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ABSTRACT 

Agriculture is paramount to global food security, and predicting crop yields is crucial for policy and planning. 

However, predicting these yields is challenging due to the myriad of influencing factors, from soil quality to 

climate conditions. While traditional methods relied on historical data and farmer experience, recent 

advancements have witnessed a shift towards machine learning (ML) for improved accuracy. This study 

explored the application of machine learning (ML) techniques in predicting crop yields using data from 

Nigeria. Previous efforts lacked transferability across crops and localities; this research aimed to devise 

modular and reusable workflows. Using data from the Agricultural Performance Survey of Nigeria, this study 

evaluated the performance of different machine learning algorithms, including Linear Regression, Support 

Vector Regressor, K-Nearest neighbor, and Decision Tree Regressor. Results revealed the Decision Tree 

Regressor as the superior model for crop yield prediction, achieving a prediction accuracy of 72%. The findings 

underscore the potential of integrating ML in agricultural planning in Nigeria where agriculture significantly 

impacts the economy. Further research is encouraged to refine these models for broader application across 

varying agroecological zones.  
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INTRODUCTION 

Crop yield can be described as the measurement of a farm 

product grown per unit area of land. The measurement unit of 

crops is usually by kilograms per hectare or bushels per acre. 

According to a report in (Factors That Influence Crop Yield - 

Omnia Nutriology®, 2017) shown that yield performance of 

many crops can be attributed to four most important factors 

including soil fertility, availability of water, climate, and 

diseases or pests. This is some of the most important 

information used by scientist to predict crop yield (Xu et al., 

2019). 

Predicting crop yield is critical to addressing one of the 

gaining problems in food security, particularly with the 

impact of global climate change (Ansarifar and Wang 2019). 

Predictions are vital but complex problems, which is needed 

for sustainable boosting and good use of natural resources 

(Phalan, Green, and Balmford 2014). Accurate crop yield 

prediction is very pertinent to global food production. This is 

because, the predictions not only aid farmers in making 

informed commercial and management decisions but also 

help in famine prevention activities (Ansarifar and Wang 

2019). 

Different approaches have been used to predict crop 

performance including field surveys, crop growth models, 

remote sensing, statistical models, and their combinations 

(Paudel et al., 2021). Each of these approaches addresses 

imperceptible different aspects of crop yield prediction 

independently. The field surveys approaches try to apprehend 

the ground truth while crop growth models simulate the crop 

growth and development, putting agronomic principles, 

environmental and management interactions into 

consideration (Chipanshi et al., 2015). Remote sensing 

depends on satellite instruments showing frequent, coarse 

resolution image time series for yield estimation (Atzberger 

et al., 2016). The statistical models rely on the use of weather 

variables and the output of field survey, crop growth models 

and remote sensing as predicators to develop linear 

relationships between the predicators and crop yield (Paudel 

et al., 2021). Some studies have combined two or more of 

these approaches to predict crop yield. For example, in the 

studies of Zhao, Potgieter, Zhang, Wu and Hammer (2020) 

combined crop modelling and high-resolution remote sensing 

data to build statistical models to predict crop yield. Another 

study with similar approach conducted by Newlands et al. 

(2014) proposed a probabilistic yield prediction in Canada 

using crop modelling, remote sensing, Bayesian inference and 

statistical models. 

