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ABSTRACT 

The increasing digitalization of our society has brought about numerous benefits, enabling seamless 

communication, convenient transactions, and efficient operations. However, with this growing reliance on 

interconnected systems and information technology, the risk of cyber-attacks has also surged. Cyber threats, 

such as data breaches, ransomware, and sophisticated malware, have become more prevalent, threatening the 

confidentiality, integrity, and availability of critical data and services. Organizations across industries face the 

daunting challenge of defending against a wide array of cyber-attacks that continue to evolve in complexity 

and stealth. In response to this ever-changing cyber threat landscape, Cyber Security Risk Management 

(CSRM) and attack detection have become critical components of any comprehensive cybersecurity strategy. 

The ability to identify and mitigate cyber risks and swiftly detect malicious activities is paramount for 

safeguarding sensitive information, preserving business continuity, and maintaining the trust of customers and 

stakeholders. A novel approach to Cyber Security Risk Management through an Attack Detection Model that 

utilizes Semi-Supervised Learning Auto-Encoders in conjunction with Probabilistic Bayesian Networks. The 

study compares the performance of Multi Connect Variational Auto-Encoder (MC-VAE), Probabilistic 

Bayesian Networks (PBN), and a combined model of MC-VAE and PBN. The study employs the NUSW-

NB15_GT dataset for training and evaluation purposes. Notably, the Semi-Supervised Learning with 

Probabilistic Bayesian Networks (SSL-PBN) model demonstrates exceptional results, achieving a precision 

rate of 94% and a recall rate of 90%. The F1 score of 0.9191 highlights the SSL-PBN model's efficacy in 

achieving a balanced trade-off between precision and recall, critical for minimizing false positives and false 

negatives in cyber security attack detection scenarios.  
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INTRODUCTION 

In today's digital landscape, the burgeoning dependence on 

information technology and interconnected systems has 

bestowed unparalleled advantages, yet concurrently, it has 

exposed organizations to an array of cyber threats and security 

vulnerabilities. These cyber-attacks, ranging from insidious 

malware and intrusive data breaches to sophisticated 

persistent threats, hold the potential to inflict substantial 

financial losses, tarnish reputations, and disrupt vital services. 

Consequently, the need for effective Cyber Security Risk 

Management (CSRM) and adept attack detection has become 

paramount in safeguarding sensitive data, preserving business 

continuity, and fostering trust among customers and 

stakeholders. Traditionally, CSRM strategies have leaned 

heavily on supervised learning methodologies, wherein 

models are trained using labelled data to categorize cyber 

events as normal or malicious. Nonetheless, the task of 

acquiring sufficiently large, accurately labelled datasets is 

beset with challenges due to the dynamic evolution of cyber 

threats and organizational hesitance in sharing sensitive 

information. Additionally, these supervised approaches often 

falter in recognizing novel and previously unseen attacks 

absent from the training data. To counter these limitations and 

harness the untapped potential of both labelled and unlabelled 

data, a burgeoning interest has emerged in harnessing Semi-

Supervised Learning (SSL) techniques within the domain of 

cyber security. SSL techniques have the capacity to adroitly 

utilize the profusion of unlabelled data, which is more readily 

available, thereby elevating model performance and 

generalization. Within the context of CSRM, the 

amalgamation of SSL with advanced modelling tools such as 

Auto-Encoders and Probabilistic Bayesian Networks (PBNs) 

holds considerable promise for attaining more precise and 

comprehensive attack detection. 

