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ABSTRACT 

A computer virus is a type of malicious software program (“Malware”) that, when executed, replicates itself 

by modifying other computer programs and inserting its own code. Most of our computer systems, media 

devices and storages are victims of computer virus. Due to the continuous infections of computer systems, 

several studies and works are being done on the transmission, dynamics and epidemiology of computer virus. 

It is a major source of concern due to the importance and necessity of the computer system and the usefulness 

of the internet. Based on the menace caused by the virus to computers, the researcher decided to carry out this 

work so as to to investigate the propagation effects of computer viruses with infective external storage media 

on computer systems. In this work, a mathematical model of a dynamical system of computer virus with an 

infected external storage media on viral spread is formulated, by extending a four-compartment model 

proposed by Peng et al, (2013) to five compartments. We computed the reproduction potential, the local and 

global stability analysis of. Numerical simulation shows that when there is no repair for the exposed computers, 

the infection rate is high (k = 0), but when exposed computers are being repaired, there is reduction in the 

number of exposed and infected computers (k ≠ 0).  
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INTRODUCTION 

The advent of Internet technology led to a drastic change in 

the way data is transferred and information exchange takes 

place. Internet technology usage has grown, offering 

numerous functionalities and facilities. This growth has 

thrown severe challenges in increasing attacks on cyber world 

(Mishra et al 2012) and in the form of requirements for a 

suitable cyber defense system to safeguard valuable 

information’s stored on computer systems (Saini, 2012). Alas, 

they have not received much scientific scrutiny. There are 

varying views as regards the definition of a computer virus, 

but it is generally accepted that a virus contains a program 

code that can explicitly copy itself, and by doing so has the 

ability to infect other programs by modifying them or their 

environment. Computer viruses trace their pedigree to John 

von Neumann's studies of self-replicating mathematical 

automata in the 1940s. Although the idea of programs that 

could infect computers dates to the 1970s, the first well-

documented case of a computer virus spreading "in the wild" 

occurred in 1986 (Solomon, 1995), when a code snippet 

known as the "Brain" virus appeared on several dozen 

diskettes at the University of Delaware. Today viruses afflict 

at least a million computers every year. Users spend several 

hundred million dollars annually on antivirus products and 

services, and this figure is growing rapidly. Computer systems 

of about 233 million as at January, 2004 (Mishra et al, 2007) 

that makes use of the internet, are prone to threats from 

various malicious objects such as worms, virus, Trojan horse, 

spam etc. According to Symantec Security Response 

Definitions (2010), the number of computer virus has been 

increasing exponentially from their first appearance in 1986 

to over 74 000 different strains identified today. These spread 

over the Internet and may attack computers through; 

Secondary memory (Floppy, Hard Disk, CD-ROM, USB 

devices etc.), E-mail (Attachments), Instant Messaging (FTP, 

Text Messaging, Chat etc.), Phishing and malicious Bot 

Programs. These malicious codes can replicate themselves 

and spread among computers (Zhang, et al 2013), the spread 

of computer viruses still causes enormous financial losses that 

large organizations suffer for computer security problems 

(Serrazi et al, 2003; Gan et al 2015).The most devastating 

computer virus to date is “My Doom”, which caused over $38 

billion in damages (Zhu et al, 2012)thus; individuals and 

organizations are troubled by computer viruses.As an 

alternative to the anti-virus technique, understanding the 

epidemic dynamics of computer viruses is critical to 

appreciating the way the computer viruses can spread across 

networks and to work out robust policies of inhibiting their 

prevalence (Rahaman et al, 2015). Cyber defence is as a result 

of these various malicious objects and technologies misused 

for scams. To provide defences against them, awareness about 

the behaviour of these malicious objects, their features, 

propagating methods, means and their limitations using 

mathematical modelling is vital. To understand this effect, 

studies have been carried out on self-replication and self-

propagation of malicious objects such as virus, worm, Trojan 

horse, Bots etc. (Saini, 2011). The dynamical mathematical 

modelling of the spread process of computer virus is an 

effective approach in understanding the behaviour of 

computer viruses and how to prevent infection (Gan, et al 

2014) because on this basis, some effective measures can be 

posed to prevent infection (Peng et al, 2013). It also helps 

decision makers to develop strategies to control the spread of 

computer viruses. 

Modeling is the study of a system before it is built and 

implemented. Often times, it is usually not feasible to 

implement a system or real-world problem in the actual 

environment due to huge cost and time. So, it is preferable to 

build a prototype or model and study the behavior of the 

system. A model is not only a substitute of the actual system, 

it also a simplification of the system (Saini et al 2007). 

Understanding the behavior of malicious objects is a necessity 

to mitigate cyber-attacks. For this mathematical modeling 

plays an important role. It can help to fix the possible 

parameters of the malicious object which are important to tell 
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how the malicious object can propagate in computer systems 

and networks. 

 

MATERIALS AND METHODS 

This chapter presents a dynamical model of a computer virus 

with infective external storage devices. We shall attempt to 

find - the computer virus free equilibrium, -the reproduction 

number with its analysis and the local and global stability of 

the disease-free equilibrium. 

 

Model Formulation 

The model described below comprises of four compartments: 

Susceptible computers, the Exposed computers, the Infectious 

computers and the Recovered computers denoted by their 

corresponding numbers at time t - S(t), E(t), I(t), R(t). Without 

ambiguity; S(t), E(t), I(t), R(t) will be abbreviated as SEIR 

respectively.  

The susceptible computers (S) represent the uninfected 

computers and new computers that have not been infected 

with the virus. The exposed (E) computers represent the 

computers which have been infected with the virus but have 

not yet broken-out, while the infectious computers (I) are 

those computers that have been infected with the virus and 

have broken-out. Then the recovered computers (R) are the 

computers that are virus free and have immunity (Peng et al, 

2013). 

