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ABSTRACT 

Because determining the best initial basic feasible solution (IBFS) for a transportation problem is so crucial, 

numerous authors have expended a great deal of energy developing effective algorithms that will result in the 

lowest possible cost of moving products from a given source to a destination. The goal of this work was to 

develop an efficient dual algorithm for finding an initial basic feasible solution to a transportation problem 

(TP). Two distinct algorithms that produce the same IBFS make up our suggested approach. Compared to some 

popular methods in the literature, Using four numerical examples, the Row Minimum Method (RMM), Column 

Minimum Method (CMM), Least Cost Method (LCM), Extremum Difference Method (EDM), Northwest 

Corner Method (NWCM), Vogel's Approximation Method (VAM), etc. In comparison to the other heuristic 

techniques compared with the optimal dictate solution modified distribution (MODI), the proposed heuristic 

approach (PS-DESPAN) approximation was shown to provide a better starting solution (a solution that is 

extremely close to the optimal solution).  

 

Keywords: Feasible solution, Initial basic feasible solution, Optimum solution, Heuristic Transportation models,  

Source, Destination, Transportation unit cost, Allocation 

 

INTRODUCTION 

One of the most recent issues that has impacted businesses, 

enterprises, and organizations is the issue of high 

transportation costs resulting from the increase in the price of 

premium motor spirit (PMS) in Nigeria. This has, in effect, 

influenced the cost of manufacturing and transportation. It is 

necessary to find ways to supply products at comparatively 

low costs in order for businesses and organizations to lower 

their overall transportation costs while meeting supply and 

demand constraints without sacrificing product quality or cost 

(materials cost, transportation cost, fuel cost, packing cost, 

maintenance cost, advertisement cost and transportation cost). 

The only way to address these anomalies is to identify reliable 

and effective models that will lower the cost of transportation.  

Because of the rising cost of living brought on by rising food 

and fuel prices, among other factors, the cost of moving 

people, products, and services has increased alarmingly in 

recent years. It is crucial to note that transportation plays a 

significant role in human activity since it facilitates and 

promotes social and economic interactions. One field of 

operations research is transportation problems, which have 

many applications in resource allocation, inventory control, 

production planning, scheduling, logistics, and supply chain 

management to lower costs and improve services. 

Organizations are constantly concerned with determining the 

appropriate and most cost-effective mode of transportation, 

the quantity to be given, and the area to be delivered. 

The goal is to keep the cost of transporting goods between 

different places to a minimum while meeting the needs of 

each arrival area and making sure every supply location is 

working to capacity. Organizations are under tremendous 

pressure to find more efficient and cost-effective ways to 

develop, plan, purchase, and provide goods and services to 

clients in the highly competitive market of today, when the 

cost of labor, fuel, and raw materials is also rising. It gets 

harder to decide how and when to deliver goods to clients in 

the amounts they desire while staying inside a tight budget. 

The goal of transportation models is to solve this problem.  

Because transportation issues are among the most urgent, 

serious, and strategic difficulties facing many businesses and 

organizations, and because they can only be resolved by a 

transportation algorithm that is robust, consistent, reliable, 

and all-encompassing. Organizations occasionally choose to 

make these choices based only on common sense or intuitive 

reasoning, eschewing the use of heuristic or quantitative 

models but it is undisputable that, reliability and efficiency in 

the initial basic feasible solution (IBFS) can only be achieved 

by using a scientific methodology.  

A transportation challenge is usually solved by starting with 

the identification of a basic, workable solution and working 

methodically through better revisions until the ideal solution 

is reached. Essentially, there are two steps involved in 

identifying the best solution for transportation issues. One, the 

application of available heuristic techniques, such as 

Extremum difference approach (Kassana and Kumar,2005), 

Vogel's Approximation (Hamdy, 2007), Row Minima, 

Column Minima, Highest Cost Difference (Khan, 2012), and 

Column Pointer approach (Khan, 2012) the first stage of the 

feasible solution is determined while using the Modified 

Distribution technique or Stepping Stone, the feasible solution 

is examined for optimality (Charnes and Cooper, 1954). 

Numerous researches have shown that there is no one optimal 

approach for determining the first fundamental solution of a 

transportation problem, despite the Vogel approximation 

being often considered to be superior its weaknesses were 

reported to be computational complexity and time wastage. 

While some of these heuristic models are capable of finding a 

basic, workable solution quite fast, the solutions they produce 

are frequently not very effective at minimizing the overall 

cost. On the other hand, some heuristics might take longer to 

locate a fundamental workable solution but good at 

decreasing overall costs. Therefore, a balance between 

finding a workable solution as soon as possible and obtaining 

an ideal workable solution must be struck.  

