
A CRITICAL EVALUATION OF SECURITY… Maina FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 2, April, 2024, pp 241 - 246 241

8

A CRITICAL EVALUATION OF SECURITY APPROACHES FOR DETECTION AND PREVENTION OF SQL

INJECTION ATTACKS IN WEB-BASED APPLICATIONS

Yusuf Bukar Maina

Department of Computer Science Yobe State University, P.M.B 1144 Damaturu

*Corresponding authors’ email: yusufbukarmaina1@gmail.com Phone: +2347036359042

ABSTRACT

SQL Injection Attack (SQLIAs) is a web application attack that has been known for almost two decades, and

that has been among the biggest cyber threats especially because most of the world’s population interacts with

web apps in one way or the other. Over the years many methods have been developed to identify and deter

SQLIAs, thereby reducing the risk on web applications. Four various methods used to identify and stop

SQLIAs are reviewed, compared and critically evaluated in this paper, these include tokenization and lexicon

detection process, combined static and dynamic method, novel, and search-based methods. This work further

reveals the gap in current knowledge, specifically, increased efficiency can be achieved by integrating two of

the most effective approaches. Furthermore, a real-world application of these methods is presented and finally,

recommendations are made for further study.

Keywords: SQL Injection, Web Application, XSS Vulnerability, Web Security

INTRODUCTION

Internet and web application are fast becoming a household

technology. So, protecting the privacy of user’s information in

web application have become more and more challenging.

Consequently, web apps have been, and are still open to

malicious attacks perpetrated by hackers. The popularity of

web applications in social networking, financial transactions

and health problems is growing very quickly, thus, website

security has now become a main concern. There is a need to

proactively detect and prevent SQLIAs. It is worth noting

that, the security loopholes are mainly app layer

vulnerabilities, such as XSS and SQL injection by Santhosh,

et al (2018).

Several researchers have been working on a broad variety of

SQLIA prevention areas, such as data encryption algorithm,

PHP escape function, pattern matching algorithms, and set

randomization. For instance, research conducted by Temeiza,

et al. (2017), SHA-1 hashing algorithm was used to avoid

batch query SQL injections. Ghafarian (2017) proposed a

hybrid algorithm which attempts SQLIA detection by

considering three phases of the web application life cycle;

common gateway interface (CGI), implementation and

database design. The algorithm operates by extracting query

attribute values from stored inputs, and prior to that, the

values have been hashed using the SHA-1 algorithm.

Summarily, before the execution of all inputs, they will first

be hashed and compared to a stored database of hashed data.

Zar Chi Su & Myo (2020) also proposed a technique of

lexicon and tokenization for detecting SQLIA. In this

strategy, wrong inputs are not processed explicitly. This is

because each input is tokenized and compared to a predefined

lexicon. Thus, malicious and normal queries are easily

identified.

Voitovych, et al. (2016) and Liu, et al. (2019) approached the

problem by developing a software tool that incorporates a

server-side language (PHP), formal language theory (regular

expressions) and client-side language i.e. JavaScript.

Rana, et al. (2017) proposed a method based on the

hierarchical analyzer model. The framework receives a

request from the client and assesses it with the help of a

knowledge base, thereby categorizing the request as one that

is for pages with no loopholes (P') and that for pages with

weaknesses (P). Gu, et al. (2020) developed a framework that

monitors the network traffic (to-and-fro), by leveraging the

computational power of a GPU, they conduct check a huge

regular expressions' dictionary. They claimed to be able to

give prompt warnings thereby preventing SQLIAs.

The aim of this paper is to review, critically evaluate and

analyze and also present different methods that have been

proposed by researchers, in attempt to detect as well as

prevent SQLIAs. Towards this end, this paper details, methods

and techniques used, conclusions and claims reached as well

as results presented by state-of-the-art literature.

Subsequently, recommendation is made at the end of the

paper in order to guide future work as well as the development

of the improved solution.

