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ABSTRACT 

One of the major importance of modeling in time series is to forecast the future values of that series. And this 

requires the use of appropriate method to fit the time series data which are dependent on the nature of the data. 

We are aware that most financial and economic data are mostly non-stationary. . The study is an extension of 

the work of Romsen et al (2020) which dealt with forecasting of nonlinear data that are stationary with only 

two threshold regimes. The study recommendations that In further research, the above models can be extended 

to other regimes (such as the 3 – regimes Threshold models) as well as comparing them with other regimes to 

understand the behaviors of the other regimes in selecting a suitable model for a data. STAR (2,1) and SETAR 

(2,2) are recommended to fit and forecast nonlinear data of trigonometric, exponential and polynomial forms 

respectively that are non-stationary.  
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INTRODUCTION 

A time series forecasting is the use of model to predict the 

future values based on the past values. Predictions were made 

when the actual outcome of event(s) may not be known until 

in some future time. The goal of time series is to forecast and 

identify meaningful characteristics in data that can be used in 

making statements about the future outcomes. Time series are 

generally classified into stationary and non-stationary. A 

stationary time series has its statistical properties such as the 

mean, variance, auto covariance’s, auto correlation etc. are all 

constant over time. Since its characteristics are constant, then 

a stationary time series can be easily predicted because all its 

statistical properties that were constant in the past will for 

likely be constant at the future. On the other hand, a non-

stationary time series is the one whose statistical properties 

change over time. And this need to be further converted into 

stationary data because using non-stationary time series 

especially in financial models produces unreliable result and 

leads to poor understanding and forecasting. 

 

Related literatures  

The most commonly used linear time series models are Auto 

regressive (AR), moving average (MA), Auto regressive 

moving average (ARMA) and the Auto regressive integrated 

moving average (ARIMA) models. Autoregressive (AR) 

process is a model in which future values are forecast purely 

on the basis of past values of the time series.  Moving average 

(MA) process is a model in which future values are forecast 

purely on the basis of past shocks (or noise or random 

disturbances). A model that uses both past values of the time 

series and past shocks is called an autoregressive-moving 

average (ARMA) process. And lastly, the ARMA model of a 

differenced series is called an ARIMA model. The approach 

proposed by Box and Jenkins came to be known as the Box-

Jenkins methodology to ARIMA models, where the letter "I", 

between AR and MA, stood for the word "Integrated". The 

three models (AR, MA and ARMA) assumes that the time 

series is stationary, that is its statistical properties are all 

constant over time. As stated earlier that most time series 

problems are known to be non-stationary and there is need to 

be transformed to achieve stationarity. Differencing is usually 

needed to be employed, hence an ARMA model of a 

differenced series is called an ARIMA model. Where the 

word Integrated was included in order to obtain an output 

needs to be anti-differenced or integrated, to forecast the 

original series. 

Makridaki&Insead (1997) aims to apply the Box-Jenkins 

methodology to ARIMA models and determine the reasons 

why in empirical tests in the post-sample forecasting the 

accuracy of such models is generally worse than much 

simpler time series methods. The paper concludes that the 

major problem is the way of making the series stationary in 

its mean (i.e. the method of differencing) that has been 

proposed by Box and Jenkins. The result also shows that using 

ARMA models to seasonally adjusted data slightly improves 

post-sample accuracies while simplifying the use of ARMA 

models. The result also confirmed that transformations 

slightly improve post-sample forecasting accuracy, 

particularly for long forecasting horizons. And finally the 

result demonstrated that AR(1), AR(2) and ARMA(1,1) 

models can produce more accurate post-sample forecasts than 

those found through the application of Box-Jenkins 

methodology. 

Guidolin et. al (2019) examines the comparative predictive 

performances of a number of linear and non-linear models for 

stock and bond returns in the G7 economies. Non-linear 

models appear to forecast better in the case of US and UK 

asset returns, whereas simple linear models (such as the 

random walk and univariate autoregressions) appear to 

forecast better in the case of French, Italian and German asset 

returns. 

 

MATERIALS AND METHODS  

Estimation of Parameter to be Fixed for Simulation Model 

From the pth order of autoregressive [AR (p)], the first order 

AR (1) and second order AR (2) were deduced 

AR (1): 𝑋𝑡 = ∝ 𝑋𝑡−1 + 𝑒𝑡-   (1) 

𝜎𝑡
2 =

𝜎𝑒
2

1−∝2    (2) 

AR (2): 𝑋𝑡 = ∝1 𝑋𝑡−1 +∝2 𝑋𝑡−2 + 𝑒𝑡 - - (3) 

𝜎𝑡
2 =

𝜎𝑒
2

1−𝛼1
2−∝2

2    (4) 

The specified parameter values were estimated by 

fixing  𝜎𝑒
2 = 2, 𝜎𝑡

2 = 4 𝑎𝑛𝑑 𝛼1 = 0.7, to be 𝛼2 = 0.6. This 

imply that the simulation was simulated using these 
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parameters estimated will have a unit root and hence non-

stationary 

 

Models Selected for Simulation 

The simulation Data is generated from several linear and 

nonlinear second orders of general classes of autoregressive 

functions given as follows: 

 

Model 1. AR(2): 𝑋𝑡𝑖 = 0.7𝑋𝑡𝑖−1 − 0.6𝑋𝑡𝑖−2 + 𝑒𝑡, (5) 

𝑡 = 1,2, … ,20, 40, 60, 80, 100, 120, 140, 160, 180, 𝑎𝑛𝑑 200. 