Machine learning (ML) takes a data-driven or empirical 

modeling approach to learn useful patterns and relationships 

from input data (Willcock et al., 2018) and offers a promising 

opportunity for improving crop yield predictions (Paudel et 

al., 2021). Machine learning models have proven powerful 

performance in several data-driven applications including the 

crop yield prediction (Zhao, Potgieter, Zhang, Wu and 

Hammer 2020; Paudel et al., 2021). Many studies have 

employed machine learning approaches such as the 

multivariate regression, random forest, association rule 

mining, regression tree and artificial neural network for crop 

yield prediction (Khaki, Wang, and Archontoulis 2020). The 

machine learning models treat the output, crop yield as an 

inherent function of the input variables such as weather 

parameters and soil conditions, which might be a precise 

complex and nonlinear function (Khaki, Wang, and 

Archontoulis 2020). Just as in statistical models, machine 

learning algorithms can also use the output of other 

prediction approaches as features. Machine learning 

algorithms have some distinct benefits as can model non-

linear relationships between multiple sources of data 

(Chlingaryan, Sukkarieh and Whelan 2018). The performance 

of Machine learning algorithms improves generally when 

more training is avail, where regularization techniques are 

employed to reduce variance and regularization error when 

the data is robust to noisy (Goodfellow, Bengio and Courville 

2016). Therefore, machine learning could combine the   

benefits of other approaches, such as remote sensing, data-

driven models, and crop growth modelling to make reliable 
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crop yield prediction (Paudel et al., 2021). 

The European Commission’s Joint Research Centre (JRC) 

and the National Agricultural Statistics Service (NASS) of US 

Department of Agriculture have a large-scale crop yield 

forecasting systems, such as the MARS Crop Yield 

Forecasting System (MCYFS) that relies on the infrastructure 

and historical data to build and assess crop prediction models 

for various crops in different localities (Paudel et al., 2021). 

The system utilizes statistical models from field survey 

results, crop growth model output, weather observations, 

remote sensing indicators and yield statistics (MARSWiki, 

2020; USDA-NASS, 2012). However, performance 

evaluation of MCYFS from 1993 – 2015 shows no significant 

improvement in the performance from 2006 onwards (Van der 

Velde and Nisini, 2019). Machine learning could be the best 

model for such large-scale system. 

Machine learning is a promising approach especially when a 

large amount of dataset is gathered and made public (Lokers, 

Knapen, Janssen, Randen, and Jansen 2016). For example, 

Jeong et al. (2016) employed multiple linear regression and 

random forest for yield prediction of potato, wheat and maize. 

The same machine learning algorithms were used by 

Shahhosseini, Martinez-Feria, Hu and Archontoulis (2019) to 

predict nitrate loss and corn yield. Awad (2019) proposed a 

mathematical optimization model and calculated biomass to 

predict potato yield. Several machine learning including 

decision tree and association rule mining for the classification 

of yield components of durum wheat and showed that 

association rule mining method best performance across all 

locations of the study (Romero, 2013). Ransom et al. (2019) 

evaluated machine learning approaches for corn nitrogen 

recommendation tool suing soil and weather information. 

 

Related Works 

various researchers explore the use of machine learning and 

data-driven approaches in optimizing agricultural practices 

and predicting crop yield. Chipanshi et al. (2015) focus on 

using an Extreme Learning Machine (ELM) model to 

accurately estimate coffee yield based on soil fertility 

properties, showing superior performance compared to 

traditional models. Goldstein et al. (2018) integrate data from 

various sources to predict irrigation recommendations for 

Jojoba crops, achieving high accuracy with regression and 

classification algorithms. Zhong, Li, Lobell, Ermon and 

Brandeau (2018) propose a hierarchical machine learning 

mechanism for seed variety selection, considering yield 

maximization and risk. Crane-Droesch (2018) introduce a 

deep neural network approach to model the relationship 

between weather and corn yield, outperforming traditional 

methods and showing less severe climate change impacts. 

Khanal, Fulton, Klopfenstein, Douridas and Shearer (2018) 

demonstrate the effectiveness of machine learning algorithms 

and remotely sensed data in predicting soil properties and 

corn yield. Taherei Ghazvinei et al. (2018) apply extreme 

learning machine to predict sugarcane growth, providing a 

swift and accurate model for the sugarcane industry. Ahmed 

et al. (2018) combines remote sensing and crop modeling to 

estimate maize yield, showcasing the potential of both 

techniques with high accuracy. These studies collectively 

highlight the value of machine learning and data-driven 

approaches in optimizing agricultural practices and yield 

prediction. Xu et al. (2019) developed an integrated climatic 

assessment indicator (ICAI) in Jiangsu Province, China, to 

evaluate the synthetic effects of meteorological factors on 

crop production. They used machine learning algorithms to 

construct the indicator, with Random Forest (RF) performing 

the best. The ICAI provided values for yield loss, normal 

conditions, and yield increment. The study assessed the past 

climatic suitability of winter wheat and predicted future 

suitability under global warming conditions. Filippi et al. 

