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ABSTRACT 

The restricted three-body problem (R3BP) is a fascinating problem that has been receiving attentions of 

astronomers and scientists because of its vast implications in diverse scientific fields, including among others; 

celestial mechanics, galactic dynamics, chaos theory and molecular physics. In this paper, we examine the 

locations of the triangular equilibrium points of the R3BP with Poynting-Robertson (P-R) drag forces and 

variable masses. The primaries are assumed to vary under the unified Mestschersky law and their dynamics 

defined by the Gylden-Mestschersky equation, while the smaller primary is assumed to be a radiation emitter 

with P-R drag. The dynamical equations are obtained for both the non-autonomous with variable coefficients 

and autonomized system with constant coefficients. Further, the locations of the triangular points of the 

autonomized systems are obtained using perturbation method. It is seen that the positions are defined by the 

mass parameter, radiation pressure and P-R drag of the smaller primary. The triangular points of the non-

autonomous equations are obtained with help of the Mestschersky transformation, and differ from those of the 

autonomized system due to a function of time. The equilibrium points have several applications in space 

missions, satellites constellations and station-keeping.  
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INTRODUCTION 
The restricted three-body problem (R3BP) constitutes one of the 

most important problems in dynamical astronomy. This 

formulation is the most searched and interesting problem for 

astrophysicists and the problem defines the motion of an 

infinitesimal mass moving under the gravitational influence of 

two massive bodies called primaries which move in circular 

orbits around their common center of mass on the account of their 

mutual attraction. Because no general solution in the R3BP is 

available, particular solutions are sought to obtain insight into the 

problem, these particular solutions referred to as the equilibrium 

points (EPs) are five for the classical R3BP; two triangular 

equilibrium points (TEPs) and three collinear EPs (Szebehely 

1967). The R3BP has been investigated by several researchers 

and scientists under different modifications, (for example, see 

Singh and Leke (2014), Ansari et. al (2019a), Taura and Leke 

(2022), and Amuda and Singh (2022). 

The formulation of the classical R3BP did not consider the case 

when the primaries as sources of radiation pressure. Radiation 

pressure acts as an orbital perturbation and can displace a dust 

grain from its position. Radzievskii (1950,1953) discussed the 

introduction of radiation pressure of one and both primaries and 

observed that their presence allows for the existence of additional 

EPs. In view of this, several investigations have been carried out 

when one or both primaries are sources of radiation pressure. 

Notable among these are Singh and Ishwar (1999), Singh and 

Leke (2010, 2012, 2013a) and Singh and Sunusi (2020).  

Further, characterization of the primaries which involves 

radiation force is the perturbing effect of Poynting–Robertson (P–

R) drag. This force is a component of the radiation force and can 

sweep small particles of the solar system into the Sun at a 

cosmically rapid rate. Several authors have conducted researches 

on the R3BP with P-R drag, amongst them are Ragos and 

Zafiropoulos (1995), Kushvah (2008), Das et. al (2009) Singh and 

Abdulkarim (2014), Singh and Amuda (2019), Amuda et. al 

(2021), and Amuda and Singh (2022). 

The formulation of the classical R3BP assumes that the masses of 

primaries are constant. However, the existence of absorption in 

stars motivated scientists to formulate the R3BP with variable 

mass(es). During evolution, celestial bodies change their masses, 

especially in a double star system were mass changes rather 

intensively. An interesting example of mass loss is the real 

physical scenario of those transiting exoplanets whose 

atmospheres are escaping because of the severe levels of 

energetic radiations, coming from their nearby parent stars, 

hitting them. 

The R3BP with variable masses formulation is relevant in various 

astronomical and engineering contexts, such as, investigating the 

dynamics of spacecraft near asteroids or comets with variable 

masses due to surface outgassing. Investigating dynamics of 

binary stars with mass transfer between them, and also studying 

dynamics in the Earth-Moon system during lunar mass discharge.  

Several authors such as Singh and Leke (2010, 2012, 2013a, b, 

c), Ansari et. al (2019b), Leke and Singh (2023), Leke and Shima 

(2023), Leke and Mmaju (2023) and, Leke and Orum (2024) have 

carried out interesting investigations of the variable mass R3BP 

under diverse characterizations.  

Inspired by the vast applications of the R3BP with variable 

masses, we thought it expedient to investigate in this paper, the 

locations of the triangular EPs when both primaries have variable 

masses and the smaller primary is an intense emitter of radiation 

force, which is a component of radiation pressure and P-R drag. 