This study has jumped on the bandwagon of discovering 

efficient methods using some of the heuristics that are now 

accessible to generate the lowest cost of transferring a 

consignment from a source to a destination in less time and 

with less computational effort. By creating a better heuristic 

method that produces a better solution than the widely used 
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methodologies in the literature, this work closed this gap. The 

Vogel approximation method (VAM) and the least cost 

method have seen the most recent adjustments to the 

transportation problem; nevertheless, as the VAM is one of 

the computationally hard methods, the majority of the 

modifications are likewise computationally laborious. The 

concept of least cost was utilized by the novel algorithm 

provided in this study. Numerical comparisons were made 

between the suggested approach and other heuristic models. 

Numerous writers have put up solutions to the transportation 

dilemma. Hitcock created the least squares method in 1941, 

which is a systematic approach to solving transportation 

problems. It involves assigning as much of the problem's total 

cost to the cell with the lowest cost. 

Another model, known as the north-west corner method, was 

created by Charnes and Cooper in 1953. It begins allocation 

from the transportation problem's upper top corner cell. The 

Vogel approximation approach was later introduced by 

Reinfield and Vogel in 1958, provides a more satisfactory first 

basic viable solution than both the least cost and the north-

west corner methods. Few reported literatures about the 

heuristic transportation models include:   

Khan (2012) presented another approach called the highest 

cost difference method (HCDM) defined by use of a "pointer 

cost," or the difference between the highest cost and the next 

highest cost in each of the rows and column of the 

transportation table of the problem and make allocations to 

the cell with the smallest cost corresponding to the highest 

three pointer cost. 

In a similar vein, Hussain and Ahmad (2020) introduced a 

novel technique known as the least cost mean method, which 

uses the mean of the lowest or next lowest row or column in 

the cost matrix to extract a row and column penalty and 

produce a better initial basic feasible solution. 

Another transportation model known as the total opportunity 

cost matrix was created by Kirca and Satir (1990). It is 

calculated by adding the opportunity cost for each row and 

each column.  

Karagul-Sahin approximation method was also devised to 

determining the initial fundamental feasible solution of a 

transportation problem. This method's first basic workable 

answer was contrasted with six more widely used techniques 

with 24 examples from the literature. In 17 of the 24 

situations, the suggested strategy provided the most optimal 

preliminary possible answer with the least amount of 

computation. In the end, they stated that their approach is both 

simpler like the Vogel approximation method (Karagul and 

Sahin ,2020) 

 

MATERIALS AND METHODS 

Method of Data Analysis 

The analysis of finding the IBFS was done manually and some 

with the aid of software’s like: LINGO (version 19.0), 

AZMATH and Tora. Software. The data used for this study is 

a secondary data collected from the literatures. See appendix. 

 

The general mathematical model of transportation 

problem 

Let there be M sources of supply 𝑆1, 𝑆2, . . . , 𝑆𝑚. 
having 𝑎𝑖  (I = 1,2,3,…..m) units of supply (or capacity), 

respectively to be transported to n-destinations 
𝐷1, 𝐷2, . . . 𝐷𝑛 with 𝑏𝑖  (i= 1,2,3,….n) units of 

demand respectively. Let 𝐶𝑖𝑗be the cost of shipping one unit 

of the commodity from the source i to the destination j. If 

𝑋𝑖𝑗represents the number of units shipped from source i to 

destination j. Mathematically, the transportation problem can 

be stated as follows:  

 

Objective Function 

Minimize (Total cost) Z = ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑋𝑖𝑗    (1) 

Subject to the constraints 
∑ 𝑋𝑖𝑗

𝑛
𝑗=1 = 𝑎𝑖𝑗 , 𝑖 = 1, 2, 3, . . . . . . . , , 𝑚   

(Supply Constraints).    (2) 
∑ 𝑋𝐼𝐽

𝑚
𝑖=1 = 𝑏𝑖𝑗, 𝑗 = 1, 2, 3, . . . . . . , 𝑛   

(Demand Constraints).    (3) 
∑ 𝑋𝑖𝑗

𝑛
𝑗=1 ≥ 𝐷𝑗  for i = 1,2, 3...n 

𝑊𝑖ℎ 𝑎𝑙𝑙 𝑋𝑖𝑗 = 0 

First, the total amount of products to be transported from the 

source could not be greater than its supply; second, the total 

amount of items to be delivered to a destination could not be 

greater than its demand. When the overall supply is less than 

the total demand, there is an imbalanced transportation case. 

i.e. 
∑ 𝑆𝐼

𝑚
𝐼=1 ≠ ∑ 𝐷𝑖

𝑛
𝐽=1       (4) 

This can be fixed by setting up a phantom source or 

destination for each instance in which supply outpaces 

demand. For any fictitious source or destination, the unit 

transit cost is $0. In order to streamline the process of 

identifying the best option, a transportation tableau is created. 

