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ABSTRACT 

Many models on the transmission dynamics of Lasser fever were based on purely deterministic approach. This 

approach does not put into cognizance randomness which is inherent in disease transmission resulting from 

differences in immunity levels, contact patterns, hygienic practices and mutation rates among so many other 

possibilities.  In this work, we attempt to demonstrate the impact of uncertainties in the mode of transmission 

of Lassa fever by subjecting the dynamics to some white noise modeled by the Brownian motion as a Wiener 

process. An existing deterministic model involving the Susceptible, Exposed, Infected and Recovered (SEIR) 

individuals was transformed into a stochastic differential equation model by applying the procedure proposed 

by Allen et al (2008). The resulting system of Stochastic Differential Equations (SDE) was solved numerically 

using the Milstein scheme for SDEs. An algorithm for the method was developed and implemented in Python 

programming language. Numerical simulations of the model was done using four sets of parameters;  λ 

, μ, γ, κ, β representing the natural birth rate, the natural death rate , the recovering rate from infected to 

recovered, transmission rate from exposed to infected ,transmission rate from susceptible to exposed  are 

carried out to investigate the transmission dynamic of Lassa fever. The results of the simulations indicate that 

randomness does affect transmission of Lassa fever. We therefore recommend that factors such as social 

behavior, hygienic practices, contact patters, mutation rate should be considered while formulating 

mathematics models of disease transmission.  
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INTRODUCTION 

Lassa Fever is an active Viral Hemorrhagic Fever (VHF) that 

is known to be endemic in Various West African countries 

including Nigeria. A viral disease majorly caused by Lassa 

Virus. The earliest record of the disease was in the 1950s but 

the virus was isolated by the Centre For Disease Control 

(CDC), Atlanta, USA in 1969, from a sample taken from a 

missionary workers in a town called Lassa in the Yedseram 

River valley in the present Borno State of Northern Nigeria 

(Tara, 2004). It is transmitted through Human – Human; 

Human - Environment – Human; Reservoir – Humans and 

Reservoir - Vector – Human. These various methods of 

transmission make Lassa fever to be endemic whenever the 

outbreak occurs, (Fisher-Hoch, Tomori, Nasidi, Perez-

Oronoz, Fakile, Hutwagner, 1995). 

So much efforts have been done over the years to study 

mathematically the dynamics of the spread and control of 

Lassa fever since its initial discovery in Nigeria such as the 

work of Ogabi, Olusa and Madufor (2012), Bawa, 

Abdulraham and Jimoh (2013) and others, just to mention a 

few. However, their works were based purely on deterministic 

approach.  

Deterministic models constitute a vast majority of the models 

in existing literature and are formulated in terms of Ordinary 

Differential Equation (ODE). Consequently, they predict the 

same dynamic for an infective process given the same initial 

conditions. Real life scenarios are often not straight forward 

as the approach posits as there are several effects that can 

introduce some form of uncertainties to real life dynamics. It 

is our view therefore that uncertainty should be included when 

modelling the dynamics of the spread of a disease. This agrees 

with the view of Gamboa and Lopez-Herrero (2013) that 

stochastic models analogous to ODE models which takes into 

account the random nature of the events capable of addressing 

issues such as probabilities of major outbreaks, disease 

extinction and general statistical analysis of some relevant 

epidemic descriptors are suitable for disease epidemic 

models.  

The main advantage of deterministic modeling over stochastic 

modeling lay on the simplicity to analyze. Stochastic 

modeling should be preferred over deterministic modeling 

because, most natural way of studying the spread of disease is 

stochastic because it defines the probability of transmission of 

disease between individuals (Andersson & Briton, 2000). 

Moreso, some phenomena are genuinely stochastic and do not 

satisfy the law of large number. In such cases, deterministic 

models are not the most appropriate approach for modeling 

the start of an epidemic because the number of infectious 

individuals is small. Furthermore, it terms of extinction of 

endemic diseases, it can only be analyzed by stochastic model 

because the extinction occurs when the epidemic process 

deviates from expected level, (Allen, 2007). Kloeden & 

Platen (1999) put it concisely by stating that stochastic models 

are, in general, more realistic since the spread of diseases is 

stochastic in nature. 