(2019) explored the value of combining data from multiple 

fields and years for predicting crop yield. They used large 

farms in Western Australia as a case study and developed 

random forest models to predict crop yield. The models 

showed accurate predictions, improving as the season 

progressed and more within-season data became available. 

Ranjan and Parida (2019) focused on paddy acreage mapping 

and yield prediction in Sahibganj district, India, using 

Sentinel-based optical and SAR sensors data. They employed 

a Random Forest classification technique for mapping paddy 

acreage and developed a linear regression model for yield 

prediction. The study highlighted the usefulness of SAR data 

for accurate acreage mapping and the potential of timely 

information for decision-makers. Agarwal and Tarar (2021) 

addressed crop prediction in Indian agriculture using machine 

learning algorithms. They proposed an enhanced model, 

incorporating deep learning techniques such as Support 

Vector Machine (SVM), Long Short-Term Memory (LSTM), 

and Recurrent Neural Network (RNN). The model aimed to 

predict the most productive crop and provide information on 

soil ingredients and expenses. The study emphasized the use 

of climatic and soil conditions for accurate yield predictions 

and to assist farmers in decision-making processes. Paudel et 

al (2021) used Supervised regression and found that 

explainable features designed using principles of crop 

modeling can be used to predict crop yield at sub-national 

level. Ahmed, Adewumi, and Yemi-peters (2023) deployed 

Random Forest Algorithm to improve precision accuracy with 

minimal errors compared to manual process. 

 

Machine learning models 

Machine learning models are mathematical algorithms or 

computational systems that are designed to learn patterns and 

make predictions or decisions based on input data. These 

models are trained on large datasets to recognize and 

generalize patterns, enabling them to perform tasks such as 

classification, regression, clustering, or anomaly detection. 

Here are some machine learning models considered in this 

study. 

 

Regression 

In a machine learning regression model, the goal is to predict 

a continuous output value (𝑦) given an input feature vector 

(𝑥)  (Xu et al., 2019). The predicted output value is 

represented as a function of the input features, which can be 

represented mathematically as shown in Equation 2.1:  

𝑦 = 𝑓(𝑥) + ε    (1) 

where 𝑓(𝑥) is the predicted value of 𝑦 given 𝑥, and ε is the 

error term. 

In a linear regression model, the function 𝑓(𝑥)  is a linear 

function of the input features (Equation 2.2): 

𝑓(𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 (2) 

where 𝑤1, 𝑤2, ..., 𝑤𝑛 are the model coefficients (also known 

as weights) and 𝑏 is the bias term. For example, if we have a 

single input feature 𝑥  and a linear regression model with 

coefficient 𝑤 and bias 𝑏 , the predicted output value 𝑦  is 

expressed in Equation 2.3: 

𝑦 = 𝑤𝑥 + 𝑏     (3) 

The model coefficients and bias are learned from the data 

during the training process. The goal is to find the values of 

the coefficients and bias that minimize the error between the 

predicted values and the true values of 𝑦 in the training data. 

Once the model is trained, it can be used to make predictions 

on new, unseen data by plugging in the appropriate values for 
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𝑥 into the equation for 𝑓(𝑥) (Cravero, Pardo, Sepúlveda and 

Muñoz 2022). 

 

Support Vector Regressor 

Support Vector Regression (SVR) model is a powerful 

regression tool that predicts a continuous output value, 

represented as , based on a given input feature vector (Xu et 

al., 2019). The estimated output value is articulated as a 

function of the input features and can be expressed 

mathematically as follows: 

where is the estimated output value given input feature vector, 

and ε signifies the error term, representing the error in 

prediction. 

Distinct from traditional regression techniques, SVR does not 

aim to minimize the error. Instead, it aspires to fit the optimal 

hyperplane within a predefined error value ε, establishing an 

ε-insensitive tube (Agarwal and Tarar, 2021). The 

fundamental strategy of SVR is to identify a function which 

deviates from the actual response at most ε and at the same 

time is as flat as possible. 