This paper shall be divided into sections as follows: Section

2; evaluation of current methods, section 3; comparison of

current SQL injection methods, section 4; recommendation

and section 5; conclusion.

Evaluation of the Current Method of SQL Injection

Detection and Protection

This section presents an evaluation of current detection and

prevention methods.

Tokenization and Lexicon Detection Method

Following the section that presents an evaluation of

tokenization and lexicon detection which detect SQLIA by

tokenization characteristic.

Zar Chi Su & Myo (2020) proposed a strategy based on the

sanitization of the query statement, consisting of two steps:

the first step is the tokenization of the input query by the

recipient. The tokenization method is achieved by finding

white space, a double dash (-), a sharp sign (#) and all strings

before each symbol is a token. In the second stage, each string

token with the contents of a predefined lexicon is described.

The contents of the lexicon are primarily words (commands)

and some logical operators that are reserved. The outcome of

some query injected, and possible attack being detected are

shown in the table 1 below.

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 8 No. 2, April, 2024, pp 241 - 246

DOI: https://doi.org/10.33003/fjs-2024-0802-2308

mailto:yusufbukarmaina1@gmail.com
https://doi.org/10.33003/fjs-2024-0802-

A CRITICAL EVALUATION OF SECURITY… Maina FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 2, April, 2024, pp 241 - 246 242

Table 1: Outcomes of Query Statements (Zar Chi Su & Myo, 2020)

 Prediction - normal Prediction - injection Total

Actual - normal 3 0 3

Actual - injection 0 7 7

Total 3 7 10

Table 2: Experiment Outcomes (Zar Chi Su & Myo, 2020)

SQLIA Techniques Proposed approach’s outcomes

Tautologies Successful prevention

Malformed queries Successful prevention

Union queries Successful prevention

Piggy-back queries Successful prevention

Inference Successful prevention

Stored procedure Successful prevention

The method was tested in a controlled experiment, in an

isolated environment with 10 samples of SQL injection query

phrases.

There are three usual statements and seven injection

statements. Results are listed in Table 1 above. The method

used shows an overall accuracy of false positive of 0 and true

negative of 7.

According to the researchers, the proposed method of

prevention and detection of SQL injection is efficient and

successful for prevention of various malicious SQL injections

which include tautologies, malformed queries, union queries,

piggy-back queries, inference and stored procedure.

Critically evaluating the proposed, it has been observed that

the method wasn’t thoroughly tested, specifically, only six

types of SQL injection attacks were evaluated. Summarily, the

number of sample queries used were also inadequate.

To make a bold statement about the efficacy of the proposed

technique, there is a need for more thorough evaluation.

The obvious strength of the proposed is based on the results

presented, the results have shown that

the method is effective in protecting some types of SQLIA

against the code with the reserved words-based lexicon.

However, the sample size could be expanded.

Combined Static and Dynamic Method

Ghafarian (2017) proposed a solution to prevention and

exploration of SQLIA which consists of three stages.

The first process proposed that all database tables should be

augmented to contain a record include only symbols such as

the dollar sign seen in Table 3 & 4.

The second step suggests an algorithm whose job is to

dynamically process and track the execution of all incoming

queries.

Any user query can go through this algorithm before

execution is granted or denied, and the third step uses the

algorithm to execute a string- matching procedure between

the obtained SQL queries and the previously planned SQL

queries.

Table 3: With augmentation (Ghafarian, 2017)

ProductID ProductName Constructor

101 %$% %$%

102 Pen Stabilo

103 Pencil Steadtler

104 Eraser Artline

Table 4: The comparison of the proposed method with different methods (Ghafarian, 2017)

Feature SQLIF LINQ PSR Proposed

Dynamic yes yes No yes

Tautology yes yes No yes

Illegal/Query yes No No yes

Union yes No No yes

SP yes yes No yes

N. limit input query yes yes No yes

Plat.indepedent yes yes No yes

Ghafarian (2017) concluded that the existing methods of

identification and prevention of SQLIA was contrasted with

the proposed method. The suggested solution is more effective

since it can accommodate all forms of queries and the

algorithm is platform-independent.