According to Britton (2009), deterministic models are 

primarily aimed at large community but stochastic models 

seem to be more appropriate to describe evolution of infective 

process evolving in a small community. For example, 

consider an epidemic outbreak in an uniformly homogenous 

community, it seems sensible to assume some 

uncertainty/randomness in the final number infected. Also, if 

the basic reproduction number, Ro> 1 and the community is 

large but the outbreak is initiated by only one (or a few) initial 

infective, it should be possible that, by chance, the epidemic 

never takes off.  

Taylor and Karlin (1998), stated that a deterministic model 

predicts a single outcome from a given set of circumstances. 

A stochastic model predicts a set of possible outcomes 

weighted by their likelihoods or probabilities. A deterministic 

model is specified by a set of equations that describe exactly 

how the system will evolve over time. In a stochastic model, 

the evolution is at least random and if the process is run 
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several times, it will not give identical results. Different runs 

of a stochastic process are often called realization of the 

process. Deterministic models are generally easier to analyze 

than stochastic model.  

 

Related Works 

Several works have been done on stochastic epidemic models. 

Tuckwell and William (2006) formulated some properties of 

a simple stochastic epidemic model of SIR type. The model is 

Markovian of the SIR type in which the total population is 

constant and individual meet a random number of other 

individuals at each time step. In the model with a finite 

recovery time R, simulations revealed large variability in both 

the total number of infected individuals and in the total 

duration of the epidemic, even when the variability in number 

of contacts per day is small. In the case of no recovery, 𝑅 =
∞, a formal diffusion approximation was obtained for the 

number of cases infected. 

Ogwuche, Iortyer, Emonyi and Ali M. (2023) formulated an 

SDE model for the transmission of Tuberculosis (TB). In their 

work, a deterministic model for the transmission of TB was 

presented and then transformed into a system of stochastic 

differential equation model. The Euler- Maruyama method 

was used for the simulation. 

Gamboa and Lopez – Herrero (2018) formulated the number 

of periodic inspections during outbreaks of discrete – time 

stochastic SIS epidemic model. The underlying Mathematical 

model involves a discrete   time Markov chain with a single 

absorbing state, the number of inspections in an outbreak is a 

first passage time into this absorbing state. Cumulative 

probabilities were numerically determined from a recursive 

algorithm and expected value comes from explicit 

expressions. 

Allen and Linda (2017) formulated a primer on stochastic 

epidemic models. The paper focused on the formulation, 

numerical simulation and analysis of stochastic epidemic 

model. Specially, models were formulated for continuous – 

time Markov chain and stochastic differential equations. 

Some well – known examples were used for illustration and 

analytical methods for approximating the probability of a 

disease outbreak were also discussed. 

Rao (2014) developed a dynamic analysis of a stochastic SIR 

epidemic. He assumed that stochastic perturbations are of a 

white noise type which is directly proportional to the distance 

of three variables from the steady state values, respectively. 

By constructing suitable Lyapunov functions and applying 

Itô’s formula, some qualitative properties were obtained. 

Finally, he deducted that when the intensities of noise satisfy 

some conditions and are not sufficiently large, the population 

of the stochastic model may be stochastically permanent. 

Lopez – Herrero (2013) formulated an epidemic transmission 

on SEIR stochastic models with non – linear incidence rate. 

Within a stochastic frame work, two random variables were 

defined to describe the variation of the number of secondary 

cases produced by an index case of a closed population. 

Computational algorithms were presented in order to 

characterize both random variables. He stated that a possible 

extension of his paper could be to study the epidemic 

expansion when control measures such as vaccination or 

isolation are implemented. 