𝑖 = 1,2, … , 1000 

The following codes were written to simulate data of sample 

size 20 from model 1 above 

𝑒1 < − 𝑟𝑛𝑜𝑟𝑚 (20,1,2) 

𝑥1 < −  𝑟𝑛𝑜𝑟𝑚 (20,2,4) 

𝑓𝑜𝑟 (𝑡 𝑖𝑛 3: 20)𝑥[𝑡] < − 0.7 ∗ 𝑥[𝑡 − 1] −  0.6 ∗ 𝑥[𝑡 − 2]  +
 𝑒[𝑡]  - -    (6) 

Up to the model 4 which is  

Model 4: PL(2):Xti = 0.7𝑋𝑡𝑖−1
2 − 0.6𝑋𝑡𝑖−2 + 𝑒𝑡 , (7) 

 

Test of Linearity/ Nonlinearity 

Two tests of nonlinearity were used to confirm the nonlinear 

data generated, these are Keenan and Tsay F tests. Both 

statistics test null hypothesis that data series is nonlinear. The 

procedure for each statistic are stated as follows 

 

Keenan’s One-Degree Test for Nonlinearity  

The Keenan Test examines and tests the Quadratic 

Nonlinearity Hypothesis and provides information on 

threshold nonlinearity. This situation refers to the F test in the 

following model: 

𝑋𝑡 = 𝜇 + ∑ 𝑎𝑢𝜀𝑡−𝑢 + ∑ 𝑎𝑢,𝑣𝜀𝑡−𝑢𝜀𝑡−𝑣
∞
𝑢,𝑣=−∞

∞
𝑢=−∞  

     (8) 

 

Tsay’s Test for Nonlinearity  

Tsay’s (Tsay, 1986) linearity test is based on recursive auto 

regression and destructive term estimators, and firstly, the 

recursive auto regressions are established starting from b. is 

expressed as b=(n/10) + p observation value in return for the 

p and the relevant d values with AR level, and then the model 

is established between �̂�𝑡values and (1, 𝑋𝑡−1, 𝑋𝑡−2, ⋯ , 𝑋𝑡−𝑝). 

Then the following test is obtained among the inclusions of 

the model formed with �̂�𝑡 

�̂�(𝑝, 𝑑) =
[∑ �̂�𝑡

2−∑ �̂�𝑡
2]/(𝑝+1)

∑ �̂�𝑡
2/(𝑛−𝑑−𝑏−𝑝−ℎ)

 -  (9) 

 

Estimation of SETAR Models 

Estimation of SETAR models is often carried out by the 

nonlinear least squares method. Properties of the resulting 

estimators are hard to establish, however. As a matter of fact, 

limiting properties of the least squares estimates are only 

available for the two-regime SETAR(p) model. It is believed 

that similar results can be shown for multi-regime SETAR 

models. Chan (1993) considered the estimation of the two-

regime SETAR(p) model of Equation (9). Let ∅ =
(∅0, ∅1, ⋯ , ∅𝑝) ′ and 𝜃 = (𝜃0, 𝜃1 , ⋯ , 𝜃𝑝) ′ be the parameter 

vectors of the two regimes, respectively. Let 𝚯 = (∅′, 𝜃, 𝑟, 𝑑)′ 

be the coefficient vector of the model in Equation (9) and Θ0 

be the true coefficient vector. Suppose that the 

realizations {𝑋1, ⋯ 𝑋𝑇} are available, where T denotes the 

sample size. 

 

Smooth transition Autoregressive (STAR) model 

Another class of nonlinear time series models is smooth 

transition autoregressive (STAR) models. The STAR model 

is similar to the self-exciting threshold autoregressive model. 

The main difference between these two models is the 

mechanism governing the transition between regimes. A two-

regime model will be considered here. The concept can be 

extended to the case with more than two regimes.  

 

Evaluation and Comparison of the Models 

Simulation studies were conducted to investigate the 

performances of Autoregressive (AR), Self- Exciting 

Threshold autoregressive (SETAR), Smooth Transition 

Autoregressive Models (STAR) in fitting and forecasting 

linear, trigonometric, exponential and polynomial forms of 

autoregressive time series under study (model 1-4). Effect of 

sample size and the stationarity of the models were examined 

on each of the general linear and nonlinear data simulated.  

 

Criteria for Assessment of the Study 

The goodness of fit for each model was assessed using three 

common information criteria (AIC, MAPE and MSE) in time 

series. The model with lowest criteria is the best among the 

models.   