Interestingly, the method was tested with many samples of

SQLIA types which is quite good. But the drawback is that

there is no evidence showing a sample of queries. and system

used in the experiment. And this experiment could not be

considered as repeatable.

Therefore, more is required in the experiment before the

validity of the result and claims made by the researcher can be

verified.

Knuth-Morris-Pratt string matching

Oluwakemi, et al. (2020) proposed a novel method of

prevention and detection of SQLIAs.

String Pattern of SQLIAs Formation

Each attack mode has some characters and keywords that are

used by hackers to perpetrate their attacks, and these

keywords and characters are used to produce malicious codes

to perform different types of attacks. These are then stored in

a database with a view to comparison to the users input.

Sample of these are shown in tables 5 and 6.

A CRITICAL EVALUATION OF SECURITY… Maina FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 2, April, 2024, pp 241 - 246 243

Table 5: Keywords that are used to write SQL- injection code (Oluwakemi , et al., 2020)

S/N Character Description

1 ' Character string indicator

2 -- or # Single line comment

3 /.../ Multiple line comment

4 % Wildcard attribute indicator

5 ; Query terminator

6 + or String concatenate

7 = Assignment operator
8 >, <, <=, >=, <> or != Comparison operators

Table 6: Different types of injection code with a standard pattern (Oluwakemi, et al., 2020)

S/N Injection Type Common Pattern Example

 Boolean-based ‘OR’ > ’ > =<| <=|= : ’ -"#

 Union-based ‘union select … from …;#’ ‘union select * from users;#’
 ‘union select

name from a;#’

 Error-Based ‘…convert (|\avg(|\ round(…’ 111’ convert(int, abcd’)
 A’

avg(28%$#@”)

 Batch query ‘; drop | delete | insert | truncate |

update | select…#’

aaa’; delete * from users; #
 ; drop table

users;#

 Like-based ‘‘OR … LIKE ‘…%’;#’’ \ ‘‘OR username LIKE ‘%5%’#’’

 \ XSS \ <script> …</script> <script>alert(‘Xss’)</script>

Parse Tree Design of Various Attack

To reflect the syntactic structure of the different forms of

SQL-Injection, a parse tree was used.

KMP Algorithm

A matching algorithm known as Knuth-Morris-Pratt (KMP)

was used to compare the user input string with the stored

patterns of SQL injection. PHP was use for scripting.

Filter Function

To avoid SQL injection, encoded injection and cross-site

scripting (XSS) attacks, a filter function was formulated.

These call external functions, each of which is written to

detect a specific type of attack. If any of the stated three

attacks is detected, the filter function blocks the user, resets

the HTTP request, and shows the corresponding alert

message.

Table 7: Comparison of the current and proposed method (Oluwakemi , et al., 2020)

Methodology Ref. Boolean-

based SQLi

Union-based

SQLi

Error-

based

SQLi

Batch query

SQLi

Like-

based

SQLi

XSS

Injection

Encoded

Injection

Using pattern matching [21] ✓ ✓ ✓ ✓ ✓ ✓ ✕

 [22] ✓ ✓ ✓ ✓ ✓ ✓ ✕

 [23] ✓ ✓ ✓ ✓ ✓ ✓ ✕

 [24] ✔ ✔ ✔ ✔ ✔ ✓ ✕

 [25] ✓ ✓ ✓ ✓ ✓ ✓ ✕

 [26] ✓ ✓ ✓ ✓ ✓ ✓ ✕

 [27] ✓ ✓ ✓ ✓ ✓ ✓ ✕

Using data encryption [28] ✓ ✓ ✓ ✓ ✓ ✕ ✓

 [29] ✓ ✓ ✓ ✓ ✓ ✕ ✓

 [30] ✓ ✓ ✓ ✓ ✓ ✕ ✕

ISR [31] ✓ ✓ ✓ ✓ ✓ ✕ ✕

Proposed algorithm ✓ ✓ ✓ ✓ ✓ ✓ ✓

Oluwakemi, et al. (2020) conducted a controlled experiment

in an isolated environment using Apache Server and Internet

Information Server.