Allen (2008) developed stochastic differential equation model 

using a procedure similar to that used in the advancement of 

many ordinary differential equation models. He considered 

two-state dynamical process where S1(t) and S2(t) represent 

the values of two states in the system at time t. He assumed 

that in a small time interval Δ𝑡,S1 can change by −𝜆1,0 or 𝜆1 

and S2 can change by −𝜆2 ,0 or 𝜆2  where 𝜆1,𝜆2 ≥ 0 . He 

further let Δ𝑆 ≡ [𝑆1, 𝑆2]𝑇which is the change in a small-time 

interval Δ𝑡.There are eight possible changes for the two states 

in the time interval Δ𝑡 not including the case where there is 

no change in the time interval. The changes 𝜆𝑖are assumed to 

be non-negative. All probabilities may depend on 𝑆1(𝑡), 𝑆2(𝑡) 

and time t. He also assumed that the probabilities for the 

change are proportional to the time interval Δ𝑡.He finalized 

by calculating the covariance matrix for the change. 

In summary, many researchers in recent times have worked 

on the deterministic Mathematical modeling of Lassa fever 

outbreak but no work has been extensively done stochastic 

Mathematical modeling of Lassa fever.  

 

MATERIALS AND METHODS 

Consider four (4) typical compartmental deterministic 

mathematical model using the S(t),E(t), I(t) and R(t)  to give 

a better understanding on the transmission dynamic of Lassa 

Fever. N(t) is the total population size given by: 

N(t) = 𝑆(𝑡)  + E(t)+ 𝐼(𝑡)+ 𝑅(𝑡)  (1) 

 

Parameters of the Model 

The parameter of the basic Lassa Fever model is defined as 

follows: 

 

Table 1: Parameters of a basic Lassa Fever Model 

Symbol Description 

𝜇 Natural death rate  

𝜆 Natural birth rate  

𝛾 Recovery rate from infected to recovered state 

𝜅 Transmission rate from exposed to infected state 

𝛽 Transmission rate from susceptible to exposed state  

 

Assumptions of the Model 

i. All the recruits are neither immune nor infected. 

ii. Recruitment into the Susceptible class is done by birth. 

iii. The virus does not kill the vector (their death can be 

naturally or accidental) and individuals in each class can 

die a natural death. 

iv. Humans cannot transmit the infection to rodents as it is 

assumed that they have no Lassa fever in their bodies. 

v. Infected immigrants are not included because it is 

assumed that most people who are sick will not travel. 

vi. There is no immigration of the recovered humans. 

Humans leave the population through natural death. 

vii. The infective period of the vector ends with its death 

and therefore the vector does not recover from being 

infective.
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The Model Equations 

The dynamics of transmission of Lassa fever can be represented schematically as shown Figure 1. 

 
Figure 1:  The Basic Lassa fever Transmission Diagram 

 

The assumptions in section 3.3 and the model flowchart 

together lead to the following system of ordinary differential 

equations which describe the transmission dynamics of the 

disease as: 
𝑑𝑆

𝑑𝑡
=  𝜆 − (𝛽 + 𝜇)𝑆 

𝑑𝐸

𝑑𝑡
 = 𝛽 − (k + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= k𝐸 − (𝛾 + 𝜇)𝐼          (2) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

 

Basic Properties of the Deterministic Model 

3.5.1 Invariant Property 

Theorem 3.1: The Closed Set 

D = {(S, E, I, R,)𝜖𝑅+
4 : S+E+I+R ≥ 0} 

Is positively invariant for the model equation (3.2) with non – 

negative initial condition in  𝑅+
4  

Proof: 

      Considering the total population size N which can be 

determined by N= S+E+I+R as stated in (3.1). 