 

Assumptions of the Basic Model  

According to Peng et al, (2013), the basic model above has 

the following assumptions: 

i. The computer virus has a latent period during which 

individuals are exposed to a computer virus but are not yet 

infectious. 

ii. The computer virus also has latency, and the computer 

also has infectivity in the period of latency (Yang et al, 

2014). 

iii. The newly entered in the internet from the susceptible 

status to exposed status, the contact rate is the same as that 

of susceptible status entering into infected status. 

iv. The computers which newly entered the internet are 

susceptible, the computers correspond with exposed 

computers and their adequate contact rate ( 𝛽1 ), and 

computers also correspond with infected computers and 

their adequate contact rate (𝛽1). 

v. The fraction of the computer which newly entered the 

internet will enter the class R by anti-virus software. 

vi. The fraction of computers contact with exposed and 

infected computer will stay latent before becoming 

infectious and enter a class  

 

Parameters of the Basic Model 

Table 1: Parameters of the basic model (Peng et al, 2013) 

Parameters Description 

N 

P 

K 

β1 

 

β2 

 

α 

r 

μ 

Rate at which external computers are connected to the network. 

The recovery rate of susceptible computer due to the anti-virus ability of network. 

Recovery rate of exposed computer due to anti-virus ability of network. 

Rate at which when having a connection to one infected computer, one susceptible computer can 

become exposed but not broken-out. 

Rate at which when having connection to one exposed computer, one susceptible computer can become 

exposed. 

Rate at which the exposed computers cannot be cured by anti-virus software and broken-out. 

Recovery rate of infected computers that are cured. 

Rate at which one computer is removed from the network. 

 

Equations of the Basic Model 
𝑑𝑆

𝑑𝑡
 = (1 - p)N - 𝛽1SI - 𝛽2SE – Ps – 𝜇S, 

𝑑𝐸

𝑑𝑡
= 𝛽1SI + 𝛽2SE - k E - 𝛼E – 𝜇E, 

𝑑𝐼

𝑑𝑡
= 𝛼E–rI-𝜇I,          (1) 

𝑑𝑅

𝑑𝑡
 = Ps + kE + rI 

𝑑𝑁

𝑑𝑡
= S(t) + E(t) + I(t) + R(t) 

 

The Extended Model 

We seek to extend the basic model proposed by adding 

another compartment following the recommendation of 

Mishra and Saini (2006) stating that “further work should be 

done to distinguish between susceptible and immune in the 

unaffected groups”. This would be ensured in the assumptions 

considered below. 

Assumptions of the Extended Model 

The basic model will be extended by adding the following 

assumptions; 

i. We assume that the newly manufactured computers are 

installed with an anti-virus alongside their manufacturing 

number from the factory and forming a compartment of 

susceptible computers with immunity. 

ii. The anti-virus installed in the new computers has an 

expiry date and when it expires, it forms a compartment 

of susceptible computers without immunity. 

iii. The susceptible computers also get the virus through 

contact with an infected external storage device 𝜃 (Zhang, 

2016). 

iv. Computers which have been recovered (R) enters into the 

susceptible class without immunity (S). 
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Variables and Parameters of the Extended Model 

Table 2: Shows the variables and parameters of the extended model alongside their description 

Parameters/Variable Description 

𝐴 

𝑆 

𝐸 

𝐼 

𝑅 

d1 

d2 

γ 

k 

w 

α 

r 

θ 

β1 

β2 

𝑎 
 

Η 

𝜇 

The class of susceptible computers which have immunity. 

The class of susceptible computers without immunity. 

The exposed class of computers which are infected but not yet broken out. 

The infected class of computers which have broken out. 

The recovered class of computers which the virus has been repaired. 

Manufacturing number given to the new computer alongside an anti-virus. 

Manufacturing number given to the new computer without an anti-virus. 

Rate at which a recovered computer becomes susceptible. 

Recovery rate of an exposed computer. 

Rate at which a susceptible computer with immunity can become exposed. 

Rate at which an exposed computer is broken out. 

Recovery rate of an infectious computer 

Rate at which an infected storage media can infect a susceptible computer. 

Contact rate between the susceptible computer and infected computer. 

Contact rate between the susceptible computer and exposed computer. 

Rate at which a susceptible computer without immunity becomes immune due to the presence of 

an anti-virus. 

Rate at which an immune computer loses immunity due to the absence of an anti-virus. 

Rate at which a computer is damaged or destroyed. 

 

Equations of the Extended Model 
𝑑𝐴

𝑑𝑡
= 𝑑1 +  𝑎𝑆 − 𝑤𝜆𝐴 − 𝜌1𝐴

𝑑𝑆

𝑑𝑡
 = 𝑑2 + 𝜂𝐴 + 𝛾𝑅 − (𝜌2 + 𝜆)𝑆

𝑑𝐸

𝑑𝑡
=  𝜆(𝑆 + 𝑤𝐴) − 𝜌3𝐸

𝑑𝐼

𝑑𝑡
=  𝛼𝐸 − 𝜌4𝐼

𝑑𝑅

𝑑𝑡
= 𝑘𝐸 + 𝑟𝐼 − 𝜌5𝑅

⬚ }
 
 
 
 

 
 
 
 

   (2) 

Where; 

𝜌1 =  𝜂 + 𝜇 

𝜌2 =  𝑎 + 𝜇 

𝜌3 =  𝑘 + 𝛼 + 𝜇 

𝜌4 =  𝑟 + 𝜇 

𝜌5 =  𝛾 + 𝜇 

And  

λ = β₁E + β₂I + θ        (3)  

With 

𝑁(𝑡) =  𝐴(𝑡) +   𝑆(𝑡) +  𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)   (4) 

 

Model Analysis 

In this section, we consider the quantitative behavior of the 

extended model. This would involve linearization of the 

model system to determine the local stability of the Computer 

Virus Free Equilibrium (CVFE), in terms of the computer 

reproduction number. 