The sources, destinations, supply, demand, unit cost of 

transportation, and allocations for transportation are all 

included in this table. 

 

Table 1: Transportation Table of the Transportation problem 

 𝑫𝟏 𝑫𝟐 ………………… 𝑫𝒏 Supply 𝒂𝒊 

      𝑆1 𝐶11 

𝑋11 

𝐶12 

𝑋12 

             

………………… 
𝐶1𝑛 

𝑋1𝑛 

         𝑎1 

      𝑆2 𝐶21 

            𝑋21 

              

𝐶22 

             𝑋22 

         

             

…………………… 
𝐶2𝑛 

𝑋2𝑛 

          𝑎2 

        . 

        . 

        . 

           . 

           . 

            . 

            . 

            . 

             . 

            .            . 

            . 

            . 

             . 

              . 

              . 

     𝑆𝑚 𝐶𝑚1 

𝑋𝑚1 

𝐶𝑚2 

𝑋𝑚2 

…………………. 𝐶𝑚𝑛 

𝑋𝑚𝑛 

           𝑎𝑚 

Demand  

      𝑏𝑖 

 

𝑏1 

 

𝑏2 

 

…………………  

𝑏𝑛 ∑ 𝑆𝐼

𝑚

𝐼=1

= ∑ 𝐷𝑖

𝑛

𝐽=1
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Figure 2: Network Representation of Transportation Problem 

 

In the generalized model above there are (m+n) constraints, 

one for each source of supply. Since all (m+n) constraints are 

equations, therefore one of this equation is extra redundant. 

The extra equation (constraints) can be derived from other 

constraint without affecting the feasible solution. It follows 

that any feasible solution for a transportation problem must 

have exactly (m+n-1) non negative basic variables (or 

allocations) 𝑋𝑖𝑗satisfying the rim-conditions. 

In the generalized model above there are (m+n) constraints, 

one for each source of supply. Since all (m+n) constraints are 

equations, therefore one of this equation is extra redundant. 

The extra equation (constraints) can be derived from other 

constraint without affecting the feasible solution. It follows 

that any feasible solution for a transportation problem must 

have exactly (m+n-1) non negative basic variables (or 

allocations) satisfying the rim-conditions. 

Also, the initial basic feasible solutions obtained should be 

closer to the optimum solution because the closer they are the 

fewer the number of iterations leading to optimality 

(Munapo,2021). The essence of computing the optimality 

condition is to ascertain how much the initial basic feasible 

solution (IBFS) is from the optimal solution. This can obtain 

by computing the percentage Deviance (PD), given as: 

𝑃𝐷 =
𝐵𝑎𝑠𝑖𝑐 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100   (5) 

The PD is used to access how closer or nearer the Basic 

feasible solution is to the Optimum Solution (Hussain and 

Ahmed, 2020).  

 

Variations in Transportation Problem 

The variation encountered when solving transportation 

problem include:  

(a) The Unbalanced Transportation Problem 

This is practically a case of unbalanced demand and supply. 

For a feasible solution to exist, it is necessary that the total 

demand be equal to the total supply. That is:  
∑ 𝑆𝐼

𝑚
𝐼=1 = ∑ 𝐷𝑖

𝑛
𝐽=1      (6) 

But situation can arise where the total demand is not equal to 

the total supply. The two following cases can arise in that 

situation: The transportation table may need to have a dummy 

column (row) inserted in order to absorb surplus supply 

(demand) in the event that it surpasses demand(supply) 

overall. Since the column and row cells reflect product items 

that are neither created nor shipped, the unit transportation 

cost of those cells is set to zero.  

(b) Maximization Transportation Problem 

 Cost minimization challenges are typically approached via 

the lens of transportation issues. But it can also be applied to 

tackle various other situations where the goal is to maximize 

the overall profit for each route (i,j). The objective function in 

terms of total profit is then stated as follows: 

Maximize (Total profit) Z = ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑋𝑖𝑗 .   (7) 

The procedure for solving such problems is the same as that 

of the minimization with little adjustments made in the Vogel 

approximation method for finding initial solution. By 

multiplying the profit matrix by a unit negative number, the 

maximization problem can be transformed into a 

minimization problem. Secondly, the problem can 

alternatively be handled directly by maximizing it, which 

involves deducting all profit from the highest profit in the 

matrix and solving it using the standard approach. Lastly, by 

making allocations to the maximum profit cells in order to 

find the initial feasible solution. 

(c) Prohibited Transportation Routes 

Shipments of commodities from particular sources to certain 

destinations may not be feasible in the event of road hazards 

such as floods, conflict, traffic jams, snowfall, etc. These 

circumstances can be resolved by allocating a very high cost, 

say M (or ∞), to a particular route or cell and then using any 

available transportation problem-solving technique. 