 

Akaike Information Criteria 

There are several information criteria available to determine 

the best model of autoregressive process. All of them are 

likelihood based; the well-known is Akaike information 

criterion (AIC).

 

RESULTS AND DISCUSSION 

Table 1: MSE of SETAR and STAR Models across Sample Sizes Fitted on AR (2): 𝑿𝒕𝒊 = 𝟎. 𝟕𝑿𝒕𝒊−𝟏 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 3.4916 3.3893 4.8638 4.1091 4.4153 3.5648 

40 3.9660 3.7852 5.8296 4.1983 4.1402 4.1849 

60 4.0522 4.0157 5.3391 4.9072 4.9424 4.8346 

80 3.9358 4.1073 5.0705 4.6135 4.6693 4.6003 

100 3.9329 4.0630 5.1909 4.1576 4.2277 4.1639 

120 3.7256 3.8715 5.0806 4.0375 4.0628 4.1595 

140 3.7219 3.7614 4.5859 3.9492 3.9252 4.0130 

160 3.7069 3.6009 4.0380 3.9196 3.9352 3.9730 

180 3.7286 3.5142 3.9421 3.9159 3.9050 3.9380 

200 3.5581 3.1785 3.9928 3.7854 3.7638 3.7683 
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Figure 1: MSE of the fitted models on linear AR 

 

Table 2: MAPE of SETAR and STAR Models across the Sample Sizes Fitted on AR: 𝑿𝒕𝒊 = 𝟎. 𝟕𝑿𝒕𝒊−𝟏 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 0.1191 0.1198 0.1196 0.1195 0.1197 0.1192 

40 0.1187 0.1198 0.1196 0.1195 0.1198 0.1190 

60 0.1188 0.1199 0.1193 0.1195 0.1199 0.1190 

80 0.1186 0.1196 0.1190 0.1192 0.1199 0.1187 

100 0.1187 0.1195 0.1193 0.1193 0.1197 0.1189 

120 0.1179 0.1196 0.1194 0.1192 0.1195 0.1184 

140 0.1184 0.1195 0.1192 0.1193 0.1196 0.1182 

160 0.1180 0.1195 0.1189 0.1188 0.1194 0.1181 

180 0.1178 0.1194 0.1186 0.1183 0.1193 0.1180 

200 0.1179 0.1195 0.1187 0.1187 0.1193 0.1182 

 
Figure 2: MASE of the fitted models on linear AR 

 

Table 3: AIC of SETAR and STAR Models across the Sample Sizes Fitted on AR: 𝑿𝒕𝒊 = 𝟎. 𝟕𝑿𝒕𝒊−𝟏 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 39.0071 31.4197 38.8472 34.2640 35.7014 30.3998 

40 63.1104 64.2440 99.3844 69.3870 67.8300 65.2588 

60 101.9361 102.0535 145.4402 101.4427 101.8713 102.5476 

80 129.4853 112.8418 213.8843 128.3188 129.2798 130.0890 

100 150.9370 148.1906 247.2784 148.4934 150.1648 150.6457 

120 171.8259 170.4354 254.7929 173.4744 174.2252 179.0462 

140 197.9930 197.4720 255.5188 198.2904 197.4382 202.5348 
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160 223.6301 225.6387 268.5576 224.5566 225.1940 228.7234 

180 250.8862 247.9722 275.4175 251.7081 251.2052 254.7187 

200 267.8437 264.5026 288.6473 272.2327 271.0831 273.3267 

 
Figure 3: AIC of the fitted models on linear AR 

 

Table 4: MSE of SETAR and STAR Models across the Sample Sizes Fitted on Trigonometric:  

 𝑿𝒕𝒊 = 𝟎. 𝟕𝒔𝒊𝒏(𝑿𝒕𝒊−𝟏) − 𝟎. 𝟔𝒄𝒐𝒔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample Size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 3.1317 3.9799 5.1181 4.9133 6.2620 2.9152 

40 3.8272 4.0402 9.2536 4.6781 5.2848 4.3708 

60 4.7649 5.2886 9.2200 5.0171 6.0036 5.0686 

80 4.3264 5.0239 10.5929 5.0076 5.5915 5.1949 

100 4.0247 4.4264 9.2359 4.0140 4.9518 4.4327 

120 4.1275 4.3633 10.8565 4.1048 4.8799 4.5714 

140 3.9586 4.1253 14.9776 3.9784 4.6057 4.2851 

160 3.9487 4.0205 18.3391 3.8492 4.6082 4.3944 

180 3.9404 3.9853 12.3866 3.6468 4.5457 3.9673 

200 3.8162 3.9065 15.6097 3.5532 4.3554 4.4240 

 
Figure 4: MSE of the fitted models on linear AR 
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Table 5: MAPE of SETAR and STAR Models across the Sample Sizes Fitted on Trigonometric:  

𝑿𝒕𝒊 = 𝟎. 𝟕𝒔𝒊𝒏(𝑿𝒕𝒊−𝟏) − 𝟎. 𝟔𝒄𝒐𝒔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 1.8096 1.2232 0.3113 2.0948 1.7716 0.3272 