SVR operates by mapping the input space into a high-

dimensional feature space via a kernel function, where the 

function in SVR is then formulated as a function of the input 

features. 

The mathematical representation of the Support Vector 

Regression (SVR) model is a bit more complex due to the 

utilization of the kernel function for mapping the data to 

higher dimensions and the introduction of the ε-insensitive 

loss function (Cravero, Pardo, Sepúlveda and Muñoz 2022). 

Formally, a linear Support Vector Regression function can be 

expressed in equation 2.4 as: 

𝑓 (𝑥) = < 𝑤, 𝑥 >  + 𝑏   (4) 

where: 

𝑓(𝑥)) is the regression estimate 

< 𝑤, 𝑥 > denotes the dot product of the weight vector w and 

the input vector x 

𝑏 is the bias term. 

However, in most practical situations, the data is not linear. In 

such cases, SVR employs the kernel trick to map input data to 

a higher-dimensional feature space where the data can be 

linearly separated. This allows the use of linear methods (like 

SVR) to solve non-linear problems. 

The kernelized version of the SVR function becomes 

(Equation 2.5): 

𝑓(𝑥)  =  𝛴 (𝑎𝑖 –  𝑎𝑖 ∗) 𝐾(𝑥𝑖, 𝑥)  +  𝑏   (5) 

where: 

𝑓(𝑥) is the regression estimate 

𝐾(𝑥𝑖, 𝑥) is the kernel function that maps xi and x to a higher-

dimensional space 

𝑎𝑖  and 𝑎𝑖 ∗  are Lagrange multipliers obtained from the 

solution of the dual problem. 

𝑏 is the bias term 

The optimization problem in SVR is to find the values of 𝑤 

and 𝑏 that minimize the following: 

½ ||𝑤||^2 +  𝐶 𝛴 (𝜉𝑖 +  𝜉𝑖 ∗) 

under the constraints: 

𝑦𝑖 − < 𝑤, 𝑥𝑖 >  − 𝑏 <=  𝜀 +  𝜉𝑖 
< 𝑤, 𝑥𝑖 >  + 𝑏 –  𝑦𝑖 <=  𝜀 +  𝜉𝑖 ∗ 

𝜉𝑖, 𝜉𝑖 ∗ >=  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 
where: 

||𝑤||^2 is the square of the Euclidean norm of 𝑤 

𝐶 is the regularization parameter. 

𝜉𝑖  and 𝜉𝑖 ∗ are slack variables introduced to cope with the 

infeasible constraints of the optimization problem. 

𝜀 is the width of the insensitive tube. 

In simple terms, the SVR algorithm tries to find a function 

𝑓(𝑥) that has at most 𝜀 deviation from the actually obtained 

target 𝑦𝑖 for all the training data, and at the same time, is as 

flat as possible (Agarwal and Tarar, 2021). This is achieved 

by minimizing ||𝑤||, which gives the flatness. In the case 

where this is not possible, the function is allowed to deviate 

more than ε, but these deviations are penalized in the objective 

function of the optimization problem. 

 

K-Nearest Neighbour 

K-Nearest Neighbors (K-NN) is a simple, yet effective 

supervised learning algorithm used for both classification and 

regression (Xu et al., 2019). It works based on the assumption 

that similar inputs have similar outputs, and the algorithm’s 

output is determined by the properties of its neighboring data 

points. 

The K-NN algorithm operates by identifying ‘K’ instances 

that are nearest to the test instance and classifies the input 

based on the most common class in the neighborhood. 

In the case of a regression problem, it takes the mean (or 

median, depending on the use case) of the values of its nearest 

neighbors. 

The distance between two instances can be measured in many 

ways, such as Euclidean distance, Manhattan distance, 

Minkowski distance, etc. The choice of distance measure 

depends on the problem at hand (Cravero, Pardo, Sepúlveda 

and Muñoz 2022). 

To explain it mathematically, let’s denote x as the input vector 

to be classified or used for prediction, and D as the dataset. 