The importance of the study of the R3BP with variable mass is 

that the model provides a more accurate representation of the real 

world dynamics of celestial bodies and allows for more accurate 

dynamical predictions of their impending behaviors.  

 The paper organization of the paper is as follows. In Section 2, 

the equations of motion are stated for the non-autonomous and 

autonomized systems, while Section 3 delves into the locations of 

the triangular EPs. The numerical and graphical illustrations of 

the locations of the triangular EPs are given in Section 4, while 

the discussion and conclusion are given in Sections 5 and 6, 

respectively.
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MATERIALS AND METHODS 

Next, let𝑚1and𝑚2 be the masses of two radiating stars and let 𝑚3 be the mass of the infinitesimal body. The equations of 

motion of the photogravitational R3BP with variable masses have the form (Bekov 1988): 

�̈� − 2𝜔�̇� − �̇�𝑦 = 𝜔2𝑥 −
𝜇1(𝑥 − 𝑥1)

𝑟1
3 −

𝜇2(𝑥 − 𝑥2)

𝑟2
3  

�̈� + 2𝜔�̇� + �̇�𝑥 = 𝑦 [𝜔2 −
𝜇1

𝑟1
3 −

𝜇2

𝑟2
3]            (1) 

�̈� = −𝑧 [
𝜇1

𝑟1
3 −

𝜇2

𝑟2
3] 

where 𝑟1
2 = (𝑥 − 𝑥1)2 + 𝑦2 + 𝑧2and 𝑟2

2 = (𝑥 − 𝑥2)2 + 𝑦2 + 𝑧2are the distances of 𝑚1and𝑚2 from𝑚3, respectively.𝜇1(𝑡) =
𝐺𝑚1(𝑡),𝜇2(𝑡) = 𝐺𝑚2(𝑡) , 𝜇(𝑡) = 𝜇1(𝑡) + 𝜇2(𝑡). 𝜔 is the angular velocity of revolutions of the primaries. 

In estimating the light radiation force of the photogravitational R3BP with variable masses, Singh and Leke (2010) took into 

account just one of the three components of the light pressure field, which is due to the central force: the gravitational and the 

radiation pressure. The other two components arising from the Doppler shift and the absorption and subsequent re-emission 

of the incident radiation, was not considered. The last two components constitute the Poynting-Robertson (P-R) effect. The P-

R effect will operate to sweep small particles of the solar system into the Sun at a cosmically rapid rate. Therefore, the equations 

of motion when the P-R drag effect of the smaller primary is considered, and both primaries vary their masses in accordance 

with UML with their motion governed by GMP have the forms (Singh and Leke 2010; Singh and Amuda 2014):  

�̈� − 2𝜔�̇� = 𝜔2𝑥 + �̇�𝑦 −
𝜇1(𝑥 − 𝑥1)

𝑟1
3 −

𝜇2𝑞(𝑥 − 𝑥2)

𝑟2
3 −

𝑊2

𝑟2
2 [

(𝑥 − 𝑥2)

𝑟2
2

{(𝑥 − 𝑥2)�̇� + 𝑦�̇� + 𝑧�̇�} + �̇� − 𝜔𝑦], 

�̈� + 2𝜔�̇� = 𝜔2𝑦 − �̇�𝑥 −
𝜇1𝑦

𝑟1
3 −

𝜇2𝑞𝑦

𝑟2
3   −

𝑊2

𝑟2
2 [

(𝑥−𝑥2)

𝑟2
2 {(𝑥 − 𝑥2)�̇� + 𝑦�̇� + 𝑧�̇�} + �̇� + 𝜔(𝑥 − 𝑥2)],          (2) 

�̈� = −
𝜇1𝑧

𝑟1
3 −

𝜇2𝑧

𝑟2
3 −

𝑊2

𝑟2
2 [

(𝑥 − 𝑥2)

𝑟2
2

{(𝑥 − 𝑥2)�̇� + 𝑦�̇� + 𝑧�̇�} + �̇�], 

where 𝑊2 =
𝜇2(1−𝑞)

𝑐𝑑
represent the P-R drag of the smaller primary; 𝑞is its radiation pressure and 𝑐𝑑is dimensionless velocity 

of light. 

The Mestschersky(1952) transformation (MT) is given by: 

 

,            (3) 

where            

 𝑚1 ;𝜉, 𝜂, 𝜁, 𝜏are the new variables and 𝜌12is constant. 