40 1.6180 1.1999 0.6146 1.7030 1.3015 0.4018 

60 2.1354 1.4137 0.7799 2.2351 1.5232 0.2263 

80 1.7134 1.1274 0.2609 2.1014 1.5958 0.1241 

100 1.5243 1.1416 0.2443 1.4898 1.2845 0.1790 

120 1.7059 2.3918 0.9492 1.3879 2.2063 0.2119 

140 1.6949 2.6559 0.4590 1.7847 2.8363 0.5093 

160 1.6691 3.0106 0.3566 1.6834 3.9757 0.6079 

180 1.6578 3.1846 0.4930 1.6911 3.2817 0.1740 

200 1.5990 2.0819 0.9717 1.6339 3.5406 0.1868 

 
. Figure 5: MAPE of the fitted models on linear AR 

 

Table 6: AIC of SETAR and STAR Models across the Sample Sizes Fitted on Trigonometric: 

𝑿𝒕𝒊 = 𝟎. 𝟕𝒔𝒊𝒏(𝑿𝒕𝒊−𝟏) − 𝟎. 𝟔𝒄𝒐𝒔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 36.8313 41.6249 29.0102 37.8389 42.6899 29.3989 

40 67.6850 69.85207 132.3078 67.7157 72.5929 66.9982 

60 107.6771 113.9337 216.4913 108.4712 113.5413 105.3834 

80 131.1796 143.1360 247.8224 138.4694 143.7004 139.8138 

100 153.2460 162.7592 333.0052 154.9776 165.9744 156.8997 

120 184.1218 190.7881 363.8278 185.4591 196.2145 190.3778 

140 206.6239 212.3983 399.2453 209.3212 219.8211 211.7200 

160 233.7404 236.6254 402.7533 231.6594 250.4544 244.8519 

180 260.8318 262.8701 479.2933 258.8910 278.5537 256.0564 

200 281.8490 286.5255 523.4700 279.5675 300.2820 305.4102 
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Figure 6: AIC of the fitted models on linear AR 

 

Table 7: MSE of SETAR and STAR Models across the Sample Sizes Fitted on exponential: 

𝑿𝒕𝒊 = 𝟎. 𝟕(𝑿𝒕𝒊−𝟏) − 𝒆𝒙𝒑(𝟎. 𝟔𝑿𝒕𝒊−𝟐) + 𝒆𝒕,  
Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 3.02894 2.8190 3.6895 3.3292 4.2523 3.8184 

40 3.6768 3.1874 5.9413 4.3560 4.1094 3.5792 

60 4.3777 4.1330 6.5362 4.7981 4.8647 4.2307 

80 4.3474 4.1861 6.5450 4.6497 4.6758 4.3435 

100 4.1241 3.9152 6.2770 4.5205 4.2475 4.1224 

120 4.0419 3.9094 5.4367 4.1803 4.1205 4.0421 

140 3.9211 3.8008 5.7090 4.1060 4.0306 3.9237 

160 3.9863 4.1000 4.6101 4.0739 4.3352 3.9861 

180 4.0032 4.1030 4.7183 4.1407 4.1641 3.8738 

200 3.8448 3.8091 4.8949 4.1562 3.9389 3.7661 

 
Figure 7: MSE of the fitted models on linear exponential 
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Table 8: MAPE of SETAR and STAR Models across the Sample Sizes Fitted on exponential: 

𝑿𝒕𝒊 = 𝟎. 𝟕(𝑿𝒕𝒊−𝟏) − 𝒆𝒙𝒑(𝟎. 𝟔𝑿𝒕𝒊−𝟐) + 𝒆𝒕, 
Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 1.3342 0.4047 0.1393 2.2055 1.3890 0.0856 

40 1.6161 0.9140 0.1453 1.5373 1.0737 0.0353 

60 1.8865 1.1834 0.1516 2.0111 1.3406 0.0166 

80 1.5033 1.1021 0.0433 1.4952 1.4610 0.0251 

100 1.7352 1.0882 0.0691 1.7313 1.2953 0.0164 

120 1.6202 1.1602 0.0795 1.6204 1.1695 0.0255 

140 1.5126 1.0245 0.1535 1.5145 0.9938 0.0239 

160 2.7140 0.9093 0.1059 2.7156 0.9457 0.0128 

180 2.5708 1.2089 0.1491 2.7088 1.0777 0.0205 

200 2.9151 1.1651 0.2868 3.0500 1.2230 0.0284 

 

 
Figure 8: MAPE of the fitted models on linear exponential  

 

Table 9: AIC of SETAR and STAR Models across the Sample Sizes Fitted on exponential:  

𝑿𝒕𝒊 = 𝟎. 𝟕(𝑿𝒕𝒊−𝟏) − 𝒆𝒙𝒑(𝟎. 𝟔𝑿𝒕𝒊−𝟐) + 𝒆𝒕, 
Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 28.1502 34.7274 33.7870 37.4488 34.9490 32.0544 

