dissolved Solids, Y2 Minimized 110 – 750   0 – 500 210 

Calcium, X1 Minimized 14 – 92 0 – 75 51.2 

Magnesium, X2 Minimized 9.77 – 57.6 0 – 50 9.77 

Chloride, X1 Minimized   10 – 122   0 – 250 10 

Desirability, D  0.975 

 

Numerical Optimization Objective and Constraint Functions 

As the process includes both dependent and independent variables, the optimal solutions are characterized by objective function 

represented or obtained by fitted response model and set of constraint functions represented or obtained by acceptable conditions 

of the process or process equilibrum state. The optimization task in this process components typically reads. 
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(a) Electrical Conductivity    (b) Total Dissolved solids  

Figure 2: Normal Percentage Probability Plots of  (a) Electrical Conductivity and (b) Total Dissolved Solids of  drinking water 
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(a) Electrical Conductivity    (b) Total Dissolved solids  

Figure 3: Graphs of  predicted and actual values of (a) Electrical Conductivity and (b) Total Dissolved Solids of  drinking water 

on Calcuim, Magnesium and Chloride 

 
Figure 4: Graph of relationship between observed values of Electrical Conductivity and Total Dissolved Solids of  drinking water 

 

CONCLUSION AND RECOMMENDATION 

RSM utilizes regression techniques to study experimental 

products and process, however, optimization of multiple 

response design depends too heavily on the assumptions of 

well estimated models fitted for the responses of interest. It can 

be seen that optimal values obtained for responses in Table 6 

are within the acceptable standards with other model 

parameters which make the method to be reliable. The optimal 

values of 80.3 µScm-1 and 210 mg/l
 

of EC and TDS 

respectively are obtained by the same optimal values of their 

same set of of input factors of 51.2 mg/l, 9.77 mg/l and 10 mg/l 

for Calcium, Magnesium and Chloride respectively. The result 

will be beneficial to water users most especially for drinking to 

improve the quality of the product for health reasons and 

benefits. 
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