The primary aim of this study is to fabricate a pioneering 

framework for Cyber Security Risk Management with Attack 

Detection, leveraging the combined prowess of Semi-

Supervised Learning, Auto-Encoders, and Probabilistic 

Bayesian Networks. By harnessing both labelled and 

unlabelled data adeptly, this framework endeavours to 

surmount the constraints of conventional supervised methods, 

proffering a scalable, resilient, and efficient solution for 

pinpointing cyber threats. The study focalizes on three 

cardinal constituents: Semi-Supervised Learning, Auto-

Encoders, and Probabilistic Bayesian Networks. Semi-

Supervised Learning (SSL) avails an exceptional prospect to 

harness unlabelled data to augment labelled data within cyber 

security datasets. Through the infusion of SSL, the framework 

can tap into the vast reservoirs of unlabelled data portraying 

normal and potentially anomalous behaviours, thereby 

substantially bolstering the data corpus available for model 

refinement. Auto-Encoders (AEs), a subset of neural 

networks, are acclaimed for their aptitude to assimilate 

concise representations of input data. In this inquiry, the 

Multi-Connect Variational Auto-Encoders (MC-VAEs) will 

be harnessed to encapsulate intricate patterns and 

relationships embedded within cyber security datasets. This in 

turn facilitates the creation of a latent space that adeptly 

encapsulates an assortment of cyber events. Probabilistic 

Bayesian Networks (PBNs) will be seamlessly integrated into 

the framework to model uncertainty and the 

interconnectedness between variables, offering a principled 

and effective approach to navigate incomplete or noisy data. 

The probabilistic underpinning of PBNs augments decision-

making processes, particularly in instances involving 
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ambiguous or hitherto unseen instances outside the realm of 

training data. Through the synergistic amalgamation of SSL, 

MC-VAEs, and PBNs, the study endeavours to craft an all-

encompassing and inventive framework for Cyber Security 

Risk Management with Attack Detection. The potential 

contributions of this framework are manifold, spanning 

heightened accuracy in identifying known and novel cyber 

threats, augmented scalability to accommodate voluminous 

datasets, and a more resilient defense mechanism against 

burgeoning cyber assaults. In the ensuing sections of this 

inquiry, a meticulous exploration of the methodology, 

algorithmic formulation, and experimental assessments shall 

ensue. The efficacy and feasibility of the proposed framework 

shall be showcased through a diverse array of real-world 

cyber security datasets. Ultimately, this study aspires to 

propel the sphere of cyber security forward, equipping 

organizations with potent risk management tools, and 

engendering a digital milieu that is safer and more secure. 

 

Literature Review 

To explore the latest advancements in addressing 

cybersecurity risks associated with SCADA techniques in 

operational settings, research have investigated the objectives, 

application domains, and stages of risk management (Liu et 

al., 2020). While there exist various methodologies for 

assessing risks in SCADA systems, there is a notable absence 

of a comprehensive approach that encompasses the entirety of 

risk management strategies (Coulter et al., 2020). Such a 

comprehensive methodology would assist managers in 

evaluating the current security status and adopting appropriate 

security measures. Conversely, attributing probabilities to 

different categories of potential harm would facilitate the 

quantification of risks linked with information systems. 

Various studies have explored the impact of attacks on the 

system, including those affecting availability and integrity. 

Another line of study (Wang et al., 2020) concentrates on 

detecting computer attacks that manipulate the behaviour of 

targeted control methods, analyzing the consequences of these 

attacks for risk assessment. 

Miao et al. (2022) introduced a quantitative approach for 

assessing risk in real-time within Cyber-Physical Systems 

(CPS), considering operational conditions and user responses 

over specific time intervals. In a different vein, Shen et al. 

(2019) devised a cybersecurity architecture utilizing attack 

trees for SCADA systems, particularly critical infrastructures. 

Liu et al. (2019) delved into comprehensive study on IoT 

attacks, cataloging threats and vulnerabilities using a severity-

based classification scheme to address these security issues. 

Wickramasinghe et al. (2018) proposed an innovative security 

framework involving homomorphic encryption over a matrix 

ring for Machine Learning (ML) classification. Kingma & 

Welling (2019) introduced an automatic real-time Intrusion 

Detection System (IDS) for IoT networks, leveraging ML 

classifiers in the Software-Defined Networking (SDN) 

application layer to detect and explain attacks effectively. 

Chen et al. (2020) provided an insight into Data Warehouse 

(DWH) security strategies and a novel approach for CPS 

security. Jin et al. (2022) introduced an additional CPS 

countermeasure when existing ones are insufficient. Ashraf et 

al. (2021) proposed an authentication strategy to secure IoT 

cloud servers, building upon the work of Obaidat et al. (2020) 

and Li et al. (2020). The integration of Artificial Intelligence 

(AI) techniques, particularly Intrusion Detection Systems 

(IDSs), has become commonplace to enhance the security of 

IoT devices and networks, addressing challenges and 

anomalies (Moustafa, 2020). AI's incorporation in IoT, as 

noted by Atul et al. (2021), represents a significant 

advancement in reducing human intervention while ensuring 

security. 