        Differentiating (3.1) gives 
𝑑𝑁

𝑑𝑡
= 

𝑑𝑆

𝑑𝑡
  +

 𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
 + 

𝑑𝑅

𝑑𝑡
               (3) 

Substituting (3.2) into (3.3), we have: 
𝑑𝑁

𝑑𝑡
= 𝜆 − 𝛽𝑆 − 𝜇𝑆 + 𝛽𝑆 − Κ𝐸 − 𝜇𝐸 + Κ𝐸 − (𝛾 + 𝜇)𝐼 +

𝛾𝐼 − 𝜇𝑅  
𝑑𝑁

𝑑𝑡
= 𝜆 − (𝑆 + 𝐸 + 𝐼 + 𝑅)𝜇  

𝑑𝑁

𝑑𝑡
=  𝜆 − 𝑁𝜇  

𝑑𝑁

𝑑𝑡
≤ 𝜆 − 𝑁𝜇  

𝑑𝑁

𝑑𝑡
+ 𝑁𝜇 ≤ 𝜆  

and using Birkhoff and Rota(1989) Theorem on differential 

inequality, we have 

0≤ 𝑁 ≤
𝜆

𝜇
,  hence 

𝜆 − 𝑁𝜇 ≥ Ke-𝑢𝑡   Where K is constant 

Taking limit as t ⟶ ∞ 

𝑁 ≤
𝜆

𝜇
              (4) 

Based on (3.4), all feasible solution of the human population 

of the model system (2) are in the region. 

D= {(S, E, I, R)𝜖𝑅+
4  : N≤

𝜆

𝜇
}    (5) 

which is a positively invariant set under the flow induced by 

the model (2). Hence the system (2) is epidemiologically 

meaningful and mathematically well posed in the domain D. 

Therefore, in this domain it is sufficient to consider the 

dynamic of the flow generated by the model (3.2). In addition, 

the existence, uniqueness and continuation of results hold for 

the system. 

 

 

Existence and stability of steady-state solutions 

The E = (𝑆∗,𝐸∗,𝐼∗,𝑅∗) is the steady state of the system (3.2) 

which can be calculated by setting the right hand side of the 

model (3.2)to zero, giving  us the following; 

𝜆 − 𝛽𝑆 − 𝜇𝑆 = 0  

𝛽𝑆 − Κ𝐸 − 𝜇𝐸 = 0               (6) 

Κ𝐸 − (𝛾 + 𝜇)𝐼 = 0 

𝛾𝐼 − 𝜇𝑅 = 0 

 

Existence of disease-free equilibrium (DFE) 

Disease-free equilibrium points are steady-state solutions 

where there is no disease.  We defined the ‘diseased’ classes 

as the human population that is infected, that is; I and E, in the 

system (2) 

At equilibrium states the rate of change of the state varies with 

respect to time is Zero, i.e.   
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

Let E0 denotes the disease-free equilibrium. We set S*=𝐸∗ = 

I*= R*=0 

Hence, the DFE of the basic Lassa fever model (3.2) is given 

by 

E0 =(𝑆∗𝐸∗,𝐼∗, 𝑅∗, ) =[
𝜆

𝜇
, 𝑂, 0,0] (7) 

  

The existence of the trivial equilibrium point 

For as long as the birth rate 𝜆 is not zero, the population will 

not be extinct. This implies that there is no trivial equilibrium 

point, thus  

(S*, 𝐸∗ I*, R*) ≠ (0, 0, 0, 0) 

 

The Basic Reproduction Number, Ro 

The basic reproduction number denoted by Ro is the number 

of secondary cases of infection emanating from a single 

infection source i.e. produced by a typical infectious rodent or 

an individual. Ro= 1 implies that the disease is at threshold 

below which the generation of secondary case is insufficient 

to maintain the infection within human community. If Ro< 1, 

it implies that, an infected individual produces less than one 

new infected individual during the infectious period and the 

infection can be eradicated. Conversely if Ro>I, it implies that 

each infected individual produces on average more than one 

new infected individual and the disease will invade the 

population i.e. the DFE is unstable and invasion is always 

possible. 