The ‘K’ nearest neighbors are identified by the function as 

shown in equation 2.6: 

𝑁𝑁𝑘(𝑥)  =  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑑(𝑥, 𝑥𝑖)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖 𝑖𝑛 𝐷   (6) 

Here, 𝑑(𝑥, 𝑥𝑖) is a distance metric like the Euclidean distance, 

which for two points 𝑥 =  (𝑥1, 𝑥2, … , 𝑥𝑛) 𝑎𝑛𝑑 𝑦 =
 (𝑦1, 𝑦2, … , 𝑦𝑛) in an n-dimensional space can be computed 

as (Equation 2.7): 

𝑑(𝑥, 𝑦)  =  𝑠𝑞𝑟𝑡[(𝑥1 − 𝑦1)^2 +  (𝑥2 − 𝑦2)^2 +  … +
 (𝑥𝑛 − 𝑦𝑛)^2]    (7) 

This formula is used to calculate the distance between the new 

instance and all the instances in the training data. 

For classification, once the K neighbors are identified, the 

algorithm assigns the class that is most common among the 

neighbors: 

𝑦 =  𝑚𝑜𝑑𝑒(𝑦𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖 𝑖𝑛 𝑁𝑁𝑘(𝑥) 

Here, mode(𝑦𝑖) is the most common output (class) among the 

K nearest neighbors. 

For regression, the predicted output is typically the mean or 

median of the K nearest neighbors: 

𝑦 =  𝑚𝑒𝑎𝑛(𝑦𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖 𝑖𝑛 𝑁𝑁𝑘(𝑥) 

or 

𝑦 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖 𝑖𝑛 𝑁𝑁𝑘(𝑥) 

K-NN is a non-parametric, lazy learning algorithm meaning it 

doesn’t learn a discriminative function from the training set 

but ‘memorizes’ the training dataset instead (Cravero, Pardo, 

Sepúlveda and Muñoz 2022). The parameter K is crucial in 

this algorithm and choosing the right K is a complex task. A 

smaller K value will have a more flexible fit which will have 

low bias but high variance, whereas a larger K will have a 

smoother decision boundary (less variance) but increased 

bias. 

 

Decision Tree 

A decision tree is a machine learning model used for 

classification and regression tasks (Xu et al., 2019). It is a 

tree-like model that makes decisions based on the value of an 

input feature and splits the data into different branches based 

on the decision. The final decisions at the leaf nodes of the 

tree determine the output class or value for the input data 

(Cravero, Pardo, Sepúlveda and Muñoz 2022). 
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In a decision tree model, the goal is to predict a class label (in 

the case of classification) or a continuous output value (in the 

case of regression) based on a set of input features. 

For example, in a classification tree, the Gini impurity at a 

node t is calculated as Equation 2.8): 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝(𝑖|𝑡) ∧ 2   (8) 

where 𝑝(𝑖|𝑡)is the proportion of the samples at node t that 

belong to class 𝑖. 
The decision tree is constructed by recursively splitting the 

data at each node until the tree is fully grown. The final tree 

can then be used to make predictions on new, unseen data by 

following the decisions made at each node and reaching a leaf 

node, at which the output class or value is determined. 

 

MATERIALS AND METHODS 

In the proposed framework, four (4) machine learning 

algorithms including Linear Regression, Support Vector 

Regressor, K-Nearest Neighbor, and Decision Tree Regressor 

were executed to predict best crop yield predictions. Multiple 

but most common cash crops based on atmosphere, locations, 

and climatic parameters were taken into consideration for 

selections. In this model, data extracted from multiple sources 

with a variety of parameters was loaded, followed by the 

loading of useful libraries and packages for data pre-

processing. Feature selection was performed to extract the 

most important features in the dataset for the best 

performance. The dataset was then divided into training and 

testing ratios which were later used for both training and 

testing by employing the Machine Learning algorithms. The 

testing dataset was then used for various performance metric 

evaluations as in figure 1

 

 
Figure 1 Architecture of Proposed Model for Crop Yield Prediction 

 