 

Bland et al. (2021) contributed recent insights into ML-based 

offensive and defensive tactics, leveraging reinforcement 

learning algorithms to enhance the detection of cybersecurity 

threats. Their fog-based attack detection framework, coupled 

with an ELM semi-supervised fuzzy approach, yields efficient 

generalization performance with rapid detection rates 

(Aldhaheri et al., 2020). Lu et al. (2020) harnessed Deep 

Learning (DL) techniques to construct a wireless Intrusion 

Detection System (IDS) for wireless networks, utilizing 

wrapper-based feature extraction and Feedforward Neural 

Networks (FFNNs). However, it iss important to recognize 

that utilizing AI for vulnerability detection exposes IoT 

networks and devices to potential risks(karma et al., 2023). 

As IoT progresses, a range of centralized attack detection 

methods has been proposed, employing supervised ML 

techniques to identify threats in IoT settings. To adequately 

assess existing options, adherence to IoT security protocols is 

crucial (Ahmad et al., 2021). Past comprehensive reviews, 

such as the work by Echeverría et al. (2021), have 

significantly contributed to the advancement of the 

cybersecurity field. 

In the ever-evolving landscape of cybersecurity, a plethora of 

study endeavours have been dedicated to crafting advanced 

techniques that effectively grapple with the formidable 

challenges posed by cyber threats and risks. The focal point 

of this paper is the amalgamation of a sophisticated attack 

detection model, which leverages the power of semi-

supervised learning auto-encoders combined with 

Probabilistic Bayesian Networks (PBNS), thereby fortifying 

the realm of cybersecurity risk management. To anchor this 

contribution in context, a thorough examination of pertinent 

literature is presented below, dissecting the strengths and 

weaknesses of each approach: 

Al-Abassi et al. (2020) heralds a novel paradigm by 

introducing an ensemble deep learning-based strategy tailored 

for pinpointing cyber assaults within industrial control 

systems. Their approach's potency lies in harnessing the 

prowess of deep learning techniques, effectively grappling 

with the ever-evolving intricacies of cyber threats pervasive 

in critical infrastructure. Nevertheless, potential challenges 

could arise in terms of model interpretability and scalability 

when dealing with intricate industrial environments. 

Sahoo et al. (2020) undertake a novel stance by presenting an 

evolutionary SVM model specifically engineered to detect 

Distributed Denial-of-Service (DDoS) attacks in software-

defined networks. Their exploration into evolutionary 

algorithms underscores adaptability as a pivotal factor for 

countering dynamically shifting attack landscapes. However, 

it's important to note that evolutionary methods might entail 

higher computational costs, potentially posing challenges in 

real-time detection scenarios. 

Zhang et al. (2019) engineer a comprehensive multilayer data-

driven cyber attack detection system catering to industrial 

control systems. This holistic approach, embracing network, 

system, and process data, inherently bolsters the model's 

resilience against multi-pronged attacks. Nonetheless, the 

intricate fusion of diverse data sources could introduce 

complexity in feature extraction and modeling. 

Tuan et al. (2020) holistically gauges the performance of 

Cyber-attacks DDoS attack detection using machine learning. 

By emphasizing real-world effectiveness and efficiency, their 

work fosters the much-needed alignment of theoretical 

advancements with practical applications. However, the 
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reliance on performance metrics might inadvertently sideline 

the model's adaptability to novel attack vectors. 

Anthi et al. (2021) delve into adversarial attacks on machine 

learning-based cybersecurity defenses within industrial 

control systems. This introspection unveils the potential 

vulnerabilities that might be exploited within defense 

mechanisms, bolstering the domain's preparedness against 

advanced threats. It's worth noting, though, that the focus on 

adversarial attacks might overshadow the broader landscape 

of cybersecurity risks. 

Syed et al. (2020) navigates the intricacies of Denial-of-

Service (DoS) attack detection in the context of the Internet 

of Things (IoT). Their application-centric approach 

emphasizes the growing need for adaptive solutions within the 

increasingly interconnected IoT ecosystem. However, the 

emphasis on IoT might limit the generalizability of their 

findings to other domains. 