 

Assumption of the Transportation Model 

i. Total quantity of the items available at different 

warehouses is equal to the total requirement of demand at 

different destinations. 

ii. Items can be transported conveniently from all sources to 

various destinations. 

iii. The unit transportation cost of the items from all sources 

to their destinations is known. 

iv. The transportation cost on a given route is directly 

proportional to the number of units shipped on that route. 

v. The objective is to minimize the total transportation cost 

for savannah as a whole and not for individual supply and 

distribution centers. 

 

RESULTS AND DISCUSSION 

Procedure for finding an initial basic feasible solution 

The procedure for all algorithm adopted in this study can be 

found in the literature. Furthermore, for identification, this 

new approach will be called PS- Despan approximation and 

the procedure for the proposed method is represented below: 

 

The Novelty of Our Algorithm 

We worked on the modification of the least cost method by 

allocating directly to the cells with the lowest cost and 

crossing out the highest cost cell. Movement is done row -

wise starting from the last row. We deliberately avoided 

computing penalty cost which is the most common means of 

 

1 

2 

1 

m 

2 

n 

 Units of supply      
Units of demand 

Source

s 
Destination

s 

c11 : x11 

cmn : xmn 

S1 

 

S2 

   Sm 

d1 

d2 

dn  
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modifying transportation algorithm by many authors due to 

its tediousness. 

 

Illustrative example for finding initial basic feasible 

solution. 

The secondary data collected from literatures was used to 

compare eight transportations models. 

The initial basic feasible solutions for all the methods can be 

seen in the appendix I  

 

Comparative study 

The Table below shows a comparison of the proposed method 

and other existing methods using numerical examples. 

 

Table 2: Comparative study of different Methods of finding the initial basic feasible solution 

Methods 
Total Transportation Cost 

Example 1 Example 2 Example 3 Example 4 

  Least Cost  475(2) 814(5) 37(1) 112(4) 

North West Method 520(8) 1015(7) 41(7) 116(7) 

Vogel Approximation 475(2) 779(1) 37(1) 102(2) 

Row Minimum 505(7) 1110(8) 37(1) 112(4) 

Column Minimum 475(2) 779(1) 37(1) 116(7) 

Extremum Difference Method 475(2) 779(1) 62(8) 100(1) 

Pointer Cost Method 475(2) 814(5) 37(1) 112(4) 

Proposed Method 460(1) 779(1) 37(1) 109(3) 

Optimum Solution by MODI 435 743 33 100 

 

In the Table 2 above, the initial basic solution is closely the 

same indicating that the methods are similar in nature but our 

proposed method (PM), Vogel approximation method 

(VAM), least cost (LCM) and the pointer method (PCM) 

gives better result. We can also see that the North West Corner 

Method (NWCM) allocate to the cell without considering the 

unit transportation cost and therefore yields a worst initial 

solution that is far wide from optimal solution. Row Minimum 

Method (RMM) and Column Minimum Method (CMM) 

considers unit transportation cost row and column wise 

respectively and so sometimes they yield best starting solution 

and sometimes not. The Vogel approximation method is 

producing a good initial basic feasible solution which is in line 

with the submission made by numerous studies. Overall, the 

proposed method outperforms all the other seven methods. 

 

Table 3: A percentage deviance from the optimal solution 

Methods 
Percentage Deviance 

Example 1 Example 2 Example 3 Example 4 

Least Cost  9.195% 9.556% 12.121% 12% 

North West Method 19.540% 36.608% 24.242% 16% 

Vogel Approximation 9.195% 4.845% 12.121%  2% 

Row Minimum 16.092% 49.394% 12.121% 12% 

Column Minimum 9.195% 4.845% 12.121% 16% 

Extremum Difference Method 9.195% 4.845% 87.879% 0% 

Pointer Method 9.195% 9.556% 12.121% 12% 

Proposed Method 5.747% 4.845% 12.121% 9% 

Optimum Solution (MODI) 435 743 33 100 

 

Table 3 demonstrates how closer the IBFS is to the optimum 

solution. It is worthy of note that IBFS can be below or above 

the optimum solution. In essence, the IBFS been greater or 

less than the optimal solution is not a concern but rather how 

nearer is it to the optimal solution from both ends. The table 

above shows how closer (Percentage wise) is the IBFS of each 

of the heuristic to the optimum solution.  

 

Table 4: Approaches yielding the same initial basic feasible solutions  

Method/ SN Example 1 Example 2 Example 3 Example 4 

1 VAM VAM VAM PCM 

2 CMM CMM CMM - 

3 LCM PM LCM LCM 

4 PCM EDM RMM RMM 

 

Table 4 above, shows the approaches that produced the same 

allocations in the same cell with equal units of allocations and 

the same initial basic feasible solution for each of the 

examples. We can easily deduce that there is a sort of 

relationship between VAM, CMM, LCM and PM. Another 

generalization that can be made from this result is the fact that: 

From numerical example 1 in Table 5 (See appendix), we 

noticed that, there are the same allocations with equal unit cost 

allocations made to the following cells;  

𝑥12 = 15, 𝑥22 = 0, 𝑥23 = 15, 𝑥24 = 10, 𝑥31 = 5, 𝑥34 = 5 

 For Vogel approximation method (VAM), least cost method 

(LCM), Column Minimum method (CMM), and the Pointer 

Cost method (PCM) yielding an IBFS of 475-unit cost.  