Data Collection and Description 

The crop yield/performance datasets were generated from the 

Agricultural Performance Survey of Nigeria by the National 

Agricultural Extension and Research Liaison Services 

(NAERLS) and Federal Department of Agricultural 

Extension (FDAE) for a five (5) year period. There are several 

crops taken in this dataset like wheat, rice, maize, millet, yam, 

cocoyam, and sorghum. Climatic data were collected from the 

Nigerian Meteorological Agency (Nimet) for the same 5 years 

period. The prediction parameters in this dataset include 

temperature, rainfall, relative humidity, soil moisture, soil 

surface, and area. Several values are available for each 

prediction parameter for a single crop. For instance, when 

taking a crop such as wheat, any value can be given to the 

prediction parameters among a set of values available in the 

dataset, for wheat. It is the same for the entire crops available 

in the dataset. 

A sample of the dataset is captured below in table 1.
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Table 1:  Dataset 

ID Year State Crop land_area yield humidity soil_surface max_temp min_temp soil_moisture root_zone max_speed min_speed radiation rainfall 

1 2015 Abia Maize 79.62 1.16 85.12 0.69 32.78 13.13 0.85 0.68 6.15 0.07 35.77 1439.65 

2 2015 Abia Rice 14.59 2.4 85.12 0.69 32.78 13.13 0.85 0.68 6.15 0.07 35.77 1439.65 

4 2015 Abia yam 175.2 3.96 85.12 0.69 32.78 13.13 0.85 0.68 6.15 0.07 35.77 1439.65 

5 2015 Abia groundnut 7.2 1.344 85.12 0.69 32.78 13.13 0.85 0.68 6.15 0.07 35.77 1439.65 

7 2015 Abia cassava 196.86 9.52 85.12 0.69 32.78 13.13 0.85 0.68 6.15 0.07 35.77 1439.65 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

2467 2019 Zamfara benniseed 7.45 1.57 49.44 0.38 41.55 10.62 0.42 0.4 8.27 0.01 35.13 669.73 

2468 2019 Zamfara cotton 17.61 0.41 49.44 0.38 41.55 10.62 0.42 0.4 8.27 0.01 35.13 669.73 

2469 2019 Zamfara cassava 130.17 1.79 49.44 0.38 41.55 10.62 0.42 0.4 8.27 0.01 35.13 669.73 

2470 2019 Zamfara tomatoe 39.61 5.14 49.44 0.38 41.55 10.62 0.42 0.4 8.27 0.01 35.13 669.73 

2471 2019 Zamfara Onion 27.97 4.52 49.44 0.38 41.55 10.62 0.42 0.4 8.27 0.01 35.13 669.7 



CROP YIELD PREDICTION USING…      Shuaibu et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 8 No. 1, February, 2024, pp 61 - 68 66 

Data preprocessing 

The raw extracted data was cleaned, transformed, and 

organized. Exploratory Data analysis was performed to 

identify outliers, missing values, feature scaling, and data 

transformation where it is necessary. All the features were 

evaluated and only the best candidate was selected for the 

machine learning prediction. The dataset was then divided 

into training and testing datasets at a 0.2 ratio. This means that 

80% would be used for training while the remaining 20% for 

testing and subsequent performance metrics evaluation. 

 

Feature Extraction 

After data cleaning, a feature selection process was 

undertaken. Utilizing an algorithm based on a tree-structured 

model such as a Random Forest or Gradient Boosting, 

importance scores were attributed to each feature. The results 

highlighted land_area, crop, and humidity as having the 

highest importance scores, hence being the most influential 

variables in the dataset. 

Following the feature selection process, several models were 

trained, and their performances were evaluated via two 

metrics - Mean Squared Error (MSE) and R-Squared (R2 

Score). The model utilizing all features ("Full features") did 

not yield optimal results, with a low R2 score of only 0.17. 

The Random Forest model displayed a negative R2 score, 

indicative of its unsuitability for this specific dataset or a 

possibility of overfitting. 