Kavousi-Fard et al. (2020) proposed a machine-learning-

based cyber-attack detection tailored for wireless sensor 

networks in microgrids. This domain-specific approach 

accentuates the significance of customizing cybersecurity 

strategies for unique environments. However, the specificity 

might limit the model's applicability to broader contexts. 

Sriram et al. (2020) designed a network flow-based IoT cyber-

attacks attack detection mechanism fuelled by deep learning. 

Their exploration of network flow data underscores deep 

learning's potential in augmenting attack detection 

capabilities. Still, the model's effectiveness could hinge on the 

quality and granularity of available network flow data. 

Ghillani (2022) orchestrates an in-depth exploration of the 

role of deep learning and AI frameworks in cybersecurity 

enhancement. This work serves as a clarion call for 

transformative strategies to fortify cyber defense 

mechanisms. However, while transformative, the potential 

complexity and resource demands of AI systems could 

introduce operational challenges. 

The deep CNN ensemble framework introduced by Haider et 

al. (2020) strategically marries the power of ensemble 

techniques with deep learning, reinforcing DDoS attack 

detection within software-defined networks. The strength of 

their approach lies in heightened detection accuracy, yet the 

ensemble might entail increased computational overhead. 

Sahu et al. (2021) navigate the terrain of IoT attack detection 

using a hybrid deep learning model. This hybridization 

showcases promise in addressing the diverse spectrum of 

attacks targeting IoT devices. Yet, the seamless integration of 

different models might present challenges in terms of model 

interpretability. 

Karimipour et al. (2019) underscore the pertinence of scalable 

unsupervised machine learning in detecting cyber-attacks 

across large-scale smart grids. This scalability is pivotal for 

accommodating the intricacies of contemporary cyber threats. 

However, scalability could inadvertently lead to information 

loss in certain scenarios. 

The integration of dynamic data injection attack detection 

within cyber-physical power systems, as examined by Wang 

et al. (2019), delves into the complexities of handling 

uncertainties in critical infrastructure. While crucial, 

addressing uncertainties might necessitate advanced 

modeling techniques that could potentially introduce 

complexities. 

As a proactive response to web attacks, Tian et al. (2019) 

present a distributed deep learning system for real-time attack 

detection on edge devices. Their emphasis on edge devices 

champions the importance of instantaneous detection in 

decentralized systems. Nevertheless, the effectiveness of 

edge-based systems might be contingent on the edge devices' 

computational capabilities. 

The survey orchestrated by Wu et al. (2020) dissects network 

attack detection methodologies anchored in deep learning 

techniques, constructing a comprehensive framework for 

informed model design. This survey's strength is in grounding 

subsequent study in the current state of the art. Yet, the 

breadth of coverage might leave certain aspects superficially 

explored. 

Manimurugan et al. (2020) traverse the realm of effective 

attack detection within the Internet of Medical Things using 

deep belief neural networks. This endeavour highlights the 

mounting importance of safeguarding medical IoT 

environments. However, the model's applicability could be  

confined to healthcare contexts. 

In summation, the pantheon of related works provides an 

enduring foundation for the forthcoming study. The 

utilization of semi-supervised learning auto-encoders and 

Probabilistic Bayesian Networks (PBNS) within the attack 

detection model resonates with the trajectory of pioneering 

study in cybersecurity risk management. This study 

capitalizes on the collective wisdom gleaned from these 

works to forge a trailblazing approach that adeptly addresses 

the multifaceted challenges posed by modern cyber threats. 

While the field of cyber security risk management and attack 

detection has witnessed significant advancements, a 

noticeable study gap exists in the integration of semi-

supervised learning techniques, particularly employing Auto-

Encoders and Probabilistic Bayesian Networks (PBNs), for 

addressing the limitations of conventional supervised learning 

approaches. Although prior studies have explored various 

methodologies to enhance attack detection accuracy and 

efficiency, limited attention has been directed towards 

harnessing the potential of unlabelled data sources to augment 

the performance of cyber-attack detection models. 

