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ABSTRACT 

In this study, a continuous mathematical model for the dynamics of Measles (rubeola) outbreak at constant 

recruitment rate 𝜋was formulated. In the model, we partitioned the population into Susceptible (S), Vaccinated 

(V), exposed (E), Infected (I) and recovered (R) individuals. We analyzed a SVEIR compartmental nonlinear 

deterministic mathematical model of measles epidemic in a community with constant population. Analytical 

studies were carried out on the model using the method of linearized stability. The basic reproductive number 

𝑅0 that governs the disease transmission is obtained from the largest eigenvalue of the next-generation matrix. 

The disease-free equilibrium is computed and proved to be locally and globally asymptotically stable if 𝑅0 <
1 and unstable if 𝑅0 > 1 respectively. Finally, we simulate the model system in MATLAB and obtained the 

graphical behavior of each compartment. From the simulation, we observed that the measles infection was 

eradicated in the environment when𝑅0 < 1.  
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INTRODUCTION 

Measles are highly contagious infectious disease caused 

by measles virus (Guerra et al., 2017; Caserta, 2013; DHS, 

2015). Symptoms usually develop 10–12 days after exposure 

to an infected person and last 7–10 days (Bope et al., 2014; 

WHO, 2014). Initial symptoms typically include fever, often 

greater than 40 °C (104 °F), cough, runny nose, and  inflamed 

eyes  (Caserta, 2013; CDC, 2014). Small white spots known 

as Koplik's spots may form inside the mouth two or three days 

after the start of symptoms (CDC, 2014). A red, flat rash 

which usually starts on the face and then spreads to the rest of 

the body typically begins three to five days after the start of 

symptoms (CDC, 2014). Common complications 

include diarrhea (in 8% of cases), middle ear infection (7%) 

and pneumonia (6%) (Atkinson, 2011). These occur in part 

due to measles-induced immuno-suppression (Rota et al., 

2016). Less commonly seizures, blindness, or inflammation 

of the brain may occur (Atkinson, 2011; WHO, 2014). Other 

names include morbilli, rubeola, red measles, and English 

measles (Milner, 2015; Stanley, 2002). Both rubella, also 

known as German measles, and roseola are different diseases 

caused by unrelated viruses (Marx, 2010).  

 Measles is an airborne disease  which spreads easily from 

one person to the next through the coughs and sneezes of 

infected people (WHO, 2014). It may also be spread through 

direct contact with mouth or nasal secretions (WHO, 2019). It 

is extremely contagious: nine out of ten people who are not 

immune and share living space with an infected person will 

be infected (Atkinson, 2011). Furthermore, measles’s 

reproductive number estimates vary beyond the frequently 

cited range of 12 to 18 (Guerra et al., 2017). People are 

infectious to others from four days before to four days after 

the start of the rash (Atkinson, 2011). While often regarded as 

a childhood illness, it can affect people of any age (Chen, 

2018). Most people do not get the disease more than once 

(WHO, 2014). Testing for the measles virus in suspected 

cases is important for public health efforts (Atkinson, 

2011).  Measles is not known to occur in other animals 

(WHO, 2019). Once a person has become infected, no specific 

treatment is available, (WHO, 2019) although supportive 

care  may improve outcomes (WHO, 2014). Such care may 

include oral rehydration solution  (slightly sweet and salty 

fluids), healthy food, and medications to control the fever 

(Bope et al., 2014; WHO, 2014). Antibiotics  should be 

prescribed if secondary bacterial infections such as ear 

infections or pneumonia occur (WHO, 2014; WHO, 2019). 

Vitamin A  supplementation is also recommended for 

children (WHO, 2019). Among cases reported in the U.S. 

between 1985 and 1992, death occurred in only 0.2% of cases, 

(Atkinson, 2011) but may be up to 10% in people 

with malnutrition (WHO, 2014). Most of those who die from 

the infection are less than five years old (WHO, 2019). 

The measles vaccine is effective at preventing the disease, is 

exceptionally safe, and is often delivered in combination with 

other vaccines (WHO, 2014; Russell et al., 2019). 

Vaccination  resulted in an 80% decrease in deaths from 

measles between 2000 and 2017, with about 85% of children 

worldwide having received their first dose as of 2017 (WHO, 

2019). Measles affects about 20 million people a year, 

(Caserta, 2013) primarily in the developing areas of Africa 

and Asia (WHO, 2014). It is one of the leading vaccine-

preventable disease causes of death (Kabra & Lodha, 2013; 

WHO, 2019). In 1980, 2.6 million people died from measles, 

(WHO, 2014) and in 1990, 545,000 died due to the disease; 

by 2014, global vaccination programs had reduced the 

number of deaths from measles to 73,000 (GBD, 2013; GBD, 

2015). Despite these trends, rates of disease and deaths 

increased from 2017 to 2019 due to a decrease in 

immunization (WHO, 2018; WHO, 2019; CDC, 2019).  