40 66.0818 60.3679 99.7018 66.8613 62.5307 66.8624 

60 102.5909 99.1399 122.6586 108.6190 100.9202 102.0925 

80 131.5660 128.5413 181.0831 133.4939 129.3918 130.9438 

100 155.6841 150.4854 225.2943 157.6435 150.6339 152.6946 

120 181.6056 177.6071 298.4070 183.6111 175.9158 179.6469 

140 205.2917 200.9311 334.8540 207.3851 201.1480 192.3197 

160 235.2588 231.6578 376.7380 237.2519 240.6836 228.7670 

180 263.6756 258.8677 397.9810 259.7636 262.7697 254.1874 

200 283.3450 271.4776 400.4040 281.2083 280.1821 266.0767 
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Figure 9: AIC of the fitted models on linear exponential  

 

Table 10: MSE of SETAR and STAR Models across the Sample Sizes Fitted on polynomial:  

𝑿𝒕𝒊 = 𝟎. 𝟕(𝑿𝟐
𝒕𝒊−𝟏

) − 𝟎. 𝟔(𝑿𝒕𝒊−𝟐) + +𝒆𝒕  

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 853.4312 587.3325 757.1245 645.3714 395.0563 745.3714 

40 793.5645 477.3434 703.3665 585.3477 337.4387 725.3426 

60 777.1982 398.0101 694.7014 503.1258 320.3332 703.1235 

80 741.2009 387.4829 659.2508 567.5661 304.9870 687.5608 

100 721.0786 218.8977 646.2354 517.8725 299.4432 657.7815 

120 693.3134 197.4535 612.0578 414.1761 282.8970 624.1766 

140 656.0975 193.7908 585.3008 460.1515 270.0070 616.1530 

160 614.7413 190.0952 548.6817 415.3444 190.0170 595.3423 

180 583.3406 190.0163 517.3045 387.2332 189.3435 587.2315 

200 551.9715 189.8818 492.1313 377.1748 179.6745 567.1702 

 
Figure 10: MSE of the fitted models on linear polynomial  
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Table 11: MAPE of SETAR and STAR Models across the Sample Sizes Fitted on polynomial: 

𝑿𝒕𝒊 = 𝟎. 𝟕(𝑿𝟐
𝒕𝒊−𝟏

) − 𝟎. 𝟔(𝑿𝒕𝒊−𝟐) + 𝒆𝒕  

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 1340.7926 980.6726 1995.2816 1897.5615 18.0715 1255.9872 

40 1320.4634 943.7916 1875.5932 1858.2432 17.6511 1243.0681 

60 1318.8533 898.0138 1846.5414 1787.5018 17.2596 1223.0994 

80 1298.3176 552.9945 1787.3855 1508.1065 16.7551 1204.0231 

100 1257.6158 521.8885 1654.4346 1210.8366 16.5065 1169.0772 

120 1244.9438 396.4515 1574.4774 1198.8048 16.1365 1172.0032 

140 1216.2613 389.9954 1327.0113 1186.8262 16.0938 1156.7621 

160 1183.6763 382.0065 1225.5437 1156.9183 15.9967 1135.0931 

180 1165.5827 367.8916 1203.2573 1123.6213 15.6539 1124.8775 

200 1153.0547 367.8731 1162.7307 1020.4163 15.3027 1090.0752 

 
Figure 11: MAPE of the fitted models on linear polynomial 

 

Table 12: AIC of SETAR and STAR Models across the Sample Sizes Fitted on polynomial: 

𝑿𝒕𝒊 = 𝟎. 𝟕(𝑿𝟐
𝒕𝒊−𝟏

) − 𝟎. 𝟔(𝑿𝒕𝒊−𝟐) + 𝒆𝒕  

Sample size setar(2,1) setar(2,2) setar(2,3) star(2,1) star(2,2) star(2,3) 

20 1340.7912 980.6720 1995.2842 1997.5645 118.0715 1010.0173 

40 1150.4624 943.7914 1875.5967 1858.2445 117.6511 1009.1632 

60 1188.8505 898.0165 1786.5432 1787.5050 117.2596 918.7866 

80 1108.3111 552.9954 1687.3822 1508.1068 116.7551 918.7016 

100 1097.6128 521.8885 1664.4313 1210.8318 116.5065 908.6115 

120 1074.9462 396.4519 1574.4708 998.8074 116.1365 908.5015 

140 1046.2612 389.9903 1527.0154 886.8266 116.0938 908.4335 

160 1033.6735 382.0054 1485.5414 860.9141 115.9967 908.2214 

180 1027.5814 367.8913 1453.2584 753.6258 115.6539 872.1825 

200 1013.0575 367.8754 1362.7303 720.4166 115.3027 821.1074 
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Figure 12: AIC of the fitted models on linear polynomial 

 