To obtain Ro of our model, we explore using the next 

generation matrix operator approach developed by van den 

Driessche and Watmough (2002). Let the next generation 

matrix be G.It is comprised of two parts; F and 𝑉−1 where 

F= [
𝜕𝐹𝑖(𝑋0)

𝜕𝑥𝑗
]                 (8) 

V= [
𝜕𝑉𝑖(𝑋0)

𝜕𝑥
]              (9) 
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Where 

𝐹𝑖 =The new infections 

𝑉𝑖 =Transfers of infections from one compartment to another 

𝑋0 = The disease free equilibrium 

𝑅0 = The dorminant eigenvalue of the matrix 

G= 𝐹𝑉−1                            (10) 

The infection classes are E and I, Hence 

𝐹1  = 𝛽𝑆,                                       𝐹2  = 0 
𝜕𝐹1

𝜕𝐼
𝐸0⁄ = 𝛽𝑆∗ =

𝛽𝜆

𝜇
,       

𝜕𝐹1

𝜕𝐸
𝐸0⁄ = 0 

𝜕𝐹2

𝜕𝐼
𝐸0⁄ = 0,                  

𝜕𝐹2

𝜕𝐸
𝐸0⁄ = 0 

Using 

F= (

𝜕𝐹1

𝜕𝐼
𝐸0⁄

𝜕𝐹1

𝜕𝐸
𝐸0⁄

𝜕𝐹2

𝜕𝐼
𝐸0⁄

𝜕𝐹2

𝜕𝐸
𝐸0⁄

) = (
𝛽𝜆

𝜇
0

   0     0
) (11)  

 

Next  

Let 

𝑉1 = −[−(𝜅 + 𝜇)𝐸] 
=     [(𝜅 + 𝜇)𝐸] 
𝑉2 = −[𝜅𝐸 − (𝛾 + 𝜇)𝐼] 
= −𝜅𝐸 + (𝛾 + 𝜇)𝐼 
𝜕𝑉1

𝜕𝐼
𝐸0⁄ = 0,                         

𝜕𝑉1

𝜕𝐸
𝐸0⁄ = (𝜅 + 𝜇) 

𝜕𝑉2

𝜕𝐼
𝐸0⁄ = (𝛾 + 𝜇) ,          

𝜕𝑉2

𝜕𝐸
𝐸0⁄ = −𝜅 

V= (

𝜕𝑉1

𝜕𝐼
𝐸0⁄

𝜕𝑉1

𝜕𝐸
𝐸0⁄

𝜕𝑉2

𝜕𝐼
𝐸0⁄

𝜕𝑉2

𝜕𝐸
𝐸0⁄

) = (
0  𝜅 + 𝜇

  𝛾 + 𝜇  −𝜅
) 

 (12) 

Recall that if 

A= (
𝑎 𝑏
𝑐 𝑑

) 𝑡hen A−1 =
1

ad−bc
(

d −b
−c a

) 

Hence 

𝑉−1 =
1

0 − (𝛾 + 𝜇)(𝜅 + 𝜇)
(

−𝜅 −(𝜅 + 𝜇)

−(𝛾 + 𝜇) 0
) 

 

= (

𝜅

(𝛾+𝜇)(𝜅+𝜇)

−(𝜅+𝜇)

−(𝛾+𝜇)(𝜅+𝜇)

−(𝛾+𝜇)

−(𝛾+𝜇)(𝜅+𝜇)
0

)  

 

= (

𝜅

(𝛾+𝜇)(𝜅+𝜇)

1

(𝛾+𝜇)

1

(𝜅+𝜇)
0

)      

 (13) 

Therefore 

G= 𝐹𝑉−1 = (
𝛽𝜆

𝜇
0

0 0
) (

𝜅

(𝛾+𝜇)(𝜅+𝜇)

1

(𝛾+𝜇)

1

𝜅+𝜇
0

)  

 

= (
𝛽𝜆𝜅

(𝛾+𝜇)(𝜅+𝜇)𝜇

𝛽𝜆

𝜇(𝜅+𝜇)

0 0
)  