 

Existence and Stability of Equilibrium Points 

Existence 

By setting the derivatives of the system (2) to zero,  

Let; 
𝑑1 +  𝑎𝑆 − 𝑤𝜆𝐴 − 𝜌1𝐴 = 0

      𝑑2 + 𝜂𝐴 + 𝛾𝑅 − (𝜌2 + 𝜆)𝑆 =  0

𝜆(𝑆 + 𝑤𝐴) − 𝜌3𝐸 = 0
𝛼𝐸 −  𝜌₄ 𝐼 = 0

𝑘𝐸 + 𝑟𝐼 − 𝜌₅𝑅 = 0 }
 
 

 
 

   (5) 

Where; 

   A∗ =
d₁+ aS∗

ρ₁+wλ∗
          (6) 

𝑆∗  =
𝑑₂+𝜂𝐴∗+𝛾𝑅∗

𝜌2+𝜆
∗

         (7) 

𝐸∗ = 
𝜆∗(𝑆∗ +𝑤𝐴∗)

𝜌3
         (8) 

𝐼∗ =
𝛼𝐸∗

𝜌₄ 
          (9) 

𝑅∗ = (
𝑘

𝜌₅
+

𝑟𝛼

𝜌₄𝜌₅
)𝐸∗ = 𝑄₀𝐸∗        (10) 

Where; 

𝑄0 =
𝑘

𝜌5
+

𝑟𝛼

𝜌4𝜌5
        (11) 

Substituting (10) in (7) gives 

𝑆∗ =
𝑑₂+𝜂𝐴∗+𝛾𝑄0𝐸∗

𝜌2+𝜆
∗

      (12) 

Consequently, substituting (12) in (6) gives; 

𝐴∗ =
(𝑎𝑑₂+ 𝑑₁𝜌₂+𝜆∗𝑑₁+𝑎𝛾𝑄₀𝐸∗)

(𝜌₁𝜌₂−𝜂𝑎+(𝜌1+𝑤𝜌₂)𝜆
∗+𝜆∗2𝑤)

  (13) 

Using expressions (12) and (13) gives 

𝐸∗ =
𝜆∗(𝜆∗𝜖₁+ 𝜖₀)

ℎ₂𝜆∗2+ℎ₁𝜆∗+ℎ₀     
     (14) 

Where; 

𝜖0 = 𝑤 (𝑑
2𝑎 + 𝑑1𝜌2) +  𝜂𝑑1 +  𝑑2𝜌1

𝜖1 =  𝑤 (𝑑
1 + 𝑑2)

 ℎ0 = 𝜌
1𝜌2𝜌3 −  𝜂𝑎𝜌3

ℎ1 = 𝑤 (𝜌
2𝜌3 −  𝛼𝛾𝑄0) + 𝜌1(𝜌3 −  𝛾𝑄0)

ℎ2 = 𝑤 (𝜌
3 −  𝛾𝑄0)

         

  Recall that: 𝜆∗ = 𝛽1𝐸
∗ + 𝛽2𝐼

∗ + 𝜃, from (3)  so, 𝑖𝑓 𝜃 =
 0, 𝑡ℎ𝑒𝑛  

𝜆∗ = 𝛽1𝐸
∗
+ 𝛽2𝐼

∗
= 𝑀𝛼𝐸

∗          (15) 

Where; 

l𝑀𝛼 = 𝛽1 +
𝛽2𝛼

𝜌4
          (16) 

From which we obtain 

𝜆 ( 1 − 𝑀𝛼
𝜆𝜖1+ 𝜖0

ℎ2𝜆
2+ℎ2𝜆+ℎ0

) = 0     (17) 

𝑒𝑖𝑡ℎ𝑒𝑟 𝜆 =  0         (18) 

Or 

1 − 𝑀𝛼
𝜆𝜖1+ 𝜖0

ℎ2𝜆
2 + ℎ2𝜆 + ℎ0

= 0       (19) 

Substituting 𝜆 =  0  for A, S, E, I, R yields 𝐸0=𝐼0 =𝑅0=0. 

Thus, the Computer Virus Free Equilibrium (CVFE) given 

by 

𝐶0 = (𝐴0, 𝑆0, 𝐸0, 𝐼0,𝑅0) =  (𝐴0,
𝑑2+𝜂𝐴0

𝜌2
, 0, 0, 0)  (20) 
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Where 

𝐴0 =
𝑑1𝜌2 +  𝑎𝑑2
𝜌1𝜌2 − 𝜂𝑎

          

 

Computation of Computer Virus Reproduction Number, 𝓡𝒄  

From epidemiology, the basic reproduction number is the 

expected number of secondary infections caused by a typical 

infected individual during his/ her entire period of 

infectiousness (Diekmann et. al, 1990; Heffernan et. al, 2005). 

The threshold quantity determines where a disease invades or 

is eradicated when ℛ0 > 1  or ℛ0 < 1  respectively. It is 

computed using the next generation matrix proposed by van 

den Driessche and Watmough (2002). In a similar manner, 

computer virus reproduction number refers to the expected 

number of secondary infections generated by a typical 

infected computer in a population where every computer is 

susceptible. Thus, the same approach used in epidemiology of 

disease to find the basic reproduction number of a disease 

shall be adopted in finding the computer virus reproduction 

number. 