Table 13: MSE of the Forecast of the Best Models from AR:𝑿𝒕𝒊 = 𝟎. 𝟕𝑿𝒕𝒊−𝟏 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  setar (2,1) setar (2,2) setar (2,1) setar (2,2) setar (2,1) setar (2,2) 

5 1.18e-33 1.28e-33 1.11e-32 6.23e-34 1.20e-33 1.03e-32 

10 1.16e-33 1.34e-32 1.28e-32 6.16e-34 1.28e-33 1.52e-32 

15 1.99e-32 1.09e-32 9.42e-33 2.79e-33 4.57e-32 8.12e-33 

20 2.67e-32 1.20e-32 7.61e-32 1.47e-32 4.61e-32 8.50e-33 

25 2.07e-32 1.82e-32 3.65e-32 4.16e-33 5.21e-32 2.80e-32 

30 2.48e-32 1.91e-32 2.48e-32 1.88e-32 5.58e-32 1.55e-32 

35 1.09e-31 2.01e-33 4.52e-32 2.10e-34 7.76e-32 1.75e-32 

40 4.11e-32 3.77e-34 5.69e-32 1.23e-32 7.56e-32 2.47e-32 

45 5.24e-32 7.94e-33 8.19e-32 1.21e-32 8.27e-32 2.69e-32 

50 4.73e-31 3.85e-31 8.65e-32 8.69e-32 9.24e-32 1.55e-32 

 

 
 

Table 14: AIC of the Forecast of the Best Models from AR:𝑿𝒕𝒊 = 𝟎. 𝟕𝑿𝒕𝒊−𝟏 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  setar (2,1) Setar (2,2) setar (2,1) Setar (2,2) setar (2,1) Setar (2,2) 

5 -1334.92 -1248.27 -1845.86 -2533.65 -1765.36 -2623.65 

10 -963.56 -691.83 -1012.66 -1784.85 -1008.51 -2209.88 

15 -1058.40 -1165.88 -1054.62 -2053.01 -1063.69 -2375.66 

20 -1416.88 -1483.91 -1126.80 -2242.51 -1415.46 -2486.88 

25 -1820.95 -1885.34 -1276.71 -2358.38 -1509.41 -2499.80 

30 -1973.35 -2594.84 -1553.26 -2559.43 -1692.35 -2560.91 

35 -1982.94 -2615.02 -1694.32 -2658.07 -1720.35 -2586.49 

40 -2077.78 -2751.49 -1858.98 -2744.65 -1812.59 2605.20 

45 -2290.65 -2945.85 -2089.80 -2807.97 -1878.93 -2752.65 

50 -2221.36 -2962.23 -2158.43 -2911.28 -1944.77 -2813.29 
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Table 15: MSE of the Forecast of the Best Models from Trigonometric AR (2): 

Xti = 𝟎. 𝟕𝒔𝒊𝒏(𝑿𝒕𝒊−𝟏)   −  𝟎. 𝟔𝒄𝒐𝒔(𝑿𝒕𝒊−𝟐) +  𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  setar (2,1) star (2,1) setar (2,1) star (2,1) setar (2,1) star (2,1) 

5 3.96e-32 1.19e-32 6.15e-33 2.37e-33 5.32e-33 2.34e-33 

10 4.66e-32 3.24e-33 6.59e-33 2.85e-33 4.66e-33 2.09e-33 

15 3.51e-32 7.79e-34 5.58e-33 2.04e-33 9.50e-33 2.95e-33 

20 4.44e-32 5.64e-33 6.90e-33 2.27e-33 8.58e-33 2.30e-33 

25 5.10e-32 5.68e-33 5.10e-33 2.08e-33 9.48e-33 2.49e-33 

30 3.15e-32 5.03e-34 5.83e-33 2.35e-33 8.13e-33 2.21e-33 

35 9.04e-32 1.05e-32 5.82e-33 2.35e-33 9.05e-33 2.03e-33 

40 4.47e-32 1.45e-32 5.68e-33 2.73e-33 8.39e-33 2.42e-33 

45 4.29e-32 7.37e-33 5.50e-33 2.10e-33 8.84e-33 2.27e-33 

50 4.24e-32 1.84e-33 6.11e-33 2.34e-33 8.75e-33 2.03e-33 

 

 
 

Table 16: AIC of the forecast of the best models from trigonometric: Xti = 𝟎. 𝟕𝒔𝒊𝒏(𝑿𝒕𝒊−𝟏)  −  𝟎. 𝟔𝒄𝒐𝒔(𝑿𝒕𝒊−𝟐) +  𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  setar (2,1) star (2,1) setar (2,1) star (2,1) setar (2,1) star (2,1) 