Making reference to numerical example 2 in Table 6 (See 

appendix), we can see that the Vogel approximation method, 

Proposed Method, column minimum and the extremum 

difference method have the same cost allocations with equal 

unit allocations at the same cells 
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 𝑥11 = 5, 𝑥14 = 2, 𝑥23 = 7, 𝑥24 = 2, 𝑥32 = 8, 𝑥34 = 10 

 yielding the same initial basic feasible solution of 779-unit 

cost which is the least from all the comparisons. 

 In example 3 Table 7 (See appendix), also the same cost 

allocations with equal unit allocations are made to the 

following cell  

𝑥11 = 0, 𝑥12 = 1, 𝑥22 = 5, 𝑥23 = 2, 𝑥33 = 7 

 yielding an initial basic feasible solution of 37-unit cost for 

least cost method, Vogel approximation method, Row 

minimum method, column minimum method and the pointer 

cost method, the lowest of all the comparisons made. Lastly, 

in example 4, there is still the same allocation with equal unit 

cost allocation made to the following cells 𝑥11 = 6, 𝑥22 =
1, 𝑥31 = 1, 𝑥32 = 4, 𝑥33 = 3, 𝑥34 = 2 

 in the least cost method, Row Minimum method, and the 

Pointer Cost approach yielding an initial basic feasible 

solution of 112-unit cost. From these findings we conclude 

that there might be some iterative relationships between the 

Vogel approximation method, column minimum and the least 

cost method. 

 

CONCLUSION 

Undoubtedly, the logistics costs incurred by corporations and 

commercial organizations will be significantly impacted by 

the appropriateness, effectiveness, and adaptability of the 

transportation process. In this work, we created a novel dual 

approach for locating a transportation problem's first 

fundamentally workable solution. We evaluated our new 

algorithm's efficiency with four numerical examples. The 

proposed heuristic was discovered to be mathematically 

simpler and have a significantly higher IBFS when compared 

to some well-known traditional heuristic algorithm. We 

conclude from the results that our suggested approach is 

appropriate for determining the feasible solution of a 

transportation problem. 
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APPENDIX I 

Table 5: Initial Basic Feasible Solutions for the First Cost Marix 

 

Table 35: Initial Basic Feasible Solution using least Cost Method Table 36: Initial Basic Feasible Solution using North West Corner Method

1 2 3 4 Supply 1 2 3 4 Supply

              

10 2 20 11 10 2 20 11

12 7 9 20 12 7 9 20

4

14 16 18 4 14 16 18

Demand 5 15 15 15 Demand 5 15 15 15

Table 37: Initial Basic Feasible Solution using Vogel App. Method Table 38: Initial Basic Feasible Solution using Row Minimum Method

1 2 3 4 Supply 1 2 3 4 Supply

              

10 2 20 11 10 2 20 11

12 7 9 20 12 7 9 20

4 14 16 18 4 14 16 18

Demand 5 15 15 15 Demand 5 15 15 15

1 15 1 15

2 25 2 25

3 10 3 10

1 15 1 15

2 25 2 25

3 10 3 10

15

15 100

5

5 10

5 15 5

10

15

10150

5 5

12 22 23 24 31 34: 15, 0, 15, 10, 5, 5

( ) 30 0 280 135 200 20 475

Solution x x x x x andx

Min Z

= = = = = =

= + + + + + =

0 15

5 15 5

10

11 12 21 23 24 34: 0, 15, 5, 15, 5, 10

( ) 0 30 60 135 100 180 505

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

( ) 30 0 135 200 20 90 475Min z = + + + + + =
34 12 22 23 24 31: 5, 5, 0, 15, 10, 5Solution x x x x x x= = = = = =

5

( ) 50 20 35 135 100 180 520Min Z = + + + + + =
11 12 22 23 24 34: 5, 10, 5, 15, 5, 10Solution x x x x x x= = = = = =

https://doi.org/10.1287/mnsc.1.1.49
https://doi.org/10.1002/sapm1941201224
https://doi.org/10.1057/jors.1990.124
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Table 35: Initial Basic Feasible Solution using least Cost Method Table 36: Initial Basic Feasible Solution using North West Corner Method

1 2 3 4 Supply 1 2 3 4 Supply

              