From (3.2) 
𝑑𝐴

𝑑𝑡
= 𝑑1 +  𝑎𝑆 − 𝑤𝜆𝐴 − 𝜌1𝐴

𝑑𝑆

𝑑𝑡
 = 𝑑2 + 𝜂𝐴 + 𝛾𝑅 − (𝜌2 + 𝜆)𝑆

𝑑𝐸

𝑑𝑡
=  𝜆(𝑆 + 𝑤𝐴) − 𝜌3𝐸

𝑑𝐼

𝑑𝑡
=  𝛼𝐸 − 𝜌4𝐼

𝑑𝑅

𝑑𝑡
= 𝑘𝐸 + 𝑟𝐼 − 𝜌5𝑅

                        

⬚

 

We see that E’ and I’ are the compartments which have been 

infected with the virus.  

Thus:  

      ℱ𝑖 = (

𝜆(𝑆 + 𝑤𝐴)

0

)     (21) 

      𝑉𝑖 = (

𝜌3𝐸

−𝛼𝐸 + 𝜌4𝐼

)       (22) 

From which we obtain: 

𝐹 = (

𝛽₁(𝑆₀ + 𝑤𝐴₀) 𝛽₂(𝑆₀ + 𝑤𝐴₀)

0 0

) (23) 

And 

𝑉 =  (

𝜌₃ 0

−𝛼 𝜌₄ 

)            (24) 

With 

𝑉−1 = 

(

 
 

1

𝜌₃
0

𝛼

𝜌₃𝜌₄

1

𝜌₄)

 
 

    (25)  

Computing 𝐹𝑉−1 mathematically, this is defined as the next 

generation matrix. (Diekmann et. al., 2000) 

𝐹𝑉−1 =  

(

 

𝐴₁

𝜌₃
+

𝐴₂𝛼

𝜌₃𝜌₄  −𝜆𝐸

𝐴₂

𝜌₄

0 −𝜆𝐸)

      (26) 

|𝐹𝑉−1−𝜆𝐸| = 0              (27) 

This result to                  

𝜆𝐸
2 − (

𝐴1

𝜌₃
+

𝐴2𝛼

𝜌₃ñ4
) 𝜆𝐸 = 0      (28) 

 𝜆𝐸 =  0  𝑜𝑟  𝜆𝐸  =
𝐴1

𝜌3
+ 

𝐴2𝛼

𝜌3𝜌4
= 𝑅𝑐     (29) 

Therefore, the Computer Virus Reproduction number for 

model is given as: 

𝑅𝑐  = 𝑅𝑐1 + 𝑅𝑐2          (30) 

Where  

𝑅𝑐1 = 
𝐴1
𝜌3
and   𝑅𝑐2 =

𝐴2𝛼

𝜌3𝜌
4      

represents the susceptible classes with immunity and the 

susceptible classes without immunity respectively. Recall 

from (3.20) that; 

𝐴0 =
𝑑1𝜌2 +  𝑎𝑑2
𝜌1𝜌2 − 𝜂𝑎

 𝑎𝑛𝑑 𝑆0 =
𝑑2 + 𝜂𝐴0

𝜌2
      

This implies that 

𝐴1 = 𝛽₁ [
𝑑2

𝜌2
+ (𝑤 +

𝜂

𝜌2
)(
𝑑1𝜌2+𝑑2𝑎

𝜌1𝜌2+𝜂𝑎
)]   (31) 

And 

𝐴2 = 𝛽2 [
𝑑2

𝜌2
+ (𝑤 +

𝜂

𝜌2
)(
𝑑1𝜌2+𝑑2𝑎

𝜌1𝜌2+𝜂𝑎
)]   (32) 

Thus,  

  𝑅𝑐1 = 
𝛽1[

𝑑2
𝜌2
+(𝑤+

𝜂

𝜌2
)(
𝑑1𝜌2+𝑑2𝑎

𝜌1𝜌2+𝜂𝑎
)]

𝜌3
     (33) 

  𝑅𝑐2 =
𝛽2[

𝑑2
𝜌2
+(𝑤+

𝜂

𝜌2
)(
𝑑1𝜌2+𝑑2𝑎

𝜌1𝜌2+𝜂𝑎
)]𝛼

𝜌3𝜌4
     (34) 

𝑅𝑐 = 
𝛽1[

𝑑2
𝜌2
+(𝑤+

𝜂

𝜌2
)(
𝑑1𝜌2+𝑑2𝑎

𝜌1𝜌2+𝜂𝑎
)]

𝜌3
+
𝛽2[

𝑑2
𝜌2
+(𝑤+

𝜂

𝜌2
)(
𝑑1𝜌2+𝑑2𝑎

𝜌1𝜌2+𝜂𝑎
)]𝛼  

𝜌3𝜌4
 

     (35) 

 

 

Analysis of Computer Virus Reproduction Number 

We analyze the computer virus reproduction number 𝑅𝑐 in order to show the significance of the preventive measure of the 

computer virus which includes: 𝑑1, 𝑎, 𝜂, 𝑤as well as the control measures (𝑘, 𝑟), on the virus spread. 

From (30); 

𝑅𝑐 = 
𝛽1 [

𝑑2
𝜌2
+ (𝑤 +

𝜂
𝜌2
) (
𝑑1𝜌2 + 𝑑2𝑎
𝜌1𝜌2 + 𝜂𝑎

)]

𝜌3
+
𝛽2 [

𝑑2
𝜌2
+ (𝑤 +

𝜂
𝜌2
) (
𝑑1𝜌2 + 𝑑2𝑎
𝜌1𝜌2 + 𝜂𝑎

)] 𝛼

𝜌3𝜌4
                     

But  

𝜌1 =  𝜂 + 𝜇 

𝜌2 =  𝑎 + 𝜇 

𝜌3 =  𝑘 + 𝛼 + 𝜇 

𝜌4 =  𝑟 + 𝜇 

𝜌5 =  𝛾 + 𝜇 

 

This implies that; 
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𝑅𝑐 = 
𝛽1 [

𝑑2
(𝑎 + 𝜇)