Experiments were conducted on computers and mobile

phones with the most popular operating systems, Windows,

Linux and Android. To extensively evaluate performance of

the proposed algorithm, the hardware of the devices (i.e.

microprocessor and RAM) were varied. The database used

was a mysql database, and the attacks were tested on both

local and remote servsers. Based on the results they presented

as shown in Table 7, their technique was able to tackle

encoded injections as well as Cross site scripting (XSS)

effectively, this is in addition to the most common SQLIAs.

The researchers argued that their proposed solution showed

superior performers as compared to three algorithms that were

proposed by Abikoye, et al. (2019), Benfano, et al. (2018)

and Das, et al. (2019). This they were able to show in the

result they presented (as shown in Table 7) their technique

obviously tackled all five forms of SQL injection attacks

(SQLIA) and additional addressed XSS and encoded injection

attacks.

Based on the detail provided by the authors, the experiments

are apparently repeatable. Furthermore, their work shows a

degree of platform independence since varying hardware and

operating systems were used throughout the experiments.

Impressively, an acceptable number of SQLIAs were used.

The method was tested on several SQL statements including

but not limited to Boolean based, union-based, and error-

A CRITICAL EVALUATION OF SECURITY… Maina FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 2, April, 2024, pp 241 - 246 244

based. Moreover, it has been shown to be effective against

even other types of attack (XSS and encoded injection).

Summarily, the result they presented show that a broad variety

of attacks taken from random samples and devices were

evaluated, and their findings show sufficient evidence to

support the statements made.

A Searched-Based Method Using Novel Fitness Function

Liu, et al. (2019) suggested a technique to create a thorough

set of test cases to evaluate the weak points of the system

under test (SUT), including the front-end and back-end, that

mimic potential user inputs.

Liu, et al. (2019) conducted controlled experiments in an on

19 various types of SQL statements and attack modes, based

on three real- world 158 Of web applications.

The method used two Targerted SQL statements (TOs) are

randomly chosen and the number of generations is plotted in

the trajectories. The diagram in Figure1(b) shows that the

algorithm converges more effectively using the Similarity

Matching Distance (SMD) in

Figure 1(a) Showing Similarity Machine Distance (SMD).

The fact that the real-coded distance (RD) doesn't shift for a

long period when it is close to 0. may explain this. Moreover,

certain strings that are very close to each other can be

distinguished by the SMD. Accelerating convergence is thus

more efficient.

Figure 1(b) Showing Convergence rate with SMD and RD of a TO for

DE (Liu, et al., 2019).

In Figure 1(b) above, researchers concluded and clarified that

differential evolution (DE) in the search process is constantly

higher than other peer algorithms. Currently, DE's trajectory

is the steepest in contrast to the others. This implies that DE's

convergence speed is the lowest, costing only about a quarter

of the calculation budgets that are given to the limit.

The method was tested on various type of SQL queries and

158 adequate web application.

The result show presents no bias as the method and sample of

an experiment conducted on a variety of adequate sample. and

the experiment could be repeated. Therefore, the finding

shows that sufficient evidence made to support the claim is

made.

Comparison of Current SQL Injection Methods

All the experiments/research works critically reviewed in this

paper were based on identifying and preventing web apps

from SQL injection attacks. It is worth nothing that all the

methods discussed in section 2 have their advantages and

disadvantages. Hence, the aim of this section is compared and

contrast with a view making a recommendation for the most

fit approach.