10 2 20 11 10 2 20 11

12 7 9 20 12 7 9 20

4

14 16 18 4 14 16 18

Demand 5 15 15 15 Demand 5 15 15 15

Table 37: Initial Basic Feasible Solution using Vogel App. Method Table 38: Initial Basic Feasible Solution using Row Minimum Method

1 2 3 4 Supply 1 2 3 4 Supply

              

10 2 20 11 10 2 20 11

12 7 9 20 12 7 9 20

4 14 16 18 4 14 16 18

Demand 5 15 15 15 Demand 5 15 15 15

1 15 1 15

2 25 2 25

3 10 3 10

1 15 1 15

2 25 2 25

3 10 3 10

15

15 100

5

5 10

5 15 5

10

15

10150

5 5

12 22 23 24 31 34: 15, 0, 15, 10, 5, 5

( ) 30 0 280 135 200 20 475

Solution x x x x x andx

Min Z

= = = = = =

= + + + + + =

0 15

5 15 5

10

11 12 21 23 24 34: 0, 15, 5, 15, 5, 10

( ) 0 30 60 135 100 180 505

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

( ) 30 0 135 200 20 90 475Min z = + + + + + =
34 12 22 23 24 31: 5, 5, 0, 15, 10, 5Solution x x x x x x= = = = = =

5

( ) 50 20 35 135 100 180 520Min Z = + + + + + =
11 12 22 23 24 34: 5, 10, 5, 15, 5, 10Solution x x x x x x= = = = = =

Table 39: Initial Basic Feasible Solution using Column Minimun Method Table 40: Initial Basic Feasible Solution using Exremum Difference Method

1 2 3 4 Supply 1 2 3 4 Supply

              

10 2 20 11 10 2 20 11

12 7 9 20 12 7 9 20

14 16 18 4 14 16 18

Demand 5 15 15 15 Demand 5 15 15 15

Table 41: Initial Basic Feasible Solution using Pointer Cost Method Table 42: Initial Basic Feasible Solution using proposed Method

1 2 3 4 Supply 1 2 3 4 Supply

              

10 2 20 11 10 2 20 11

12 7 9 20 12 7 9 20

4 14 16 18 4 14 16 18

Demand 5 15 15 15 Demand 5 15 15 15

1 15 1 15

2 25 2 25

3 10 3 10

1 15 1 15

2 25 2 25

3 10 3 10

55

15

15

0 10

12 22 23 24 31 34: 15, 0, 15, 10, 5, 5Solution x x x x x x= = = = = =
( ) 30 0 135 200 20 90 475Min Z = + + + + + =

5

15 0

15 10

5

12 14 23 24 31 34: 15, 0, 15, 10, 5, 5Solution x x x x x x= = = = = =

( ) 30 0 135 200 20 90 475Min Z = + + + + + =

15

0 1015

5 5

12 22 23 24 31 34: 15, 0, 15, 10, 5, 5

( ) 30 0 135 200 20 90 475

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

8

7

5

1

6 7

12 14 22 23 31 32: 0, 15, 10, 15, 5, 5

( ) 0 165 70 135 20 70 460

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =
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Table 6: Initial Basic Feasible Solutions for the Second Cost Marix 

 

 

 

 
 

 

 

Table 11: Initial Basic Feasible Solution using least Cost Method Table 12: Initial Basic Feasible Solution using North West Corner Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

60 70 30

70 30 40 40 60

40 70 8 70

8 20 40 20

Demand 5 8 7 14 Demand 5 8 7 14

Table 13: Initial Basic Feasible Solution using Vogel App. Method Table 14: Initial Basic Feasible Solution using Row Minimum Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

70 60 60

30 40 70 30 40

70 20 8 70

40 8 40 20

Demand 5 8 7 14 Demand 5 8 7 14

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

2

3

7

7

8 7

14 21 23 31 32 34: 7, 2, 7, 3, 8, 7Solution x x x x x x= = = = = =
( ) 70 140 280 120 64 140 814Min Z = + + + + + =

5 2

6 3

4 14

11 12 22 23 33 34: 5, 2, 6, 3, 4, 14Solution x x x x x x= = = = = =

( ) 95 60 180 120 280 280 1015Min Z = + + + + + =

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 20 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

8

7

5

1

6 7

14 22 23 31 31 33 34: 7, 8, 1, 5, 5, 6, 7

( ) 70 240 40 200 420 140 1110

Solution x x x x x x x

Min Z

= = = = = = =

= + + + + + =

Table 11: Initial Basic Feasible Solution using least Cost Method Table 12: Initial Basic Feasible Solution using North West Corner Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

60 70 30

70 30 40 40 60

40 70 8 70

8 20 40 20

Demand 5 8 7 14 Demand 5 8 7 14

Table 13: Initial Basic Feasible Solution using Vogel App. Method Table 14: Initial Basic Feasible Solution using Row Minimum Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