However, the model employing Recursive Feature 

Elimination (RFE) for feature selection displayed the best 

performance, with an R2 score of 0.47. This underscores the 

need for prudent feature selection, as several features may not 

substantially contribute to the predictive capacity of the model 

and could therefore be removed. 

 

RESULTS AND DISCUSSION 

Crop Yield Prediction Scores of the Various Machine 

Learning Algorithms 

The crop yield prediction scores are expressed in percentage 

values. The higher the score, the better the algorithm's 

performance in predicting crop yield as presented in Table 3 

below. For the Full-Features dataset, the Linear Regression 

algorithm achieved a prediction score of 0.92%, the Support 

Vector Regressor obtained 5.94%, the Decision Tree 

Regressor achieved 42.11%, and the K-Nearest Neighbor 

algorithm achieved a score of 25.98%. 

 When using the RFE-Features dataset, the Linear Regression 

algorithm obtained a slightly higher prediction score of 

1.15%, the Support Vector Regressor achieved 5.89%, the 

Decision Tree Regressor showed a significant improvement 

with a score of 71.59%, and the K-Nearest Neighbor 

algorithm obtained a score of 25.93%. 

These results indicate that the performance of the algorithms 

varies depending on the dataset used. In the case of the 

Decision Tree Regressor, the algorithm performed 

significantly better with the RFE-Features dataset compared 

to the Full-Features dataset as shown in Table 2

 

Table 2: Crop Yield Prediction Scores of the Various Machine Learning Algorithms 

Dataset Linear Regression Support Vector 

Regressor 

Decision Tree 

Regressor 

K-Nearest 

Neighbor 

Full-Features 0.92% 5.94% 42.11% 25.98% 

RFE-Features 1.15% 5.89% 71.59% 25.93% 

 

Discussion 

The varying prediction scores achieved by different machine 

learning algorithms indicate the importance of dataset 

selection. The Decision Tree Regressor performed 

significantly better with the RFE-Features dataset compared 

to the Full-Features dataset. This finding suggests that the use 

of feature selection techniques, such as RFE, can improve the 

performance of prediction models for crop yield. These 

findings are consistent with studies by Gopal and Bhargavi 

(2019), which demonstrated the impact of dataset quality and 

feature selection on crop yield prediction accuracy. 

The superior performance of the Decision Tree Regressor on 

both the Full-Feature and RFE-Feature datasets, as indicated 

by lower MSE and MAE values and higher R-Squared, 

implies its effectiveness in predicting crop yield. These results 

align with the findings of previous studies by Kuradusenge et 

al. (2023) and Javadinejad, Eslamian and Ostad-Ali-Askari 

(2021), which highlighted the superiority of decision tree-

based algorithms in agricultural forecasting. The implication 

is that employing the Decision Tree Regressor, particularly 

with the RFE-Feature dataset, can lead to more accurate crop 

yield predictions. 

Our study advances the field by providing a comprehensive 

understanding of the connection between algorithmic choice, 

feature selection, and prediction accuracy—and by 

highlighting the advantages of the Decision Tree Regressor 

with the RFE-Feature dataset. This thorough study contributes 

to the repository of existing knowledge and provides 

practitioners with valuable data to assist them improve crop 

yield prediction precision. 

 

 

CONCLUSION 

Lastly, considering Nigeria's agricultural climate, our 

research validates the revolutionary impacts of integrating 

Machine Learning (ML) into crop yield prediction models. 

Our contribution is the meticulous evaluation of the Decision 

Tree Regressor, even though our findings are in line with 

previous research on the efficacy of machine learning.  

With enhanced measurements and a prediction score of 72%, 

the Decision Tree Regressor demonstrates its robustness in 

crop yield prediction by regularly outperforming competing 

algorithms. Beyond simply validating past research, our work 

offers specific insights for practitioners to optimize crop yield 

predictions in the Nigerian agriculture setting. 

In summary, our research offers a significant contribution to 

the field by examining the distinct use of the Decision Tree 

Regressor and providing practitioners and policymakers with 

useful suggestions. These results enrich existing knowledge 

and provide strategic direction for the growth of sustainable 

agriculture in Nigeria and other comparable economies. 
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