+ (𝑤 +
𝜂

(𝑎 + 𝜇)
) (

𝑑1(𝑎 + 𝜇) + 𝑑2𝑎
(𝜂 + 𝜇)(𝑎 + 𝜇) + 𝜂𝑎

)]

𝑘 + 𝛼 + 𝜇
+
𝛽2 [

𝑑2
(𝑎 + 𝜇)

+ (𝑤 +
𝜂

(𝑎 + 𝜇)
) (

𝑑1(𝑎 + 𝜇) + 𝑑2𝑎
(𝜂 + 𝜇)(𝑎 + 𝜇) + 𝜂𝑎

)] 𝛼

(𝑘 + 𝛼 + 𝜇) (𝑟 + 𝜇)
 

(36)  

In the absence of any control measure; 

lim
𝑑1,𝑎,𝜂,𝑤,𝑘,𝑟 →0

𝑅𝑐 = 𝑅𝑐0 =
𝛽1[

𝑑2
𝜇
]

(𝛼+𝜇)
+

𝛽2[
𝑑2
𝜇
]𝛼

(𝛼+𝜇)(𝜇)
         (37) 

Taking an anti-virus as the only virus control measure; 

lim
𝑘,𝑟 →0

𝑅𝑐 = 𝑅𝑐1 =  
𝛽1[

𝑑2
(𝑎+𝜇)

+(𝑤+
𝜂

(𝑎+𝜇)
)(

𝑑1(𝑎+𝜇)+𝑑2𝑎

(𝜂+𝜇)(𝑎+𝜇)+𝜂𝑎
)]

𝛼+𝜇
+
𝛽2[

𝑑2
(𝑎+𝜇)

+(𝑤+
𝜂

(𝑎+𝜇)
)(

𝑑1(𝑎+𝜇)+𝑑2𝑎

(𝜂+𝜇)(𝑎+𝜇)+𝜂𝑎
)]𝛼

(𝛼+𝜇) 𝜇)
            (38) 

In the case of both antivirus and repair options, we refer to 𝑅𝑐 in equation (36) 

In the absence of antivirus as the control measure; 

lim
𝑑1,𝑎,𝜂,𝑤,→0

𝑅𝑐 = 𝑅𝑐2 =
𝛽1[

𝑑2
𝜇
]

(𝑘+𝛼+𝜇)
+

𝛽2[
𝑑2
𝜇
]𝛼

(𝛼+k+𝜇)(r+𝜇)
          (39) 

∆𝑎= 𝑅𝑐0−𝑅𝑐1 = 
1

(𝛼+𝜇)𝜇
[{𝑑2 − [(

𝑑2

(𝑎+𝜇)
+𝑤 +

𝜂

(𝑎+𝜇)
) (

𝑑1(𝑎+𝜇)+𝑑2𝑎

(𝜂+𝜇)(𝑎+𝜇)+𝜂𝑎
)] 𝜇}𝛽1 + {

𝑑2𝛼

𝜇
− (

𝑑2

(𝑎+𝜇)
+ (𝑤 +

𝜂

(𝑎+𝜇)
) (

𝑑1(𝑎+𝜇)+𝑑2𝑎

(𝜂+𝜇)(𝑎+𝜇)+𝜂𝑎
)𝛼}𝛽2] > 0            (40) 

∆𝑅= 𝑅𝑐0−𝑅𝑐2 =  
𝑑2

𝜇
[𝛽1 (

1

𝛼+𝜇
− 

1

𝑘+𝛼+𝜇
) + 𝛽2𝛼 (

1

(𝛼+𝜇)𝜇
− 

1

(𝛼+𝑘+𝜇)(𝑟+𝜇)
)] > 0      (41) 

∆𝑎𝑅= 𝑅𝑐0−𝑅c = 
𝛽1

𝑑2
𝜇

𝛼+𝜇
− [

𝛽1(
𝑑2

(𝑎+𝜇)
+(𝑤+

𝜂

(𝑎+𝜇)
)(

𝑑1(𝑎+𝜇)+𝑑2𝑎

(𝜂+𝜇)(𝑎+𝜇)+𝜂𝑎
))

𝑘+𝛼+𝜇
] + 

𝛽2(
𝑑2
𝜇
)

(𝛼+𝜇)𝜇
−

[
 
 
 
 𝛽2(

(
𝑑2
𝜇
)

(𝑎+𝜇)
+(𝑤+

𝜂

(𝑎+𝜇)
)(

𝑑1(𝑎+𝜇)+𝑑2𝑎

(𝜂+𝜇)(𝑎+𝜇)+𝜂𝑎
))𝛼

𝑘+𝛼+𝜇

]
 
 
 
 

> 0                 (42) 

From the analysis shown above, the control and preventive measures are essential to a lasting use of our computers. Thus, the 

next thing to check out for after purchasing a computer system is the installation of an anti-virus.  

 

Stability of the Computer Virus Free Equilibrium 

Local Stability of the Computer Virus free equilibrium 

We discuss the local stability of the computer virus free equilibrium of the model by adopting the same procedure used in 

disease epidemiology. This is achieved by proving the lemma below using linearized stability theory.  

Lemma 1 

The computer virus - free equilibrium point of the model in equation (5) is locally asymptotically stable if ℛc < 1and unstable 

if  ℛc > 1. 