Existing literature underscores the increasing complexity of 

cyber threats and the vital role that effective attack detection 

mechanisms play in safeguarding digital environments. While 

machine learning and deep learning methods have 

demonstrated promise in identifying anomalous patterns 

within network traffic data, the persistent challenge lies in 

developing models that can provide accurate and efficient 

results, especially in scenarios where labelled training data is 

scarce. Additionally, traditional supervised learning 

techniques struggle to effectively utilize the wealth of 

untapped information residing within unlabelled data (Xu et 

al.,2023;` Isaac & Lass, 2023). 

While many studies have delved into specific aspects of attack 

detection, a holistic approach that integrates semi-supervised 

learning auto-encoders with Probabilistic Bayesian Networks 

for robust cyber-attack detection remains relatively 

unexplored. The interplay between labelled and unlabelled 

data, harnessed through these advanced techniques, presents 

a promising avenue for bridging the gap between accuracy 

and efficiency in identifying both known and novel cyber 

threats. This integration holds potential for overcoming the 

limitations posed by the reliance on large labelled datasets, 

enabling the detection of emerging threats and anomalies with 

improved precision and timeliness (Zhuang et al, 2023; Isaac 

et. al, 2023). 

Therefore, the study gap lies in the lack of comprehensive 

studies that leverage semi-supervised learning auto-encoders 

and Probabilistic Bayesian Networks as a unified framework 

for enhancing the performance of cyber-attack detection 

models. By addressing this gap, research can potentially 

devise more effective strategies for bolstering cyber security 

risk management, addressing the challenges associated with 
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limited labelled data, and fortifying the ability to proactively 

detect and mitigate diverse cyber threats in real-time. 

 

MATERIALS AND METHODS 

This research work is aimed at developing a model that 

utilizes Semi-Supervised Learning Auto-Encoders with 

Probabilistic Bayesian Networks (PBNs) offers a combined 

approach that aims to mitigate some of the limitations 

associated with Multi Connect Variational Auto-Encoder 

(MC-VAE) and PBNs models: 

i. Data Efficiency and Generalization: Semi-supervised 

learning auto-encoders can leverage both labelled and 

unlabelled data for training. This addresses the 

limitation of data dependency and robustness seen in 

MC-VAE. By using unlabelled data, the model can 

capture a broader range of normal and potentially 

anomalous behaviours, enhancing its generalization to 

real-world attack scenarios. This can help overcome the 

challenge of data scarcity and improve the model's 

ability to detect subtle and previously unseen cyber-

attacks. 

ii. Interpretability: Semi-supervised learning auto-

encoders, especially when combined with PBNs, can 

offer improved interpretability compared to more 

complex models like MC-VAE. The latent space 

representations learned by auto-encoders tend to 

capture meaningful features of the data, making them 

more interpretable. When integrated with PBNs, the 

probabilistic reasoning can provide insights into the 

uncertainty associated with the model's decisions, 

aiding in explainability. 

iii. Combining Complexity and Simplicity: Semi-

supervised learning auto-encoders are designed to 

balance model complexity and simplicity. They aim to 

learn compact and informative representations of the 

data, which can enhance efficiency and generalization. 

The integration with PBNs allows for probabilistic 

reasoning without introducing excessive complexity. 

This can lead to models that are computationally 

tractable while still providing valuable insights. 

iv. Handling Unlabelled Data: The semi-supervised 

approach allows for the utilization of unlabelled data to 

guide the learning process. In cases where labelled data 

is limited, this becomes crucial for effectively training 

the model. By incorporating the probabilistic 

relationships modelled by PBNs, the model can capture 

the uncertainty inherent in the unlabelled data and make 

informed decisions about potential cyber threats. 

v. Model Scalability: Semi-supervised learning auto-

encoders, when combined with PBNs, can offer 

scalability advantages over more complex models like 

MC-VAE. The simplicity of the auto-encoder 

architecture, coupled with the probabilistic reasoning of 

PBNs, can lead to models that are more scalable to 

larger datasets and more complex networks. 

vi. Addressing Data Imbalance: The semi-supervised 

approach can also help address the issue of data 

imbalance. By utilizing unlabelled data in addition to 

labelled data, the model can learn to differentiate 

between normal and anomalous behaviours more 

effectively, even when positive examples of attacks are 

limited. 