A CRITICAL EVALUATION OF SECURITY… Maina FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 2, April, 2024, pp 241 - 246 245

Table 8: Showing Limitation and Strength of Current SQL Injection Methods

Comparison of Current SQL Injection

Methods
 Limitation Strength

Tokenization and Lexicon Tautologies, malformed

queries, and union query

finding white space, a double dash (-), a

sharp sign (#)

Combined Static and Dynamic Data entry restriction Tautology, Union and Illegal Query

Searched Based using Novel Fitness

Function

Semantic of SQL statement granted or denied

Plat. Independent and SP

Knuth-Morris-Pratt string matching (Novel

Method)

Inference type of SQL

injection

XSS, Boolean-Based and Like-Based

The tokenization and lexicon detection method had advantage

of detecting and preventing various SQLIAs including but not

limited to, tautologies, malformed queries, and union query.

As evidenced by the result presented in the work of Zar Chi Su

& Myo (2020), the proposed approach is capable of detecting

five types of SQLIAs, it further showed that it had a false

positive of 0 and true negative of 7. This will most probably

help web developers to protect data against tampering. One

thing that is lacking is sufficient testing, hence, the

number/size of queries tested need to be expanded.

The combined static and dynamic method also have the

capability of protecting and preventing tautology, as reported

by Zar Chi Su & Myo (2020). Although not as effective as

tokenization and lexicon method, it does however, have the

advantage of being platform independent. Additionally, it has

no data entry restriction. Here also, the research experiment

needs to be improved because the results presented were

based on limited samples.

A searched-based method using novel fitness function had the

advantage of protecting and detecting SQL user inputs and

validate the vulnerability in front-end and back-end. Even

though has the limitation of semantic of SQL statement. But

is better than the other method analyzed as it shows a lower

advantage in improving the protection and detection of SQL

injection attack.

Knuth-Morris-Pratt string matching (Novel Method) had an

advantage of the detecting and preventing various types of

attack including tautology, union query malformed query

attack and many more as presented by Zar Chi Su & Myo

(2020) and Ghafarian (2017) and Liu, et al. (2019). Even

though not as tokenization and lexicon method. As this

method doesn’t have the chance to protect the inference type

of SQL injection attack which is prevented the inference

vulnerability.

Based on the critical comparison of the methods, it is apparent

that no method can be considered as the crème de la crème

since all four methods had their pros and cons. Thus, this

suggests the need for further research.

RECOMMENDATION

SQL injection Attack can be countered in front- end and back-

end of web applications. Thus, an ideal method is one that is

robust to all forms of attacks. Specifically, an ideal solution

should be able to protect against tautology, union query,

malformed query and inference attacks as they are the attacks

encountered in both front-end and back-end. It is therefore

necessary to investigate and implement such an ideal solution.

One way to achieve a robust solution will be to create a hybrid

of the existing algorithms. Hence, we recommend the use of

the solution proposed by Oluwakemi, et al. (2020) and that of

Liu, et al. (2019), creating a hybrid of these two will bring on

board their abilities to detect and prevent various SQLIAs

vulnerabilities while each method mitigates the limitation of

the other method. Furthermore, another hybrid solution to

investigate is a combination of the lexicon and tokenization

approach on one side, and the Knuth-Morris-Pratt’s based

solution. We believe this will help to create a robust SQLIA

preventive solution. Besides, creating the hybrid techniques,

it is also crucial to get much testing sample, since it has been

observed that insufficient experimentation does not reveal the

strengths and weaknesses of a solution.

CONCLUSION

SQL injection attack a popular and malicious means of

tempering with data on web applications, was critically

reviewed in this paper. Initially, a literature review was

conducted, from the numerous approaches proposed in the

literature, four of the most recent

techniques for identifying and avoiding this awful risk of

SQLIAs, were chosen.