Proof 

Considering the following equations: 

𝑓1  =  𝑑1  +  𝑎𝑆 –  𝑤 (𝛽₁𝐸 +  𝛽₂𝐸 +  𝜃) 𝐴 − 𝜌1𝐴 

𝑓2 = 𝑑2 +  𝜂𝐴 + 𝛾𝑅 – (𝛽₁𝐸 + 𝛽₂𝐼 +  𝜃) 𝑆 −  𝜌₂𝑆 

𝑓3 = (𝛽₁𝐸 + 𝛽₂𝐼 +  𝜃)  + (𝑆 +  𝑤𝐴)  −  𝜌₃𝐸          (43) 

𝑓4 =  𝛼𝐸 −  𝜌₄𝐼 
𝑓5 =  𝑘𝐸 +  𝑟𝐼 −  𝜌₅𝑅 

Then the Jacobian matrix is; 

Jα = 

(

 
 

−(𝜆 + 𝜌₁) 𝑎 −𝛽₁𝑤𝐴 −𝛽₂𝑤𝐴 0

𝜂 −(𝜆 + 𝜌₂) −𝛽₁𝑆 −𝛽₂𝑆 𝛾
𝜆𝑤 𝜆 𝛽₁(𝑆 + 𝑤𝐴) − 𝜌₃ 𝛽₂(𝑆 + 𝑤𝐴) 0
0 0 𝛼 −𝜌₄ 0
0 0 𝑘 𝑟 −𝜌₅)

 
 

       (44) 

The corresponding Jacobian matrix at the computer virus free equilibrium C0 is given by; 

J0 = 

(

  
 

−𝜌₁ 𝑎 −𝛽₁𝑤𝐴⁰ −𝛽₂𝑤𝐴⁰ 0

𝜂 −𝜌₂ −𝛽₁𝑆⁰ −𝛽₂𝑆⁰ 𝛾

0 0 𝛽₁(𝑆0 + 𝑤𝐴0) − 𝜌₃ 𝛽₂(𝑆⁰ + 𝑤𝐴⁰) 0
0 0 𝛼 −𝜌₄ 0
0 0 𝑘 𝑟 −𝜌₅)

  
 

       (45) 

The characteristics equation of (45) is; 
|𝐽₀ − 𝑥𝐼| = 0      Or   

|

|

−𝜌₁ − 𝑥 𝑎 −𝛽₁𝑤𝐴⁰ −𝛽₂𝑤𝐴⁰ 0

𝜂 −𝜌₂ − 𝑥 −𝛽₁𝑆⁰ −𝛽₂𝑆⁰ 𝛾

0 0 𝛽₁(𝑆0 +𝑤𝐴0) − 𝜌₃ − 𝑥 𝛽₂(𝑆⁰ + 𝑤𝐴⁰) 0
0 0 𝛼 −ñ₄ − 𝑥 0
0 0 𝑘 𝑟 −𝜌₅ − 𝑥

|

|
 = 0 

= −(𝜌₁ + 𝑥) ||

−𝜌₂ − 𝑥 −𝛽₁𝑆⁰ −𝛽₂𝑆⁰ 𝛾

0 𝛽₁(𝑆0 +𝑤𝐴0) − 𝜌₃ − 𝑥 𝛽₂(𝑆⁰ + 𝑤𝐴⁰) 0
0 𝛼 −𝜌₄ − 𝑥 0
0 𝑘 𝑟 −𝜌₅ − 𝑥

|| 
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− η||

𝑎 −𝛽₁𝑤𝐴⁰ −𝛽₂𝑤𝐴⁰ 0

0 𝛽₁(𝑆0 + 𝑤𝐴0) − 𝜌₃ − 𝑥 𝛽₂(𝑆⁰ + 𝑤𝐴⁰) 0
0 𝛼 −𝜌₄ − 𝑥 0
0 𝑘 𝑟 −𝜌₅ − 𝑥

|| 

= (ρ₁ + 𝑥) (ρ₂ + 𝑥) [−(𝜌₅ +  𝑥) [
𝛽₁(𝑆0 +𝑤𝐴0) − 𝜌₃ − 𝑥 𝛽₂(𝑆⁰ + 𝑤𝐴⁰)

𝛼 −(𝜌4 + 𝑥)
]] 

−η𝑎 (− ρ₅ − 𝑥) [
𝛽₁(𝑆0 + 𝑤𝐴0) − 𝜌₃ − 𝑥 𝛽₂(𝑆⁰ + 𝑤𝐴⁰)

𝛼 −(𝜌4 + 𝑥)
] 

= (− ρ₅ − 𝑥){( −𝜌4 − 𝑥[𝛽₁(𝑆
0 + 𝑤𝐴0) − ρ₃ − 𝑥] −  𝛽₂𝛼(𝑆0 +𝑤𝐴0)} {(𝜌₁ + 𝑥)(𝜌₂ + 𝑥) − 𝜂𝑎}= 0 

𝑥 = 𝜌5 <  0 or (𝑥
2 + (𝜌1 + 𝜌2)𝑥 +  𝜏)(𝑥

2 + 𝑘𝑥 + 𝜌3𝜌4 (1 − 𝑅𝑐))          (46) 

Where  𝜏 =𝜌1𝜌2 −  𝜂𝑎 

From equation (3.46) above, we now obtain 

𝑝4𝑥
4 + 𝑝3𝑥

3 + 𝑝2𝑥
2 + 𝑝1𝑥 + 𝑝0           (47) 

Where 

𝑝4 = 1                   
𝑝3 = 𝜌1 + 𝜌2 + 𝑘                 
𝑝2 = 𝑘(𝜌1 + 𝜌2) + 𝜏 + 𝜌3𝜌4(1 − 𝑅𝑐)   
𝑝1 = (𝜌1 + 𝜌2)𝜌3𝜌4(1 − 𝑅𝑐)  
𝑝0 = 𝜏𝜌3ñ4(1 − 𝑅𝑐)  
From which we see that 𝑝0 > 0 whenever 𝑅𝑐 < 1 and 𝑝0 < 0 whenever𝑅𝑐 > 1, hence the Computer Virus Free Equilibrium 

is locally asymptotically stable whenever 𝑅𝑐 < 1 and unstable whenever𝑅𝑐 > 1. 