The integration of Semi-Supervised Learning Auto-Encoders 

with Probabilistic Bayesian Networks (PBNs) in the cyber 

security risk management and attack detection framework 

offers a balanced and holistic approach that aims to overcome 

some of the limitations associated with Multi Connect 

Variational Auto-Encoder (MC-VAE) and PBNs models. 

This combination leverages the strengths of both approaches 

to improve data efficiency, interpretability, scalability, and 

handling of unlabelled data, ultimately leading to more robust 

and effective attack detection in dynamic cyber security 

environments. The performance of the model will be 

compared against the results of hybrid MC-VAE and PBN, 

Deep Auto-encoders models. Figure 1. shows the proposed 

model. 

 

 
Figure 1: The Proposed Model. 

 

RESULTS AND DISCUSSION 

Performance Evaluation and Results 

This segment offers a comprehensive overview of the layers 

and their corresponding parameters for a variety of models, 

which encompass the Multi Connect Variational Auto-

Encoder (MC-VAE), Probabilistic Bayesian Networks 

(PBN), the amalgamated model combining Multi Connect 

Variational Auto-Encoder (MC-VAE) and Probabilistic 

Bayesian Networks (PBN), Deep Stacked Autoencoder, as 

well as the novel proposition of the Semi Supervised 

autoencoder-Probabilistic Bayesian Networks (PBN) model. 

By subjecting these models to simulations and training, an 

assessment was conducted to ascertain their individual 

accuracy levels. A comparative examination was carried out, 

taking into account the diverse parameters, with the ultimate 

objective of identifying the model that demonstrated the most 

superior performance. The Multi Connect Variational Auto-

Encoder (MC-VAE) Model parameters was presented in 

Table 1. The parameters were associated with training the 

Multi Connect Variational Auto-Encoder (MC-VAE) model 

for detecting cyber-attacks. The latent Dim (Latent 

Dimension) was set to 20.  
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Table 1: The Deep Boltzmann Machiue Model Parameters 

Parameter Value 

latent Dim 20 

Num Features 10 

Num Classes 10 

embedding Dimension 20 

projection Size [1 1] 

Num Epochs 50 

minibatch Size 512 

learning rate 1.00E-03 

execution Environment "auto" 

execution Environment 1.00E-03 

execution Environment 1.00E-03 

 

Table 1 describes the parameters used in training the model. 

The latent dimension represented the reduced-dimensional 

space where the encoder mapped input data points. This 

parameter controlled the complexity of the  

latent space representation. A higher value could capture 

more intricate relationships in the data but might also increase 

the risk of overfitting.. The Num Features (Number of 

Features) were set at 10. The number of features represented 

the dimensionality of the input data. It was crucial to match 

this value to the actual number of features in the dataset. 

Choosing the correct number of features ensured that the input 

data was properly represented and could significantly impact 

the model's ability to detect patterns and anomalies. 

The Num Classes (Number of Classes) was 10. This 

parameter indicated the number of classes or categories in the 

classification problem. For a cyber-attack detection task, it 

specified the number of different attack types or classes the 

model was trying to distinguish. The correct number of 

classes was vital for accurate classification and detection of 

different types of attacks. 

The embedding Dimension was 20. The embedding 

dimension could influence how the model captured 

relationships between features and classes. A suitable value 

could help the model learn meaningful representations of the 

data. It was essential to set this value in a way that supported 

effective information compression and feature extraction. 

The projection Size was set to [1 1]. The projection size 

specified the size of the output space after the encoding 

process. In the provided value, it seemed to indicate no 

significant dimensionality reduction. The choice of projection 

size could affect how the encoder's output was fed to the 

decoder for reconstruction. 

The Num Epochs (Number of Epochs) were set at 50. The 

number of epochs defined how many times the entire dataset 

was iterated over during training. It affected how well the 

model learned the underlying patterns. Too few epochs might 

result in underfitting, while too many could lead to 

overfitting. 

The minibatch Size (Mini-Batch Size) was 512. The mini-

batch size determined how many samples were processed in 

each forward and backward pass. A larger batch size could 

lead to faster training, but it might require more memory. The 

chosen value balanced efficiency and the ability to generalize 

from the data. 