5 -1328.93 -3328.54 -998.94 -1228.08 -1379.34 -2328.64 

10 -750.29 -1749.28 -1019.96 -1752.73 -1036.60 -1750.27 

15 -1117.91 -2002.77 -1013.73 -1825.30 -1147.93 -1905.52 

20 -1376.63 -2187.14 -1083.49 -1924.29 -1269.26 -2583.81 

25 -1444.05 -2035.41 -1027.15 -1999.58 -1273.40 -2895.70 

30 -1553.53 -2267.84 -1085.12 -2239.38 -1304.14 -2828.10 

35 -2002.23 -2590.20 -1193.86 -2233.04 -1577.55 -2905.76 

40 -2287.60 -2990.80 -1411.71 -2263.58 -1975.73 -3137.97 

45 -2344.87 -3081.43 -1458.42 -2358.52 -2126.52 -3064.65 

50 -2356.05 -3023.79 -1512.53 -2408.25 -2091.44 -3198.36 
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Table 17: MSE of the forecast of the best models from exponential: Xti = 𝟎. 𝟕𝑿𝒕𝒊−𝟐 −  𝒆𝒙𝒑(𝟎. 𝟔𝑿𝒕𝒊−𝟐)  +  𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  setar (2,2) Star(2,3) setar (2,2) Star(2,3) setar (2,2) Star(2,3) 

5 1.67e-32 3.11e-31 4.15e-34 1.08e-33 2.98e-34 2.08e-32 

10 1.31e-32 3.71e-31 5.82e-34 1.28e-32 3.63e-34 2.58e-32 

15 1.10e-32 1.68e-31 4.54e-33 1.47e-32 5.92e-33 7.70e-32 

20 1.07e-32 2.79e-31 3.59e-33 1.79e-32 7.08e-33 9.15e-32 

25 1.14e-32 2.92e-31 5.15e-33 5.76e-32 6.37e-33 9.18e-32 

30 1.14e-32 2.40e-31 5.83e-33 5.60e-32 4.37e-33 8.04e-32 

35 1.26e-32 2.60e-31 8.32e-33 8.84e-32 4.48e-33 3.11e-31 

40 1.37e-32 3.04e-31 1.11e-32 1.54e-31 3.29e-33 6.43e-32 

45 1.48e-32 3.34e-31 1.94e-32 1.45e-31 4.54e-33 4.20e-32 

50 1.62e-32 4.42e-31 1.13e-32 1.37e-31 4.37e-33 4.65e-31 

 
Table 18: AIC of the forecast of the best models from exponential: Xti = 𝟎. 𝟕𝑿𝒕𝒊−𝟏 −  𝒆𝒙𝒑(𝟎. 𝟔𝑿𝒕𝒊−𝟐)  +  𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  setar (2,2) star (2,3) setar (2,2) star (2,3) setar (2,2) star (2,3) 

5 -1523.79 -978.44 -1713.79 -981.443 -1981.43 -1000.79 

10 -1995.29 -995.29 -1812.34 -1009.2899 -2105.0211 -1119.78 

15 -2129.71 -1034.82 -1829.71 -1110.82 -2451.975 -1189.71 

20 -2364.74 -1375.50 -1911.83 -1217.504 -2441.269 -1211.834 

25 -2424.09 -1445.65 -2153.74 -1280.654 -2680.202 -1253.744 

30 -2493.67 -1511.80 -2366.46 -1235.80 -2716.947 -1356.56 

35 -2768.97 -1668.80 -2579.92 -1295.82 -2763.372 -1389.78 

40 -2893.46 -1773.30 -2663.03 -1315.34 -2844.455 -1497.58 

45 -3108.93 -1980.92 -2778.56 -1468.93 -3220.099 -1587.33 

50 -3136.40 -2106.79 -2800.67 -1459.63 -3220.974 -1645.43 

 

 
 

Table 19: MSE of the forecast of the best models from polynomial: Xti = 𝟎. 𝟕𝑿𝒕𝒊−𝟏
𝟐 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  Setar(2,2) Star(2,2) Setar(2,2) Star(2,2) Setar(2,2) Star(2,2) 

5 2.91e-06 0.0040 2.33e-04 6.22e-04 2.91e-06 0.0040 

10 9.10e-07 0.0038 9.57e-05 5.81e-04 9.10e-07 0.0038 

15 6.05e-07 0.0038 7.45e-05 5.14e-04 6.05e-07 0.0038 

20 4.87e-07 0.0038 5.00e-05 4.97e-04 4.87e-07 0.0038 

25 3.54e-07 0.0035 9.57e-06 4.83e-04 3.54e-07 0.0035 

30 9.43e-08 0.0035 9.03e-06 4.77e-04 9.43e-08 0.0035 

35 8.13e-08 0.0035 8.00e-06 3.43e-04 8.13e-08 0.0035 

40 7.06e-08 0.0031 7.30e-06 2.32e-04 7.06e-08 0.0031 

45 4.53e-08 0.0022 4.55e-06 1.92e-04 4.53e-08 0.0022 

50 1.01e-08 0.0013 2.10e-06 1.77e-04 1.01e-08 0.0013 
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Table 20: AIC of the forecast of the best models from polynomial: -Xti = 𝟎. 𝟕𝑿𝒕𝒊−𝟏
𝟐 − 𝟎. 𝟔𝑿𝒕𝒊−𝟐 + 𝒆𝒕 

