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ABSTRACT 

Fish species show astonishing phenotypic and genetic diversity in populations. The delimitation and 

recognition of fish species are not only of interest to taxonomists but also a requirement in studies of ecology. 

In this study, the genetic structure of Caranx senegallus collected from three water bodies adjoining the Gulf 

of Guinea, Nigeria was characterized using the cytochrome c oxidase I (COI) barcode gene region. Fish 

samples collected from Qua Iboe estuary, Escravos estuary, and Lagos lagoon were identified morphologically, 

and muscle tissues were used for DNA barcoding using Fish1 and Fish2 primers. Evolutionary analysis showed 

the formation of diverging clades in the neighbor-joining tree and indicated the presence of multiple species. 

The result also revealed that morphological identification was not entirely successful, as the Basic Local 

Alignment Search Tool (BLAST) prediction confirmed the presence of three specimens initially identified as 

C. senegallus but genetically matching C. fischeri and Trachinotus goreensis. This observation further 

emphasized the need for an integrative method for species identifications.  
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INTRODUCTION 

Fish identification is traditionally based on Morphological 

features. However, due to high diversity and morphological 

plasticity, in many cases, fish and their diverse developmental 

stages are difficult to identify by using morphological 

characteristics alone (Omer, 2017). The characteristics of 

convergence and divergence in fishes can also lead to 

controversial classification, distinguishability, and 

identification of fishes (Keskin and Atar, 2013). Accurate 

identification of species is a pivotal component in 

conservation efforts.  

The use of traditional methods (morphological characters) in 

species identification is common in Nigeria. It has been 

estimated that about 48% of Nigerian freshwater fish species 

have been characterized using this method (Nwani et al., 

2011). The utilization of morphological techniques in fish 

species identification can be incorrect (Ward, 2009) as its 

accuracy has not yet been tested for many Nigerian fish 

species. The challenges of the use of morphology lie in the 

discrimination of closely related organisms. This has paved 

the way for the development of improved molecular 

approaches for the identification of fish species (Abdullah and 

Rehbein, 2017). Unlike the morphological-based method 

which is faced with inaccuracy due to the existence of 

synonymous external morphological features, the molecular 

diagnostic method is free from these barriers and can 

accurately identify species and also discover cryptic ones 

(Bingpeng et al., 2018). DNA barcoding is one of such 

molecular technology that has been used for the accurate 

identification of fish species. This technology relies on the 

observation that the 'barcode' sequence divergence within 

species is typically much lower than the divergence exhibited 

between species, making it an effective marker for species 

identification and discovery. DNA barcoding has since gained 

global support as a rapid, more accurate, cost-effective, and 

broadly applicable tool for species identification, particularly 

concerning fishes as coordinated by the Fish Barcode of Life 

(FISH-BOL) campaign. It has been used as an effective tool 

to perform unambiguous species identification of fishes in 

countries such as Australia (Ward et al., 2005); Mexico and 

Guatemala (Valdez-Moreno et al., 2009) and Indonesia 

(Nuryanto et al., 2023).  

To date, there are scanty details on the DNA barcoding of 

most fish species in Nigeria. Only the works of Nwani et 

al. (2011), Nwakanma et al. (2015), Falade et al. (2016), 

Iyiola et al. (2017), Ude et al., 2020; Mojekwu et al. (2021), 

Bolaji et al. (2023), Uchenna et al. (2023) and a few others 

are available for local fish species. Nigerian fishes need to be 

studied for adequate knowledge of genetic diversity and 

possible identification of new species, especially in the 

estuaries that have not been fully explored. The application of 

informative molecular markers will provide information on 

the molecular structure of fish species that will be useful in 

the identification of unique stocks, stock enhancement, 

breeding programmes for sustainable yield, and preservation 

of genetic diversity. Therefore, this study aimed to determine 

the utility of the COI marker gene in Caranx senegallus 

obtained from three water bodies adjoining the Gulf of 

Guinea, Nigeria.  

 

MATERIALS AND METHODS 

Description of the study area 

This study was carried out in three water bodies that have 

connections to the Gulf of Guinea, Atlantic Ocean. They 

include the Qua Iboe estuary, Escravos estuary, and Lagos 

lagoon. The sites were also characterized by landing sites with 

high species richness and availability of economically 

important fish species. These three water bodies also provide 

ample fishing opportunities for the coastal communities, 

waterways transportation, and offshore oil exploration. The 

map showing the study area is presented in Figure 1.
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Figure 1: Map showing Qua Iboe Estuary, Escravos Estuary, and Lagos Lagoon adjoining the Gulf of Guinea in Nigeria. 