 

Globally Asymptotic Stability (GAS) of the Computer Virus Free Equilibrium State 

We discuss the global stability of the CVFE by considering a lemma gotten from the epidemiology of disease. We would 

consider the computer virus as a disease and proof the lemma in that format. 

Lemma 2 

The computer virus free equilibrium of the model in (3.5) is globally asymptotically stable (GAS) if ℛ𝑐  <
1 𝑎𝑛𝑑 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓 ℛ𝑐 > 1. 
 

Proof 

We establish the proof using a comparison approach from disease epidemiology as proposed by Diekmann et al., 1990. The 

equations of the infected compartments from equation (2) are given as; 
𝑑𝑋

𝑑𝑡
= (𝐹 − 𝑉)𝑋,          𝑋 = (𝐸, 𝐼) 

Recall from (23) and (24) that  

𝐹 = (

𝛽₁(𝑆₀ + 𝑤𝐴₀) 𝛽₂(𝑆₀ + 𝑤𝐴₀)

0 0

)  𝑎𝑛𝑑  𝑉 =  (

𝜌₃ 0

−𝛼 𝜌₄ 

)  

By Comparison method, we have the equations; 
𝑑𝑋

𝑑𝑡
= (𝐹 − 𝑉)𝑋 𝑤ℎ𝑒𝑟𝑒 𝑋 = (𝐸, 𝐼)    

(𝐹 − 𝑉) =  (

𝛽1 (𝑆0 +𝑤𝐴0) − 𝜌₃ 𝛽2 (𝑆0 + 𝑤𝐴0)

𝛼 −𝜌₄ 

)         (48) 

From which we obtain; 

[
 
 
 
 
𝑑𝐸

𝑑𝑡

𝑑𝐼

𝑑𝑡]
 
 
 
 

= [

𝛽1 (𝑆0 + 𝑤𝐴0) − 𝜌₃ 𝛽2 (𝑆0 + 𝑤𝐴0)

𝛼 −𝜌₄ 

] [

𝐸

𝐼

]  

⟹
𝑑𝐸

𝑑𝑡
= (𝛽1 (𝑆0 + 𝑤𝐴0) − 𝜌₃)𝐸 + 𝛽2 (𝑆0 + 𝑤𝐴0)𝐼        (49) 

𝑑𝐼

𝑑𝑡
=  𝛼𝐸 − 𝜌₄ 𝐼                (50) 

From (49) we get 
𝑑𝐸

𝑑𝑡
− (𝛽1 (𝑆0 +𝑤𝐴0) − 𝜌₃)𝐸 = 𝛽2 (𝑆0 +𝑤𝐴0)𝐼  

⟹ 𝐸(𝑡) =
1

𝑒−𝛽1 (𝑆0 +𝑤𝐴0)𝑡
[
𝑒−𝛽1 (𝑆0 +𝑤𝐴0)𝑡

−𝛽1 (𝑆0 +𝑤𝐴0)
∫𝛽2 (𝑆0 + 𝑤𝐴0)𝐼]       (51) 

At  𝑡 = ∞, 𝐸0 = 0               (52) 

Similarly, from (50) we see that 
𝑑𝐼

𝑑𝑡
+ 𝜌₄𝐼 =  𝛼𝐸  

⟹ 𝐼(𝑡) =
1

𝑒𝜌
4𝑡
[∫ 𝑒𝜌

4𝑡. 𝛼𝐸𝑑𝑡]            (53) 

At  𝑡 = ∞, 𝐼0 = 0               (54)  

Therefore, (𝐸, 𝐼) = (0,0) 
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The system will not be globally stable until all the eigenvalues 

of the matrix   (𝐹 − 𝑉)  have negative real parts, van den 

Driesche and Watmough (2002). To ensure that this is true we 

would show that the trace of the matrix is negative and the 

result of the determinant is positive. 

Thus, the trace of the matrix in (48) is;  

−(𝜌3 + 𝜌4 − 𝛽1(𝑆0 + 𝑤𝐴0))   (55) 

And the determinant is given by 

𝜌3𝜌4 (1 −
𝜌4𝛽1(𝑆0+𝑤𝐴0)

𝜌3𝜌4
−
𝛽2(𝑆0+𝑤𝐴0)𝛼

𝜌3𝜌4
) = 0      (56) 

⟹ 𝜌3𝜌4(1 − 𝑅𝑐) = 0      (57) 

   At 𝑅𝑐 < 1, 
𝜌3𝜌4(1 − 𝑅𝑐) > 0      (58) 

Hence the trace of matrix (𝐹 − 𝑉)  is negative and the 

determinant is positive such that trace< 0 and determinant>

0, we can conclude that all the eigenvalues have negative real 

parts. Thus, the system is stable whenever 𝑅𝑐 < 1  and 
(𝐸, 𝐼) → (0,0)  as 𝑡 → ∞ . This proves that the Computer 

Virus Fee Equilibrium (CVFE) is globally asymptotically 

stable if𝑅𝑐 < 1, the virus dies out. 

 

Numerical Simulation 

Numerical Methods are employed to solve Equation (2) under 

different real parametric values as shown in Table (3) below. 

The graphs are plotted using ©MATLAB 7.5.0 (R2007b). 

Analysis of the computer virus reproduction number is 

attempted. Some of the parametric values are gotten from the 

basic model while others are assumed.  