We have to find the most dominant eigenvalue of G 
|𝐺 − 𝜉𝐼| = 0 

 

|

𝛽𝜆Κ

𝜇(𝛾+𝜇)(Κ+𝜇)

𝛽𝜆

𝜇(Κ+𝜇)

0 −𝜉
| = 0  

−𝜉 [
𝛽𝜆Κ

𝜇(𝛾+𝜇)(Κ+𝜇)
] − 0 = 0  

 

𝜉 = 0 𝑜𝑟  𝜉 =
𝛽𝜆Κ

𝜇(𝛾+𝜇)(Κ+𝜇)
  

 

  Therefore, by calculation, 𝑅0 is defined. Mathematically, 

    𝑅0 =
𝛽λΚ

𝜇(γ+μ)(κ+μ)
          (14) 

 

Formulation of the Stochastic Model for the Transmission 

of Lassa Feaver 

Using the first modeling procedure developed by Allen et al 

(2008), we derive the stochastic model for the deterministic 

model (3.1) above 

Table 2: Table of transition probabilities 

Change Probability Event 

[𝟏𝟎𝟎𝟎]𝑻 𝑃1 = 𝜆Δ𝑡 Birth of a susceptible human. 

[−𝟏𝟎𝟎𝟎]𝑻 𝑃2 = 𝜇𝑆∆𝑡 Susceptible dies natural death. 

[−𝟏𝟏𝟎𝟎]𝑻 𝑃3 = 𝛽𝑆∆𝑡 Susceptible becomes exposed. 

[𝟎 − 𝟏𝟎𝟎]𝑻 𝑃4 = 𝜇𝐸∆𝑡 Exposed dies natural death. 

[𝟎 − 𝟏𝟏𝟎]𝑻 𝑃5 = 𝐾𝐸∆𝑡 Exposed becomes infected. 

[𝟎𝟎 − 𝟏𝟎]𝑻 𝑃6 = 𝜇𝐼∆𝑡 Infected dies natural death. 

[𝟎𝟎 − 𝟏𝟏]𝑻 𝑃7 = 𝛾𝐼∆𝑡 Infected becomes recovered. 

[𝟎𝟎𝟎 − 𝟏]𝑻 𝑃8 = 𝜇𝑅∆𝑡 Recovered dies natural death. 

 

The drift vector is defined as: 

𝐹
→

  = ∑ 𝑝𝑗
8
𝑗=1

→
𝜆𝑗

          (15) 

Where    
→
𝜆𝑗

 and 𝑝𝑗 are the random changes and the transition probabilities as defined in the table above. 

�⃗� =   𝑃1     [

1
0
0
0

] + 𝑃2 [

−1
0
0
0

] + P3 [

−1
1
0
0

] + 𝑃4    [

0
−1
0
0

] + 𝑃5   [

0
−1
1
0

] + 𝑃6 [

0
0

−1
0

] + 𝑃7 [

0
0

−1
1

] + 𝑃8 [

0
0
0

−1

]     

= [

𝜆
0
0
0

] + [

−𝜇𝑆
0
0
0

] + [

−𝛽𝑆
𝛽𝑆
0
0

] + [

0
−𝜇𝐸

0
0

] + [

0
−Κ𝐸
Κ𝐸
0

] + [

0
0

−𝜇𝐼
0

] + [

0
0

−𝛾𝐼
𝛾𝐼

] + [

0
0
0

−𝜇𝑅

]  

Hence, the drift vector �⃗� of order 4x 1, is given by 
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�⃗�  = [

𝜆 − (𝛽 + 𝜇)𝑆

𝛽𝑆 − (Κ + 𝜇)𝐸

Κ𝐸 − (𝛾 + 𝜇)𝐼
𝛾𝐼 − 𝜇𝑅

]                  (16) 

Similarly, the Covariance matrix which is the volatility coefficient is defined as  

V =∑ 𝑃8
𝑗=1 j 𝜆j (𝜆j) T              (17) 

  