70 60 60

30 40 70 30 40

70 20 8 70

40 8 40 20

Demand 5 8 7 14 Demand 5 8 7 14

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

2

3

7

7

8 7

14 21 23 31 32 34: 7, 2, 7, 3, 8, 7Solution x x x x x x= = = = = =
( ) 70 140 280 120 64 140 814Min Z = + + + + + =

5 2

6 3

4 14

11 12 22 23 33 34: 5, 2, 6, 3, 4, 14Solution x x x x x x= = = = = =

( ) 95 60 180 120 280 280 1015Min Z = + + + + + =

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 20 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

8

7

5

1

6 7

14 22 23 31 31 33 34: 7, 8, 1, 5, 5, 6, 7

( ) 70 240 40 200 420 140 1110

Solution x x x x x x x

Min Z

= = = = = = =

= + + + + + =

          Table 15: Initial Basic Feasible Solution using Column Minimum Method Table 16: Initial Basic Feasible Solution using Extremum Difference Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

70 60 70 60

30 40 30 40

70 70 20

40 8 20 40 8

Demand 5 8 7 14 Demand 5 8 7 14

Table 17: Initial Basic Feasible Solution using pointer cost Method Table 18: Initial Basic Feasible Solution using Proposed Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

60 70 60

70 30 40 30 40

40 70 70 20

8 20 40 8

Demand 5 8 7 14 Demand 5 8 7 14

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 20 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 20 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

2

7

3

7

8 7

14 21 23 31 32 34: 7, 2, 7, 3, 8, 7

( ) 70 140 280 120 64 200 814

Solution x x x x x x

Min Z

= = = = =

= + + + + + =

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + =

          Table 15: Initial Basic Feasible Solution using Column Minimum Method Table 16: Initial Basic Feasible Solution using Extremum Difference Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

70 60 70 60

30 40 30 40

70 70 20

40 8 20 40 8

Demand 5 8 7 14 Demand 5 8 7 14

Table 17: Initial Basic Feasible Solution using pointer cost Method Table 18: Initial Basic Feasible Solution using Proposed Method

1 2 3 4 Supply 1 2 3 4 Supply

              

19 30 50 10 19 30 50 10

60 70 60

70 30 40 30 40

40 70 70 20

8 20 40 8

Demand 5 8 7 14 Demand 5 8 7 14

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

1 7

2 9

3 18

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 20 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 20 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

2

7

3

7

8 7

14 21 23 31 32 34: 7, 2, 7, 3, 8, 7

( ) 70 140 280 120 64 200 814

Solution x x x x x x

Min Z

= = = = =

= + + + + + =

5 2

27

8 10

11 14 23 24 32 34: 5, 2, 7, 2, 8, 10

( ) 95 280 120 64 200 779

Solution x x x x x x

Min Z

= = = = = =

= + + + + =
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Table 7: Initial Basic Feasible Solutions for the Third Cost Marix 

 

 
 

 

 

 

 

 

 

 

Table 19: Initial Basic Feasible Solution using Least Cost Method Table 20: Initial Basic Feasible Solution using North West Corner Method

1 2 3 Supply 1 2 3 Supply

0 2 1 0 2 1
  

2 5 2

1 1 5

4 3 4 3

2 2

Demand 5 5 10 Demand 5 5 10

Table 21: Initial Basic Feasible Solution using Vogel App. Method Table 22: Initial Basic Feasible Solution using Row Minimum Method

1 2 3 Supply 1 2 3 Supply

0 2 1 0 2 1

  

2 5 2 5

1 1

4 3 4 3

2 2

Demand 5 5 10 Demand 5 5 10

1 6

2 7

3 7

1 6

2 7

3 7

1 6

2 7

3 7

1 6

2 7

3 7

5 1

5 2

7

11 13 22 23 33: 5, 1, 5, 2, 7

( ) 0 1 5 10 21 37

Solution x x x x x

Min Z

= = = = =

= + + + + =

5 1

4 3

7

11 12 22 23 33: 5, 1, 4, 3, 7

( ) 0 2 4 15 21 41

Soluion x x x x x

Min Z

= = = = =

= + + + + =

5 1

5 2

7

11 13 22 23 33: 5, 1, 5, 2, 7

( ) 0 1 5 10 21 37

Solution x x x x x

Min Z

= = = = =

= + + + + =

5 1

5 2

7

11 13 22 23 33: 5, 1, 5, 2, 7

( ) 0 1 5 10 21 37

Solution x x x x x

Min Z

= = = = =

= + + + + =

Table 23: Initial Basic Feasible Solution using Column Minimum Method Table 24: Initial Basic Feasible Solution using Extremum Difference Method

1 2 3 Supply 1 2 3 Supply

0 2 1 0 2 1

  