 

Sampling 

Random samples of C. senegallus were collected each from 

Qua Iboe estuary, Escravos estuary, and Lagos lagoon 

through indigenous fishers operating in the various water 

bodies, using purse seine and gill nets.  The samples were 

thereafter taken to the laboratory for further identification and 

analysis. Phenotypically identified samples of C. senegallus 

from the three study sites were dissected and tissues 

aseptically collected. The muscle tissues were preserved in 

saline water, kept in an iced pack, and transported to Inqaba 

Biotechnology, Ibadan for DNA extraction, sequencing, and 

sequence analysis of COI barcode gene region.  

 

DNA Extraction, PCR Amplification and Sequencing 

DNA extraction was carried out using the Quick-DNATM 

Miniprep Plus Kit (Zymo Research®) and following the 

manufacturer’s protocol for solid tissues. The fish target 

region was amplified using the OneTaq Quick Load 2X 

Master Mix (NEB, Catalogue No: M9486), nuclease-free 

water, and template DNA with primers for forward and 

reverse reactions. Primers originally developed for marine 

and estuarine fish species were used for the amplification. The 

names of the primers used are presented in Table 1. After 

thermal cycling, the amplified DNA was stored at -20°C 

before use as described by Shokrallan et al. (2010).  

Gel electrophoresis was carried out using the methods 

described by Lucentini et al. (2006). Purified PCR products 

were directly sequenced in both forward and reverse 

directions with an automated DNA sequencer (ABI 3730) 

following the manufacturer's instruction. The nucleotide 

sequences were viewed and confirmed by eye using 

SeqManTMII (DNASTAR Lasergene 7). They were aligned 

in MEGA 7.0 using ClustalW (Kumar et al., 2018) with 

default parameters. The aligned sequences were translated 

into amino acids to check for premature stop codons and to 

confirm that the open reading frame was maintained in the 

protein-coding loci. Basic Local Alignment Search Tool 

(BLAST) was the program used to confirm the identity of the 

amplified sequences. This was achieved by comparing 

nucleotide sequence data that were produced from the 

genomic DNA to the sequences database at Genbank 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Additionally, the 

FASTA sequences of each of the COI sequences were 

inputted into the BOLD identification request tool 

(http://www.boldsystems.org/index.php/IDS_OpenIdEngine)

. Sequences were submitted for species-level identification 

under the option "Species Level Barcode Record" following 

Hebert et al. (2003).  

The evolutionary history was inferred using the UPGMA 

method (Sneath and Sokal, 1973). The tree was drawn to 

scale, with branch lengths in the same units as those of the 

evolutionary distances used to infer the phylogenetic tree. The 

evolutionary distances were computed using the Kimura 2-

parameter method (Kimura, 1980). The generated sequence 

data from the DNA barcoding were aligned and subjected to 

phylogenetic tree reconstruction using Maximum Likelihood 

(ML) and Kimura 2-parameter (K2P), with bootstrap 1000 

replicates. Genetic diversity distances based on K2P were 

analyzed using MEGA X.
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Table 1: PCR and sequencing primers used in this study. 

Primer 

Name 
Forward Reverse Reference 

Fish1 TCAACCAACCACAAAGACATT 

GGCAC 

TAGACTTCTGGGTGGCCAA 

AGAATCA 

Ward et al. 

(2005) 

Fish 2 TCGACTAATCATAA 

AGATATCGGCAC 

ACTTCAGGGTGACCG 

AAGAATCAGAA 

Ward, (2012).  

 

RESULTS AND DISCUSSION 

The BLAST prediction for C. senegallus from Qua Iboe 

estuary, Escravos estuary, and Lagos lagoon is presented in 

Table 2. The BLAST results showed different fish species 

inherent in the samples sequenced across the three water 

bodies. The percentage identity of the sequence data ranged 

from 98.72% to 100% in fish samples across the study sites. 

The Sequence length (bp) and highest query coverage ranged 

from 617 to 691 and 94% to 100% respectively. All 

identifications were confirmed as correct based on BLAST 

results except for three samples initially identified as C. 

senegallus using morphometric characters but genetically 

matching C. fischeri (2 samples from the Escravos estuary 

with 98.72% and 99.36% identity) and Trachinotus goreensis 

(from the Lagos lagoon with 100% identity).