Sample Size n=20 n=100 n=200 

Steps ahead (h)  Setar(2,2) Star(2,2) Setar(2,2) Star(2,2) Setar(2,2) Star(2,2) 

5 9.15e-06 0.0412 9.89e-05 7.98e-04 5.22e-06 6.01e-04 

10 7.33e-06 0.0358 7.75e-05 5.20e-04 6.02e-06 4.98e-04 

15 6.45e-06 0.0302 7.56e-05 5.77e-04 5.51e-06 4.07e-04 

20 4.44e-06 0.0297 6.88e-05 4.78e-04 5.88e-06 3.98e-04 

25 3.16e-06 0.0279 5.07e-06 3.42e-04 5.07e-06 3.02e-04 

30 1.14e-06 0.0248 4.06e-06 2.89e-04 5.06e-06 2.09e-04 

35 7.11e-07 0.0249 3.77e-06 2.43e-04 4.07e-06 9.43e-05 

40 5.58e-07 0.0181 3.11e-06 2.00e-04 3.87e-06 9.12e-05 

45 5.01e-07 0.0172 1.78e-06 1.88e-04 2.92e-06 8.88e-05 

50 4.89e-07 0.0143 1.59e-06 1.81e-04 2.88e-06 7.21e-05 

 

   
 

Summary of Findings 

This study focuses on investigating the relative performance 

of two nonlinear thresholds autoregressive with two regimes 

namely SETAR and STAR models. Their forecasting 

performance were studied on three common forms of 

nonlinear functions, these are polynomial, exponential and 

trigonometric. Simulated data with features of nonlinearity 

and non-stationarity was used to compare the performance of 

the model. The relative performance of each model was 

examined with a view to identifying the best models using the 

following criteria, mean square error (MSE), Akaike 

Information Criteria (AIC) and Mean Absolute Percentage 

Error (MAPE). The results for the 2- regime SETAR and 

STAR models of order 1, 2 and 3 were discussed as follows: 

For the linear auto regressive models, the SETAR (2, 1) 

performs better than the other models followed by SETAR (2, 

2) on the basis of the MSE and AIC criteria. Whereas the 

MAPE criteria shows STAR (2, 3) is better than others in 

relative performance of the model.  Hence, since two among 

the three criteria shows that the SETAR (2, 1) and SETAR (2, 

2) were selected to be the best in forecasting the linear auto 

regressive models.  

Nevertheless, for the trigonometric nonlinear functions, it can 

be seen that SETAR (2, 1) and STAR (2, 1) are known to be 

the best based on the MSE and the AIC criteria and we 

therefore conclude that the two mentioned models were used 

for the best forecasting performance of the fitted models 

across the steps ahead. Moreover, the SETAR (2, 2) performs 

better for the MSE and the AIC criteria and STAR (2, 3) was 

considered to be the best based on all of the three criteria in 

an exponential nonlinear function. The SETAR (2, 2) and the 

STAR (2, 2) were known to be the best models for the relative 

performance of the models.  

Finally, in determining the forecasting ability of the fitted 

models, the SETAR (2, 1) and SETAR (2, 2) are taken as the 

best models and therefore used to forecast for future values at 

different steps ahead for an Auto regressive form of linear 

function. The SETAR (2, 1) and STAR (2, 1) for the 

trigonometric form, the SETAR (2, 2) and STAR (2, 3) for an 

exponential and the SETAR (2, 2) and STAR (2, 2) for a 

polynomial nonlinear function. The MSE and AIC of the 

values of the forecasted models are recorded to compare the 

relative forecast performance of the models at lower, 

moderate and large sample sizes respectively. 

It was recorded that, in linear form of autoregressive, SETAR 

(2, 2) forecasted better than SETAR (2, 1) from the low to the 

high steps ahead for all of the sample sizes. However, the 

SETAR (2, 1) superseded SETAR (2, 2) at the lowest steps 

when the sample is 20 and 200 in forecasting the 5 step ahead 

while SETAR (2, 2) took the lead as the step ahead increases 

based on the criteria.  The STAR (2, 1) outperforms the 

SETAR (2, 1) in trigonometric function from small, moderate 

and large sample sizes. As the steps ahead increases, the self-

exciting threshold auto regressive model tends to come closer 

to the smooth transition auto regressive model., the results of 

exponential and polynomial functions show that SETAR (2, 

2) was known to be the best model that can be used for 

forecasting.   
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CONCLUSION  

In this study, comparative performances of the nonlinear 

models with non-stationarity features were carried out. 

SETAR and STAR models at order 1, 2 and 3 and regime 2 

respectively was applied to AR, trigonometric, exponential 

and polynomial functions. It was concluded that SETAR (2, 

2) forecasted better at different steps ahead on both AR and 

polynomial functions which is in line with the findings of 

Akeyede et al (2016). Whereas in forecasting trigonometric 

nonlinear form of data, it can be seen that STAR (2, 1) 

outperforms the other models. However, SETAR (2, 2) has 

shown to have the best forecasting performance for an 

exponential function.   
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