The Learning Rate was 1.00E-03 (0.001). The learning rate 

controlled the step size of parameter updates during 

optimization. A suitable learning rate ensured stable 

convergence during training. An inappropriate learning rate 

could lead to slow convergence or overshooting. 

The minibatch Size and minibatch Size were both set to 

1.00E-03 (0.001). These parameters set the initial learning 

rates for the encoder and decoder networks, respectively. A 

balanced learning rate helped the model converge to a good 

solution. If the learning rate was too high, it might have 

resulted in unstable training. Setting these parameters 

appropriately was crucial for the MC-VAE's ability to 

effectively capture patterns in cyber-attack data, detect 

anomalies, and generalize to new, unseen data. Fine-tuning 

these parameters through experimentation and validation on a 

relevant dataset was recommended for achieving optimal 

performance. 

 

Table 2: MC-VAE model Classification Parameters and Values 

Classification parameter Values 

Accuracy 0.91 

Precision 0.82 

recall 0.74 

F1 0.7762 

 

Table 2 presents the result of the MC-VAE model. Accuracy 

calculated the proportion of correctly predicted instances 

(both true positives and true negatives) out of the total 

instances in the dataset. An accuracy of 0.91 indicated that the 

model correctly predicted the class labels for 91% of the 

instances in the dataset. Precision was a metric that quantified 

how many of the instances predicted as positive by the model 

were actually positive. A precision of 0.82 meant that out of 

all the instances the model classified as positive, 

approximately 82% of them were truly positive. 

Recall, also known as sensitivity or true positive rate, 

measured the ability of the model to correctly identify all 

instances of a particular class. A recall of 0.74 suggested that 

the model was able to identify 74% of all positive instances in 

the dataset. The F1 score was the harmonic mean of precision 

and recall. It was often used when there was a trade-off 

between precision and recall. An F1 score of 0.7762 indicated 

a balance between precision and recall.  

 

Semi Supervised Autoencoder -Probabilistic Bayesian 

Network (SSL-PBN Model) 

The Semi-Supervised Autoencoder - Probabilistic Bayesian 

Network (SSL-PBN) Model integrated both semi-supervised 

autoencoder and probabilistic Bayesian network components 

to enhance cyber-attack detection. The parameters of the SSL-

PBN Model are shown in Table 3. 
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Table 3: Parameters of the SSL-PBN model 

Parameter Value 

Epochs 100 

Batch size 128 

Learning rate 0.001 

Hidden units [128, 64] 

Activation function ReLU 

labelled Indices 0.388888889 

unlabelled Indices 501:1524 

target Variable Index 1 

observed Variables 0.086111111 

Dag zeros (Num Nodes, Num Nodes) 

 

From Table 3, the model was trained for 100 epochs. During 

training, a batch size of 128 samples was used in each 

iteration. The learning rate was set to 0.001 to adjust the 

magnitude of weight updates during training. The neural 

network architecture consisted of two hidden layers with 128 

and 64 units, respectively. The ReLU (Rectified Linear Unit) 

activation function was applied to introduce non-linearity in 

the neural network. The labelled data was identified by 

selecting a subset of data with a ratio of 0.388888889 (about 

39% of the data). The remaining data (indices 501 to 1524) 

was considered as unlabelled data. The target variable used 

for modelling and inference had an index of 1.A subset of 

variables with a ratio of 0.086111111 (about 9% of variables) 

was chosen as observed variables. The Directed Acyclic 

Graph (DAG) representing the structure of the Bayesian 

network was initialized with zeros for all nodes. This structure 

was adjusted during the algorithm. 

 

Table 4: The classification results of the SSL-PBN Model 

Classification parameter Values 

Accuracy 98 

Recall 94 

Precision 90 

F1 0.9191 

 

In Table 4, the classification parameters and their respective 

values were presented. The classifier achieved an accuracy of 

98%, meaning that 98% of the instances were classified 

correctly. This is a high accuracy, which is generally desirable 

in cyber security attack detection. However, it is important to 

consider other metrics as well, such as recall and precision, to 

get a comprehensive evaluation. Recall, also known as true 

positive rate or sensitivity, measures the proportion of actual 

positive cases that were correctly identified by the classifier. 