 

Table 2: BLAST prediction for Caranx spp from Qua Iboe estuary, Escravos estuary and Lagos lagoon 

Water 

Body 

Sample  

ID 

Sequence 

length (bp) 

%  

Identity 

Accession no of 

BLAST hit 
Organism 

Alignment  

score 

Highest 

query 

coverage 

(%) 

Qua Iboe 

estuary 

QJACK1 646 99.68% LC646716.1 Caranx 

senegallus 

≥200 96% 

Qua Iboe 

estuary 

QJACK2 627 100% LC646716.1 Caranx 

senegallus 

≥200 100% 

Qua Iboe 

estuary 

QJACK3 618 100% LC646716.1 Caranx 

senegallus 

≥200 100% 

Escravos 

estuary 

EJACK1 641 99.36% LC646709.1 Caranx 

fischeri 

≥200 97% 

Escravos 

estuary 

EJACK2 638 98.72% LC646709.1 Caranx 

fischeri 

≥200 98% 

Escravos 

estuary 

EJACK3 640 98.72% LC646716.1 Caranx 

senegallus 

≥200 96% 

Lagos 

lagoon 

LJACK1 691 100.00% HM883016.1 Trachinotus 

goreensis 

≥200 94% 

Lagos 

lagoon 

LJACK2 620 100.00% LC646716.1 Caranx 

senegallus 

≥200 100% 

Lagos 

lagoon 

LJACK3 617 99.52% LC646716.1 Caranx 

senegallus 

≥200 100% 

 

Evolutionary analysis by Maximum likelihood (ML) method 

using base substitution model HKY+I at Bootstrap values of 

1000 showed the various lineages (Figure 2). The formation 

of diverging clades in the neighbor-joining tree indicated the 

presence of multiple species. The lineage comprised of three 

species from different genera and locations at 84% support 

value. Two species Caranx senegallus and Caranx fischeri 

are of the same genus. However, the third species Trachinotus 

goreensis is a sister to the former species. The overall mean 

genetic distance between the 9 fish samples computed based 

on the Kimura 2‑parameter (K2P) was identified to be 1.05 

with a standard error of 0.28. The interspecific distance within 

the species ranged from 0.00 - 0.187.
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Figure 2: Phylogenetic relationship among the species sampled from various locations  

Note: QUA (Qua Iboe estuary), ESC (Escravos estuary), LAG (Lagos lagoon) 

Discussion 

The study revealed that the identification of Caranx species 

was not entirely successful based on morphological characters 

alone. The BLAST prediction confirmed the targeted fish 

species except for three specimens initially identified as C. 

senegallus using morphometric characters but genetically 

matching C. fischeri (2 samples) and Trachinotus goreensis. 

Similar observations have been reported in many studies for 

different species of Caranx. Bolaji et al. (2023) have reported 

that samples of C. hippos that were previously identified using 

morphometric features were genetically identified as Caranx 

fischeri (with 100% identity on BOLD).  Wilette and Padin 

(2014) have also stated that samples initially identified as C. 

sexfasciatus were actually C. papuensis, which was 

determined through diagnostic coloration patterns and 

cytochrome b phylogenetic reconstruction. The proportion of 

fish species identified and confirmed using the morphological 

and DNA barcoding approach that was observed in this study 

(66.67%) was higher than the 39.60% confirmation rate 

reported by Iyiola et al. (2017). 

The observed discrepancies between the morphometric and 

genetic characteristics could be attributed to species 

misidentification. Caranx senegallus and C. fischeri belong to 

the Caranx genus, sharing many anatomical features and 

behaviors common to jackfish. Trachinotus goreensis on the 

other hand belongs to the Trachinotus genus, which is distinct 

from Caranx but still within the Carangidae family. The 

jackfish generally have elongated, compressed bodies, forked 

caudal fins, and two separate dorsal fins (one spiny, one soft). 

Although, C. senegallus is larger and slenderer than 

C. fischeri. Trachinotus on the other hand are oval-shaped 

bodies with a deeper profile. They are distinguishable for the 

possession of only one continuous dorsal fin, unlike the two 

separate fins of the Caranx species (Smith-Vaniz and 

Carpenter, 2007; Carpenter and De Angelis, 2016). 