 

Table 3: Parametric values of the extended model 

Parameters Description Value Source 

𝑑1 Manufacturing number given to a new computer alongside an anti-virus 250 Assumed 

𝑑2 Manufacturing number given to a new computer but without an anti-virus 250 Assumed 

𝛽1 Contact rate between the susceptible computer and exposed computer 0.7 Peng 2013 

𝛽2 Contact rate between a susceptible computer and an infected computer 0.8 Peng 2013 

𝛼 Rate at which an exposed computer is broken out. 0.6 Peng 2013 

𝑘 Recovery rate of an exposed computer 0.4 Peng 2013 

𝑟 Recovery rate of an infectious computer 0.6 Peng 2013 

𝜇 Rate at which a computer is damaged or destroyed 0.02 Peng 2013 

𝑤 Rate at which a susceptible computer with immunity can become exposed. 0.4 Assumed 

𝑎 Rate at which a susceptible computer without immunity becomes immune due 

to the presence of an anti-virus 

0.2 Assumed 

𝜃 Rate at which an infected storage media can infect a susceptible computer 0.0 Assumed 

𝜂 Rate at which an immune computer loses its immunity due to the absence of an 

anti-virus 

0.3 Assumed 

𝛾 Rate at which a recovered computer becomes susceptible. 0.2 Assumed 

 

RESULTS AND DISCUSSION 

In this chapter, we present and discuss the results of the numerical simulation, conclusion and recommendations for further 

work.   

 

Numerical Results  

The graphs of the results obtained are presented below; 

 

 
Figure 1: Graph showing the effect of anti-virus (a=0) on susceptible class S 
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Figure 2: Graph showing the effect of anti-virus (a≠0) on susceptible class S 

 

 
Figure 3: Graph showing the effect of infective storage media θ on the susceptible 

classes A and S (θ = 0) 
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Figure 4: Graph showing the effect of infective storage media on the susceptible 

classes A and S (θ ≠ 0) 

 

 
Figure 5: Graph showing the effect of infective storage media on the infected 

class I and exposed class E (θ = 0) 
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Figure 6: Graph showing the effect of infective storage media on the 

infected class I and exposed class E (θ ≠ 0) 

 

 
Figure 7: Graph showing the effect of k on the infected class I and exposed class E (k = 0) 
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Figure 8: Graph showing the effect of k on the infected class I and exposed 

class E (K≠ 0) 
 

 
Figure 9: Graph showing the effect of r on the infected class I (r = 0) 
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Figure 10: Graph showing the effect of r on the infected class I (r ≠ 0) 

 

 
Figure 11: Graph showing the effect of recovery rate of infected and exposed 

computers k, r on the recovered class R (k, r = 0,≠ 0) 
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Figure 12: Graph showing the effect of w on the susceptible class A and exposed 

class E (w = 0) 

 

 
Figure 13: Graph showing the effect of w on the susceptible class A and 

exposed class E (w ≠ 0) 
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Figure 14: Graph showing the Analysis of Reproduction number vs. 

Transmission Rate (β1) 
 

 
Figure 15: Graph showing the Analysis of Reproduction number vs. 

Transmission Rate (β2) 
 

Description of Figures 

From Figure 1 to Figure 2, we see the effect of adding an anti-

virus (a) to a susceptible class without immunity; therefore 

providing immunity to the class reduces the susceptibility of 

the class to the virus.  

From Figure 3 and Figure 4 we observed that the 

susceptibility of the susceptible class without immunity is 

always higher than that of the immune class with or without 

an infective storage media (𝜃 = 0, 𝜃 ≠ 0). 

The result from Figure 5 and Figure 6 shows that the number 

of exposed computers to the virus is always higher than the 

number of infected computers with or without an infective 

storage media (𝜃 = 0, 𝜃 ≠ 0). 

From Figure 7 and Figure 8 we observed that when there is no 

repair for the exposed computers, the infection rate is high 

(𝑘 = 0), but when exposed computers are being repaired, 

there is reduction in the number of exposed and infected 

computers (𝑘 ≠ 0). 

From Figures 9 and 10 we see that when the infected 

computers are being repaired (𝑟 ≠ 0), the infectiousness of 

the infected class of computers reduces but when there is no 

repair (𝑟 = 0), the infectiousness of the infected class is very 

high. 

From Figure 11 we observe that as the repair or recovery rate 

of the infected and exposed computers are increasing, the 

population of the recovered class of computers also increases, 

(𝑘, 𝑟 = 0, 0.1, 0.2). 
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From Figures 12 and 13, we observed that at  𝑤 = 0 , the 

population of the exposed computers is low, but when w ≠ 0, 
more computers move from the susceptible class with 

immunity into the exposed class therefore, increasing the 

population of the exposed computers and reducing drastically 

the population of the immune class. 

From Figure 14 and Figure 15 we observe that the absence of 

any control measure (𝑅𝑐0) is always higher compared to when 

we use anti- virus as the only control measure (𝑅𝑐1) which is 

also higher compared to using repair as the only control 

measure (𝑅𝑐2) which is also greater than using both repair and 

anti-virus as control measure which gives us 𝑅𝑐 , (𝑅𝑐0 >

𝑅𝑐1 > 𝑅𝑐2 > 𝑅𝑐 ). Therefore, a reduction in 𝑅𝑐  translates in 

decrease in the prevalence of the computer virus. 

 

CONCLUSION 

This work formulated a mathematical model of a dynamical 

system of computer virus with an infected external storage 

media on viral spread, by extending a four-compartment 

model proposed by Peng et al, (2013) to five compartments. 

To better understand the effect of the infected external storage 

media on viral spread, an exhaustive model analysis showed 

that; (i) an infected external storage device speeds up the viral 

spread, (ii) the computer virus free equilibrium is locally and 

globally asymptotically stable; (iii) the model is viable via 

numerical simulations. From the Computer Reproduction 

number analysis of this model, we established that control 

measures (anti-virus software and repair) are very essential in 

mitigating and controlling computer virus.  

It is recommended that the endemic existence of a dynamical 

system of computer virus with an infected external storage 

media on viral spread be considered. Lastly, this work 

considered only when  𝜃 = 0 , so further work should be 

carried out on when  𝜃 is not zero. 
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