V= 𝑃1 [

1
0
0
0

] [1 0 0 0] + 𝑃2 [

−1
0
0
0

] [−1 0 0 0] + 𝑃3 [

−1
1
0
0

] [−1 1 0 0] + 𝑃4 [

0
−1
0
0

] [0 − 1 0 0] +    

𝑃5 [

0
−1
1
0

] [0 − 1 1 0] + 𝑃6 [

0
0

−1
0

] [0 0 − 1 0] + 𝑃7 [

0
0

−1
1

] [0 0 − 1 1] + 𝑃8 [

0
0
0

−1

] [0 0 0 − 1] 

Multiplying the covariance matrix, we have: 

V= [

   𝜆 + 𝜇𝑆 + 𝛽𝑆         − 𝛽𝑆                                0                    0  
−𝛽𝑆              𝛽𝑆 + 𝜇𝐸 + Κ𝐸                    − Κ𝐸                0 

    0                         − Κ𝐸                   Κ𝐸 + 𝜇𝐼 + 𝛾𝐼          − 𝛾𝐼
       0                               0                             − 𝛾𝐼               𝛾𝐼 + 𝜇𝑅 

]           (18) 

Consequently, the resulting stochastic differential equation model of the equivalent ordinary differential equation model in 

equation(3.2) is given by: 

𝑑�⃗�(𝑡) = �⃗� (𝑡, �⃗�(𝑡)) 𝑑𝑡 + �⃗⃗�
1

2 (𝑡, �⃗�(𝑡)) 𝑑�⃗⃗⃗⃗�(𝑡) ; �⃗�(0) = [𝑋1(0),𝑋2(0),𝑋3(0), 𝑋4(0)]T   (19) 

where �⃗� and�⃗⃗� are as defined in equation (3.16) and (3.17) respectively. 

 

Method of Solution 

The Euler-Maruyama method is used for the simulation. For 

the Ito SDE  

d𝑋𝑡  = a(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡) 𝑑𝑊𝑡  (4.1) 

The Euler – Maruyama method is given by: 
𝑌𝑛+1 =  𝑌𝑛 + 𝑎(𝜏𝑛,𝑌𝑛)(𝜏𝑛+1 − 𝜏𝑛) + 𝑏(𝜏𝑛,𝑌𝑛)(𝑊𝜏𝑛+1

↑ −𝑊𝜏𝑛
)      

     (20) 

 f the Ito process. 

 

The Euler Scheme 

According Kloeden, P.E. and Platen Eckhard (2007), one of 

the simplest time discrete approximations of an Ito process is 

the Euler approximation, or the Euler-Maruyama 

approximation as it is sometimes called. Considering an Ito 

process X= {𝑋𝑡, 𝑡0 ≤ 𝑡 ≤ 𝑇}satisfying the scalar stochastic 

differential equation: 

d𝑋𝑡  = a(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡) 𝑑𝑊𝑡            (21) 

on 𝑡0 ≤ t ≤ T with the initial value 

𝑋𝑡0
= 𝑋0     (22)  

For a given discretization 𝑡0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑛 <
⋯ 𝜏𝑁 = 𝑇 of the time interval [𝑡0, 𝑇],an Euler approximation 

is a continuous time stochastic process Y = {𝑌(𝑡), 𝑡0 ≤ 𝑡 ≤
𝑇} satisfying the iterative scheme 
𝑌𝑛+1 =  𝑌𝑛 + 𝑎(𝜏𝑛,𝑌𝑛)(𝜏𝑛+1 − 𝜏𝑛) + 𝑏(𝜏𝑛,𝑌𝑛)(𝑊𝜏𝑛+1

− 𝑊𝜏𝑛
)   

     (23) 

In the 1- dimensional case, d= m= 1, the Euler scheme has 

the form 

𝑌𝑛+1 =  𝑌𝑛  + a∆  + 𝑏∆𝑊           (24) 