The inconsistency between the morphometric and genetic 

characteristics observed in the Caranx spp could also be due 

to sequencing error, contamination during sample processing 

in the laboratory and mismatch as a result of the occasional 

disparity between BOLD and GenBank platforms (Radulovici 

et al., 2010; Ward, 2012). Iyiola et al. (2017) have reported 

7.5% cases of mismatches in which query sequences for 

GenBank and BOLD showed a sequence match with different 

species names within a 97% similarity cutoff. While BOLD 

employs distance-based algorithms that compare query 

sequences to the closest matching reference sequences in the 

database, GenBank on the other hand utilizes various 

algorithms, including BLAST and phylogenetic 

analyses, which can provide more nuanced identifications 

(Kelly et al., 2007; Sanderson et al., 2008). Inaccuracies in 

the query sequence itself can lead to mismatches with 

reference sequences in either database (Spouge and Mariño-

Ramírez, 2012). Also, if reference sequences lack key 

diagnostic regions, accurate identification may be challenging 

(Kekkonen and Hebert, 2014; DeSalle and Goldstein, 2019). 

Errors in the reference database itself can propagate through 

to identifications of query sequences (Meyer and Paulay, 

2005; Shen et al., 2013). This observation further emphasized 

the need for an integrative method for species identification, 

using both morphological and molecular techniques to ensure 

the correct identity of fish samples. 

The overall mean genetic distance between the fish samples 

computed based on Kimura 2‑parameter (1.05%) was lower 

than reports of 15.38% from Canadian freshwater (Hubert et 

al., 2008) and 15.46% from Australian freshwater (Ward et 

al., 2005). Variations could be attributed to the heterogeneous 

nature of the fish species analyzed in the two separate 

researches. The interspecific distance within species was 

lower than the range of genetic distances within the genera 

(6.90 - 28.1%) and families (16.00 - 25.70%) reported in 

Nigerian waters by Ude et al. (2020). Variations could be due 

to the heterogeneous nature of the studied population. The 

intraspecific K2P genetic distance obtained in this study was 

within the range of 0.091 and 1.31 reported in economically 

important freshwater fish species from north-central Nigeria 

(Iyiola et al., 2017). The observed genetic distance was also 

consistent with the range of 0 -  0.17 reported by Nwanni et 

al. (2011) in freshwater fishes collected in southeastern 

Nigeria. The intraspecific K2P distance in this study was in 

agreement with the findings of Hubert et al. (2008) in which 

the calculated intraspecific distance for 190 Canadian 

freshwater fish species was 0.3%. This range was, however, 

drastically smaller than the range of 0.00 - 4.12 reported in 

Sparus aurata obtained from Teluk Penyu Beach Cilacap of 

Indonesia (Nuryanto et al. 2023) and the value of 8.19% 

reported among morphologically similar Caranx species from 

Batangas, Philippines (Torres and Santos, 2019). The reduced 

intraspecific variation in the studied population could be a 

result of infrequent mating of members and genome-based 

alteration arising from exposure to environmental toxicants.  
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Nwani et al. (2011) have also reported that such differences 

could arise from genetic recombination and mutation. 

Intraspecific genetic variation could also occur as a result of 

hybridization and introgression. The Sequence length (bp) 

observed across the three water bodies (617 – 691) was within 

the acceptable DNA barcoding region (Mccusker et al. 

(2013). 

 

CONCLUSION 

Misidentification of fish species is a common challenge in 

taxonomy, especially for morphologically similar species, 

and accurate identification of the species also relies on the 

level of expertise of the taxonomist. The accurate 

identification of fish species is crucial for studying habitat 

use, diet, life cycles, interactions between species, and 

evolutionary relationships and adaptations. This study 

validated the reliability of DNA barcoding against the 

traditional method of morphological evaluation as genetic 

analysis revealed samples of C. fischeri and Trachinotus 

goreensis that were initially identified as C. senegallus. This 

highlights the limitations of relying solely on morphological 

evaluation for species identification, as it may lead to 

misclassification and misinterpretation of species diversity. 

These observations therefore have important implications for 

conservation efforts, as accurately identifying and 

understanding the genetic diversity of fish species is crucial 

for implementing effective conservation strategies and 

ensuring the preservation of biodiversity in Nigerian 

estuaries. The results obtained in this present study can 

facilitate decision-making and selections for biodiversity, 

breeding, and conservation in fisheries management. 
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