After thorough comparison of the selected solutions, it was

observed that there is no clear winner, since they all had their

strengths and weaknesses. Hence, a hybrid solution was

recommended this is believed to have the ability to have

reduced limitations and much strength since the combined

methods complement each other. Combining static & dynamic

approach and a searched-based approach does have some

advantages, however it is believed that a hybrid formed from

three methods tokenization and lexicon approach, searched-

based and novel method will be a superior method.

Finally, while creating a robust hybrid solution is worth

investigating, critical review conducted in this paper also

revealed other gaps and suggestion to future researchers.

These include the need to have much testing data, bigger and

more thorough experiments, as well as well documented and

reproduceable research papers.

REFERENCES

Abikoye, O., Dokoro, H., Abubakar, A., Oluwatobi, A., &

Asani, E.O., 2019, 'Modified Advanced Encryption Standard

Algorithm for Information Security', Symmetry, Vol. 11,

pages 1-16

Benfano , S., Fergyanto E. , G., Hirzi & Frumentius, 2018,

'Prevention Structured Query Language Injection Using

Regular Expression and Escape String', Procedia Computer

Science, Vol. 135, pages 678-687

Das, D., Sharma, U. & Bhattacharyya, D. K., 2019, 'Defeating

SQL injection attack in authentication security: an

experimental study', International Journal of Information

Security, 18(1), pp. 1-22

Ghafarian, D. A., 2017, 'A Hybrid Method for Detection and

Prevention of SQL Injection Attacks', Computing Conference,

London, pages 833-838

Gu, H., Liu, T., Zhang, J., Hu, M., Zhou, J., Wei, T., Chen., &

M., 2020, 'DIAVA: A Traffic-Based Framework for

Detection of SQL Injection Attacks and Vulnerability

Analysis of Leaked Data', IEEE Transactions on Reliability,

Volume 69, pages 1-15

A CRITICAL EVALUATION OF SECURITY… Maina FJS

FUDMA Journal of Sciences (FJS) Vol. 8 No. 2, April, 2024, pp 241 - 246 246

 ©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

J. Santhosh Kumar, B. & P. Anaswara, P., 2018, 'Vulnerability

detection and prevention of SQL injection', International

Journal of Engineering & Technology, Vol. 7, pages 16-18

Liu, M., Li, K. & Chen, T., 2019, 'Security Testing of Web

Applications: A Search-Based Approach for Detecting SQL

Injection Vulnerabilities', GECCO 19: Proceedings of the

Genetic and Evolutionary Computation Conference

Companion, pages 417-418

Oluwakemi, C. A., Abdullahi, A., Ahmed, H. D., Oluwatobi,

N. A. & Aderonke, A. K., 2020,' A novel technique to prevent

SQL injection and cross-site scripting attacks using Knuth-

Morris- Pratt string match algorithm', EURASIP Journal on

Information Security, Vol. 2020, pages 1-14

Rana, M. N., Rana, M. S., Rabnawaz , B. & Sidra, H., 2017,

'Detection and Prevention of SQL Injection Attack by

Dynamic Analyzer and Testing Model', International Journal

of Advanced Computer Science and Applications, Vol. 8,

pages 209-214

Temeiza, Q., Mohammad, T. & J., I., 2017, 'A novel method

for preventing SQL injection using SHA-1 algorithm and

syntax-awareness', Sudan Journal of Computing and

Geoinformatics, Vol. 1, pages 16-26

Voitovych, O., Yuvkovetskyi, O. & Kupershtein, L., 2016,

'SQL injection prevention system', International Conference

Radio Electronics & Info Communications (UkrMiCo), Kiev,

pages 1- 4

Zar Chi Su, S. H. & Myo, K., 2020, 'A Detection and

Prevention Technique on SQL Injection Attacks', IEEE

Conference on Computer Applications (ICCA), pages 1-6

https://creativecommons.org/licenses/by/4.0/