The unified Mestschersky Law (UML): 

𝑟,  𝑃1, 𝑃2             (4) 

The particular solutions of the Gylden-Mestschersky Equation (GME):  

  𝐶, 𝐶* = 𝜌12
2 𝜔0, 𝑟𝜇 = 𝜅𝐶*2,𝜅 =

𝛽2−𝛼𝛾+𝜔0
2

𝜔0
2            (5) 

where𝜅is a constant of mass variation  

Substituting equations (3), (4) and (5) in (2), and choosing units of measurements, we get the equations:  

𝜉″ − 2𝜂′ = 𝜅 [𝜉 −
(1 − 𝜐)(𝜉 + 𝜐)

𝜌1
3 −

𝑞𝜐(𝜉 + 𝜐 − 1)

𝜌2
3    −

𝑊2

𝜌2
2 [

(𝜉 + 𝜐 − 1)

𝜌2
2 {(𝜉 + 𝜐 − 1)𝜉 ′ + 𝜂𝜂′ + 𝜁𝜁′} + 𝜉 ′ − 𝜂]]  

𝜂″ + 2𝜉 ′ = 𝜅𝜂 [1 −
(1−𝜐)

𝜌1
3 −

𝑞𝜐

𝜌2
3]  −

𝜅𝑊2

𝜌2
2 [

𝜂

𝜌2
2 {(𝜉 + 𝜐 − 1)𝜉 ′ + 𝜂𝜂′ + 𝜁𝜁′} + 𝜂′ + (𝜉 + 𝜐 − 1)]              (6) 

𝜁″ = (𝜅 − 1)𝜁 −
𝜅(1 − 𝜐)𝜁

𝜌1
3 −

𝜅𝑞𝜐𝜁

𝜌2
3 −

𝜅𝑊2

𝜌2
2 [

𝜁

𝜌2
2 {(𝜉 + 𝜐 − 1)𝜉 ′ + 𝜂𝜂′ + 𝜁𝜁′} + 𝜁′] 

where  𝑊2 =
𝜐(1−𝑞)

𝑐𝑑
   0 < 𝜅 < ∞   

𝜌1
2 = (𝜉 + 𝜐)2 + 𝜂2 + 𝜁2, 𝜌2

2 = (𝜉 + 𝜐 − 1)2 + 𝜂2 + 𝜁2and 0 < 𝜐 ≤ 0.5          (7) 

𝜐is the mass parameter and defined as the ratio of the mass of the smaller primary to the sum of the masses of the primaries 

and is such that0 < 𝜐 ≤ 0.5. 

 

Locations of the Triangular Points 

The triangular EPs are the solution of equations (6) when 𝜉 ≠
0, 𝜂 ≠ 0, 𝜁 = 0and𝜅 ≠ 0, That is, we solve the equation 

𝜉 −
(1−𝜐)(𝜉+𝜐)

𝜌1
3 −

𝑞𝜐(𝜉+𝜐−1)

𝜌2
3 −

𝑊2𝜂

𝜌2
2 = 0       (8) 

𝜂 [1 −
(1−𝜐)

𝜌1
3 −

𝑞𝜐

𝜌2
3] −

𝑊2(𝜉+𝜐−1)

𝜌2
2 = 0   

To solve equations (8), we use perturbation method by first 

solving these equations when the PR-drag of the smaller 

primary is absent. From equation (8), when𝑊2 = 0, , we get 

𝜌1 = 1and𝜌2 = 𝑞1/3        (9) 

Therefore, the solutions of (8), in presence of P-R effect, can 

be assumed to change slightly by 𝜀1and 𝜀2:  

𝜌1 = 1 + 𝜀1, 𝜌2 = 𝑞
1/.3

+ 𝜀2. 𝜀1, 𝜀2 << 1      (10) 

Following the methodology used in Singh and Amuda (2014), 

the exact coordinates of the TEPs are  

𝜉 = 𝜉0 + 𝜀1 − 𝑞
1/3

𝜀2   (11) 

𝜂 = ±√𝜂0
2 + (𝜀1 + 𝑞

1/3
𝜀2) − (1 + 𝑞

2/3
)(𝜀1 + 𝑞

1/3
𝜀2) 

where 

𝜉0 =
1

2
− 𝜐 +

1

3
(1 − 𝑞)    (12) 

𝜂0 =
√3

2
[1 −

2

9
(1 − 𝑞)]  

( ),x R t= ( ),y R t= ( ),z R t= 2 ( )
dt

R t
d

=

( ), ( 1,2)i ir R t i= =
12 ( )r R t=
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Next, we substitute equations (10), (11) into equations (8) and 

simplify by neglecting higher order terms of small quantities, 

to get the respective equations: 

𝑎1𝜀1 + 𝑏1𝜀2 = 𝑐1      (13) 