2 5 2 5

1 1

4 3 3

2 2 4

Demand 5 5 10 Demand 5 5 10

Table 25: Initial Basic Feasible Solution using pointer cost Method Table 26: Initial Basic Feasible Solution using Proposed Method

1 2 3 Supply 1 2 3 Supply

0 2 1 0 2 1

  

2 5 5

1 2 1

4 3 4 3

2 2

Demand 5 5 10 Demand 5 5 10

1 6

2 7

3 7

1 6

2 7

3 7

1 6

2 7

3 7

1 6

2 7

3 7

5 1

5 2

7

11 13 22 23 33: 5, 1, 5, 2, 7

( ) 0 1 5 10 21 37

Solution x x x x x

Min Z

= = = = =

= + + + + =

5 1

5

7

2

11 13 23 32 335, 1, 7, 5, 2

( ) 0 1 35 20 6 62

Solutionx x x x x

Min Z

= = = = =

= + + + + =

5 1

5 2

7

11 13 22 23 33: 5, 1, 5, 2, 7

( ) 0 1 5 10 21 37

Solution x x x x x

Min Z

= = = = =

= + + + + =

5

6

5 2

2

13 22 23 31 33: 6, 5, 2, 5, 2

( ) 6 5 10 10 6 37

Solution x x x x x

Min Z

= = = = =

= + + + + =
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Table 8: Initial Basic Feasible Solutions for the Fourth Cost Marix 

 

 
 

 

 

 

 

Table 27: Initial Basic Feasible Solution using Least Cost Method Table 28: Initial Basic Feasible Solution using North West Corner Method

1 2 3 4 Supply 1 2 3 4 Supply

              

2 3 11 7 2 3 11 7

1 1

0 6 1 0 6 1

8 5

5 15 9 8 15 9

Demand 7 5 3 2 Demand 7 5 3 2

Table 29: Initial Basic Feasible Solution using Vogel App. Method Table 30: Initial Basic Feasible Solution using Row Minimum Method

1 2 3 4 Supply 1 2 3 4 Supply

              

2 3 11 7 2 3 11 7

1 0 1

6 1 0 6 1

9 8

5 8 15 5 15 9

Demand 7 5 3 2 Demand 7 5 3 2

1 6

2 1

3 10

1 6

2 1

3 10

1 6

2 1

3 10

1 6

2 1

3 10

6

1

1 4 3 2

11 22 31 32 33 34: 6, 1, 1, 4, 3, 2

( ) 12 0 5 32 45 18 112

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

6

1

0 5 3 2

11 21 31 32 33 34: 6, 1, 0, 5, 3, 2

( ) 12 1 0 40 45 18 116

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

1 5

6

1

3 1

11 12 24 31 33 34: 1, 5, 1, 6, 3, 1,

( ) 2 15 1 30 45 9 102

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =

6

1

1
4 3 2

11 22 31 32 33 34: 6, 0, 1, 4, 3, 2

( ) 12 0 32 45 18 112

Solution x x x x x x

Min Z

= = = = = =

= + + + + =

Table 31: Initial Basic Feasible Solution using Column Minimum Method Table 32: Initial Basic Feasible Solution using Extremum Difference Method

1 2 3 4 Supply 1 2 3 4 Supply

              

2 3 11 7 2 3 11 7

1 0 6

0 6 1 1 1

5 15

8 15 9 5 8 9

Demand 7 5 3 2 Demand 7 5 3 2

Table 33: Initial Basic Feasible Solution using pointer cost Method Table 34: Initial Basic Feasible Solution using Proposed Method

1 2 3 4 Supply 1 2 3 4 Supply

              

2 3 11 7 2 3 11 7

1 0 6 1

0 6 1 1

8 8

5 15 9 5 15 9

Demand 7 5 3 2 Demand 7 5 3 2

3 10

1 6

2 1

3 10

1 6

2 1

1 6

2 1

3 10

1 6

2 1

3 10

6

1

0 5 3 2

5 1

1

7 1 2

12 13 23 31 33 34: 5, 1, 1, 7, 1, 2

( ) 15 11 6 35 15 18 100

Solution x x x x x x

Min z

= = = = = =

= + + + + + =

11 21 31 32 33 34: 6, 1, 0, 5, 3, 2

( ) 12 1 0 40 45 18 116

Solution x x x x x x

Min z

= = = = = =

= + + + + + =

6

1

1 4 3 2

1

1

7 3

3 2

12 13 14 14 22 31 32: 1, 3, 2, 2, 0, 7, 3

( ) 3 33 14 0 35 24 109

Solution x x x x x x x

Min Z

= = = = = =

= + + + + + =

11 22 31 32 33 34: 6, 0, 1, 4, 3, 2

( ) 12 0 5 32 45 18 112

Solution x x x x x x

Min Z

= = = = = =

= + + + + + =
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