Where ∆ =  𝜏𝑛+1  −  𝜏𝑛  =  𝐼(0)  =  𝐽(0)         (25) 

Is the length of the time discretization subinterval [𝜏𝑛 , 𝜏𝑛+1] 
and 

∆𝑊 =  𝑊𝜏𝑛+1
 −  𝑊𝜏𝑛

                 (26)  

𝑌𝑛+1
𝑘  =  𝑌𝑛

𝑘  +  𝑎𝑘∆ + 𝑏𝑘∆𝑊,      (27) 

 For k = 1 , …, d, where the drift and diffusion coefficients 

are d- dimensional vectors a  =  (𝑎1, … , 𝑎𝑑)  and b  =
 (𝑏1, … , 𝑏𝑑). 
For the general multi- dimensional case with d, m = 1, 2…the 

kth component of the Euler scheme has the form 

𝑌𝑛+1
𝑘  =  𝑌𝑛

𝑘  +  𝑎𝑘∆ + ∑ 𝑏𝑘,𝑗∆𝑊𝑗𝑚
𝑗=1      (28) 

where 

∆𝑊𝑗  =  𝑊𝜏𝑛+1

𝑗
−  𝑊𝜏𝑛

𝑗
 =  𝐼(𝑗) =  𝐽(𝑗)       (29) 

Is the N(0; ∆) distributed increment of the jth component of 

the m- dimensional standard Wiener process W on [𝜏𝑛 , 𝜏𝑛+1] 
and ∆𝑊𝑗1  𝑎𝑛𝑑 ∆𝑊𝑗2  are independent for 𝑗1  ≠  𝑗2. The 

diffusion coefficient b =  [𝑏𝑘,𝑗]is a d× 𝑚 matrix. 

 

RESULTS AND DISCUSSION 

The resulting model in equation (3.18) was simulated using 

the Euler-Maruyama scheme in (20) using the parameter and 

initial condition:

 

Table 3: Table of value for the parameters 

Parameter Value 

𝜆 0.02 

𝜇 0.02 

𝛽 0.05 

K 0.1 

𝛾 0.05 

𝑆0 1000 

𝐸0 10 

𝐼0 1 

𝑅0 0 

The result for the simulation using these values for five realizations are as shown in Figure 4.1 – 4.5 
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Figure 2: Realization 1 of Lassa fever transmission dynamics 

 
Figure 3: Realization 2 of Lassa fever transmission dynamics 
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Figure 4: Realization 3 of Lassa fever transmission dynamics 

  
Figure 5: Realization 4 of Lassa fever transmission dynamics 

 

Discussion of Results 

The dynamics of the spread of Lassa fever can be effectively 

modeled in form of a stochastic differential equations.  

From the results of the simulations done as shown in figure 

(2) to figure (5) represent different realization of the 

simulations using the parameter values indicated on Table 3. 

The Exposed and the Infectious population can be observed 

to be under some randomness mimicking the uncertainties in 

the dynamic of transmission. The infected population and 

exposed population reached its peak within time interval 0-20 

and then exponentially decreases with time to zero. 

Specifically, the results in the figures indicate the decreasing 

population of susceptible population, random fluctuations in 

exposed and infected population to the final trend where the 

infected population decreases with time due to the decrease in 

the exposed population. This shows that spreading of the 

disease is being reduced due to the preventive measures which 

are being practiced.  

CONCLUSION 

In this work, a deterministic and a stochastic differential 

equation model is developed and investigated for the 

transmission dynamics of Lassa fever epidemic. The model, 

which is a multidimensional Ito diffusion process, includes 

susceptible individuals, exposed individuals, infected 

individual and recovered individuals. A deterministic model 

was formed and resulting model was transformed into a 

stochastic differential equation model by applying the 

procedure proposed by Allen et. al. (2008). As most nonlinear 

Stochastic Differential Equations (SDEs) are not easy to solve 

analytically, Euler Maruyama Method for SDEs is used to 

solve and analyze the model with the aid of Python software.  
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