𝑎2𝜀1 + 𝑏2𝜀2 = 𝑐2 

where 

𝑎1 = 3(1 − 𝜐)(𝜉0 + 𝜐) +
1

2𝜂0
𝑊2,   

 𝑏1 = 3𝜐(𝜉0 + 𝜐 − 1)𝑞
−

1

3 − [2𝜂0𝑞−1 −
(2−𝑞2/3)𝑞−1/3

2𝜂0
] 𝑊2,     

(14) 

𝑐1 = −𝑞−2/3𝜂0𝑊2

 𝑎2 = 3(1 − 𝜐)𝜂0 − 𝑞2/3𝑊2, 

𝑏2 = 3𝜐𝜂0𝑞
−

1
3 + (2𝜉0𝑞−1 + 𝑞−1/3 + 2𝜐𝑞−1 − 2𝑞−1)𝑊2

 𝑐2 = (𝜉0 + 𝜐 − 1)𝑞
−

2
3𝑊2

 

Equations (13) is a system of two equations in two variables 

𝜀1and 𝜀2and can be determined using the Cramer’s Rule:

 𝜀1 =
𝑏2𝑐1−𝑏1𝑐2

𝑎1𝑏2−𝑎2𝑏1
,  𝜀2 =

𝑎1𝑐2−𝑎2𝑐1

𝑎1𝑏2−𝑎2𝑏1
       (15)

 Substituting the coefficients

 

𝑎𝑖 , 𝑏𝑖, ic (𝑖 = 1,2), and applying 

equations (12), to get 

𝜀1 = −
2𝑊2

3√3(1−𝜐)
and 𝜀2 =

⥂ 𝑊2⥂⥂⥂⥂

3𝜐√3⥂
     (16) 

Substituting equations (16), in equations (14), we at once get 

𝜉 =
1

2
− 𝜐 +

1

3
(1 − 𝑞) +

(1+𝜐)𝑊2

3√3𝜐(1−𝜐)
  (17) 

 𝜂 =
√3

2
[1 −

2

9
(1 − 𝑞) +

2(1−3𝜐)𝑊2

9√3𝜐(1−𝜐)
] 

The points given by equations (17) are the TEPs and are 

defined by the mass parameter, radiation pressure and P-R 

drag of the smaller primary. These points are denoted by 

𝐿4and 𝐿5. 

The triangular EPs 𝐿𝑗(𝑥𝑗 , 𝑦𝑗  0: 𝑗 = 4,5)  of the system of 

equations of the non-autonomous system (2) are sought using 

the MT (3) in the form (Luk’yanov 1989):  

 𝑥𝑗(𝑡) = 𝜉𝑗𝑅(𝑡), 𝑦𝑗(𝑡) = 𝜂𝑗𝑅(𝑡),            (18)   

where jj  , (𝑗 = 4,5)are triangular EPs of autonomized 

system obtained in equation (17).  

These solutions differ from those obtained in equations (17) 

due to the function 𝑅(𝑡).  

 

Numerical Illustration 

In this section, we devote our efforts to the numerical and 

graphical illustrations of the locations of the triangular EPs 

for the general case in which the test particle is a dust grain in 

the gravitational field of the primaries having variable masses 

with P-R drag of the smaller primary. We carry out our 

numerical exploration for all binaries having mass parameter 

in the interval 0 < 𝜐 ≤ 0.5, which covers most astronomical 

systems, especially those containing planetary systems, while 

values for the radiation pressure of the smaller primary and 

the velocity of light are taken from Amuda ad Singh 

(2022):𝑞2 = 0.99996and 𝑐𝑑 = 46939.84, respectively. All 

numerical computations have been carried out using the 

software package, Mathematica (Wolfram 2017).       

 

Locations of triangular equilibrium points 

The TEPs are given in equation (17) and the locations are 

numerically computed in Table 1 below

 

Table 1: Coordinates of the TEPs for 𝟎 < 𝝊 ≤ 𝟎. 𝟓  

 (Classical)                                     Radiation Force Effects   

Mass ratio      𝝃   ±𝜼                  𝑾𝟐                                       𝝃                      ±𝜼 

0.000000001   0.5  0.866025         4.26077 × 10−10               0.527346 0.91336 

0.00001 0.499990  0.866025         4.26077 × 10−10               0.500006 0.866022 

0.01 0.490000  0.866025         4.26077 × 10−10               0.490013 0.866018 

0.1 0.4  0.866025         4.26077 × 10−10               0.400013 0.866018 

0.2 0.3  0.866025         4.26077 × 10−10               0.300013 0.866018 

0.3 0.2  0.866025         4.26077 × 10−10               0.200013 0.866018 

0.4 0.1  0.866025         4.26077 × 10−10               0.100013 0.866018 

0.5 0  0.866025         4.26077 × 10−10               0.0000133335 0.866018 

 

In Table 1, we have computed the positions of the triangular 

EPs defined by the changing mass parameters of the binary, 

the radiation pressure and P-R drag of the smaller primary. 