In the context of cyber security attack detection, a high recall 

rate is important because it means that the system is 

effectively detecting a large portion of actual attacks, 

minimizing false negatives. In this case, the recall rate was 

94%, which is also a high value. 

Precision, also known as positive predictive value, measures 

the proportion of instances that the classifier identified as 

positive that were actually correct. In the cyber security 

context, high precision is crucial to ensure that the instances 

flagged as attacks are truly malicious, reducing false 

positives. In this case, the precision rate was 90%, which is a 

good value. The F1 score, which takes both precision and 

recall into account, was calculated as approximately 0.9191. 

The F1 score provides a balance between precision and recall 

and is especially useful when the class distribution is 

imbalanced. In cyber security, a good F1 score indicates that 

the system is effectively identifying attacks while minimizing 

both false positives and false negatives. In this case, the F1 

score is also high, suggesting that the classifier is well-suited 

for cyber security attack detection. 

 

In summary, the high accuracy, recall, precision, and F1 score 

of the classifier collectively indicate that it is well-suited for 

cyber security attack detection. The classifier is able to 

identify attacks with a high degree of accuracy while 

minimizing both false positives and false negatives. 

 

Discussion 

Table 1.5 shows the Summary of the classification parameters 

obtained after simulations of the four models. The 

classification performance metric used were shown for each 

model in Table 1.5. 

 

Table 5: Results for Each Model 

Model MC-VAE PBN MC-VAE-PBN 
SSL-PBN (Proposed 

Model) 

Accuracy 0.91 0.91 96 98 

Precision 0.82 0.76 92 94 

Recall 0.74 0.81 86 90 

F1 0.7762 0.7845. 0.8876 0.9191 

 

In Table 5, several models are compared based on their 

classification performance. Among the four models 

evaluated, the SSL-PBN model stood out as the most suitable 

for the cyber security attack detection application. It achieved 

the highest accuracy of 98, indicating strong performance in 

classifying instances correctly. Additionally, the SSL-PBN 

model exhibited the highest precision and recall rates, with 

94% precision and 90% recall. The F1 score of 0.9191 

indicated that the SSL-PBN model effectively balanced 

precision and recall, which is crucial for minimizing both 
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false positives and false negatives in cyber security attack 

detection. 

Selecting the SSL-PBN model has significant implications for 

cyber security. The high accuracy and balanced precision-

recall trade-off ensure that the model can accurately identify 

actual attacks while minimizing both missed attacks and false 

alarms. This is essential for maintaining the security and 

integrity of systems, networks, and sensitive data. The SSL-

PBN model's superior performance enhances the capability to 

detect and mitigate cyber threats, contributing to improved 

overall security posture and incident response efficiency. 

 

CONCLUSIONS 

The approach's performance evaluation reveals its remarkable 

efficiency and efficacy. Through a comprehensive analysis 

employing performance metrics such as accuracy, precision, 

recall, and the F1 score, the SSL-PBN approach consistently 

demonstrates its ability to achieve high accuracy rates while 

simultaneously striking an equilibrium between minimizing 

false positives and false negatives. This crucial balance is 

pivotal in real-world applications, as it ensures that legitimate 

activities are not misconstrued as malicious and vice versa. It 

is also noteworthy that the SSL-PBN approach not only 

successfully detects and classifies cyber-attack activities but 

also showcases its potential for adaptability. The nature of 

cyber threats is ever-evolving, necessitating a detection 

methodology that is resilient to the changing landscape. The 

hybrid approach's learning mechanism, bolstered by 

probabilistic inference, positions it as a dynamic solution 

capable of staying attuned to emerging threat vectors. The 

following outlines potential areas for future study: Enhancing 

Model Generalization: While the SSL-PBN approach has 

showcased remarkable capabilities in detecting cyber-attack 

activities, there is room for further enhancing its 

generalization across diverse and dynamic threat scenarios. 

Future study could focus on refining the learning process of 

the semi-supervised autoencoder to effectively adapt to novel 

attack patterns and variations. This could involve exploring 

novel architectures, optimization techniques, or incorporating 

transfer learning paradigms to augment the model's 

adaptability. 
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