For each mass parameter, we first compute the case when both 

primaries are non-radiating (classical case) and the case when 

the radiation pressure and P-R drag effects of the smaller 

primary is considered, is computed on the last two columns of 

Table 1. It is seen that, for all mass parameter, the locations 

of the triangular EPs under combined effects of the radiation 

force differ from those of the classical case. The 3D plots of 

the positions of the triangular EPs have been plotted in Fig 1 

to 4 under different characterizations of the smaller primary.
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Figure 1: Locations of Triangular EPs for𝜐 = 0.000000001with P-R Drag 

 
Figure 2: Locations of Triangular EPs for 𝜐 = 0.00001, with P-R Drag 

 

 
Figure 3: Locations of Triangular EPs for 𝜐 = 0.3, with Radiation Pressure 
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Figure 4: Locations of Triangular EPs for 𝜐 = 0.5with Radiation Pressure. 

 

Fig. 1 to Fig. 4 shows the effects of the changing mass 

parameters on deviations in the locations of the triangular EPs 

under radiation pressure and P-R drag effects of the smaller 

primary. Fig 1 and Fig 2 is drawn for 𝜐 = 0.000000001 and 

𝜐 = 0.00001 when 𝑊2 = 4.26077 × 10−10 , respectively. 

while Fig. 3 and Fig. 4, shows the deviations in the locations 

of the triangular EPs when 𝜐 = 0.3  and 𝜐 = 0.5 , under 

radiation pressure of the smaller primary.  

 

Discussion 

 The paper investigates the locations of the triangular EPs of 

the R3BP with P-R drag force and variable masses of the 

primaries, when the smaller primary is taken as a emitter of 

radiation force. The masses of both primaries are assumed to 

vary with time under the framework of the unified 

Mestschersky law and their dynamics determined by the 

GME. The equations of motion (2) of the R3BP which 

depends on time have been obtained and are different from 

those of Bekov (1988), Singh and Leke (2010), Singh et. al 

(2010) due to the introduction of the P-R drag of the smaller 

primary. Because the equations of motion have variable 

coefficients, we used the MT, the UML and the particular 

solutions of the GME, to convert the time variable equations 

to one which have constant coefficients, in equations (3). 

These equations are analogous to those of Singh and Amuda 

(2014) but differs due to the parameter 𝜅. 

The particular solutions of the equations of motion of the 

autonomized system are solved using perturbation method, 

and with the aid of Crammer’s rule, we were able to obtain 

the coordinates of the triangular EPs, we are denoted by 𝐿4and 

𝐿5. These points are analogous to those obtained in Singh and 

Amuda (2014), Singh and Abdulkarim (2014) but differs from 

the triangular points obtained by Bekov (1988), Singh and 

Leke (2010) and Singh et. al (2010). The triangular EPs of the 

non-autonomous dynamical equations differ from those of the 

autonomized equations due to a function of time.      

  

CONCLUSION 

The restricted three-body problem (R3BP) is a fascinating 

problem that has been receiving attentions of astronomers and 

scientists because of its vast implications in diverse scientific 

fields, including among others; celestial mechanics, galactic 

dynamics, chaos theory and molecular physics. In this paper, 

we examine the locations of the triangular equilibrium points 

of the R3BP with variable masses when the Doppler shift and 

the absorption and subsequent re-emission of the incident 

radiation, is considered. The primaries are assumed to vary 

under the unified Mestschersky law and their dynamics 

defined in 1952 by the Gylden-Mestschersky equation, while 

the smaller primary is assumed to be a radiation emitter with 

P-R drag. The dynamical equations are obtained for both the 

non-autonomous with variable coefficients and autonomized 

system with constant coefficients. Further, the locations of the 

triangular points of the autonomized systems are obtained 

using perturbation method. It is seen that the positions are 

defined by the mass parameter, radiation pressure and P-R 

drag of the smaller primary. The triangular points of the non-

autonomous equations are obtained with help of the 

Mestschersky transformation, and differ from those of the 

autonomized system due to a function of time. The 

equilibrium points have several applications in space 

missions, satellites constellations and station-keeping.  
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