Measles can be prevented with measles-containing vaccine, 

which is primarily administered as the combination measles-

mumps-rubella (MMR) vaccine. The combination measles-

mumps-rubella-varicella (MMRV) vaccine can be used for 

children aged 12 months through 12 years for protection 
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against measles, mumps, rubella and varicella. Single-antigen 

measles vaccine is not available. 

One dose of MMR vaccine is approximately 93% effective at 

preventing measles; two doses are approximately 97% 

effective. Almost everyone who does not respond to the 

measles component of the first dose of MMR vaccine at age 

12 months or older will respond to the second dose.  

Therefore, the second dose of MMR is administered to 

address primary vaccine failure (CDC, 2013). A vaccine 

failure is when an organism contracts a disease in spite of 

being vaccinated against it. Primary vaccine  failure occurs 

when an organism's immune system does not 

produce antibodies  when first vaccinated. Vaccines can fail 

when several series are given and fail to produce an immune 

response 

In this paper, we also intend to see how basic reproduction 

number  𝑅0affects the eradication of measles epidemic in a 

given area or population.  

 

MATERIALS AND METHODS 

Model formulation 

In this section, we developed a compartmental mathematical 

model of (SVEIR) to investigate the effect of vaccination in 

the dynamical spread of measles in the community. The 

human population is subdivided into four classes. These 

classes of individual are: Susceptible (S), Vaccinated (V), 

exposed (E), Infected (I) and recovered (R) individuals. The 

formulation of the model is based on the following 

assumptions:  

 

Assumptions of the model 

i. the recruitment is through birth only. 

ii. The recruitment is constant. 

iii. all individuals are born susceptible. 

iv. an individual can be infected through coughing and 

sneezing, close personal contact or direct contact with 

infected nasal or throat secretions. 

v. infected individuals die either naturally or due to the 

disease. 

vi. vaccination is strictly on susceptible children. 

vii. individuals who received first dose of the vaccine return 

to the susceptible class when they lose immunity due to 

the fact that receiving first dose does not guarantee 

permanent immunity.  

viii. individuals who received first and second dose of the 

vaccine are approximately 97% immune to measles 

virus. 

ix. individuals who received first and second dose of the 

vaccine get infected at a minimum rate(1 − 𝜂)𝛽𝐼, lower 

than the susceptible individuals, where 𝜂 is the measles 

vaccine efficacy. 

 

Flow diagram of the model with constant control 

We demonstrate the dynamical transfer of the population with 

the flow diagram in Figure 1 below:

 
Figure 1: Flow diagram for the SVEIR Model 

 

Table 1: Description of the variables of the models  

Variables Description 

𝑆(𝑡) Number of susceptible individuals at time (𝑡). 

𝑉(𝑡) Number of vaccinated individuals at time (𝑡). 

𝐸(𝑡) Number of exposed individuals at time (𝑡). 

𝐼(𝑡) Number of infected individuals at time (𝑡). 

𝑅(𝑡) Number of Recovered individuals at time (𝑡). 

𝑁(𝑡) The total human population size at time (𝑡). 

 

Table 2: Description of the parameters of the models 

Parameters Description 

𝜋 The recruitment rate. 

𝑝 The proportion of newborn babies who are not vaccinated 

1 − 𝑝 The proportion of newborn babies who are vaccinated 

𝜑 Proportion of individuals who are vaccinated once (not fully). 

1 − 𝜑 The proportion of individuals who are vaccinated twice (fully). 

𝜃 The rate at which the susceptible individuals move to the vaccinated class. 

𝜎   The rate at which the vaccinated individuals moved to the recovered class. 

𝛿 The rate at which the exposed individuals moved to the recovered class. 
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𝛽 The probability of one infected individual to become infectious. 

𝜂
 

The vaccine efficacy of the measles (which is the percentage reduction in a disease in a group of people 

who received a vaccination in a clinical trial.). 

𝜓 The incubation rate (rate at which exposed individuals, E(t), progress to 

infected I(t)). 

𝛾 The rate of waning of first dose of vaccine. 

𝜅
 

The rate at which the infected individuals moved to the recovered class. 

𝑑 The death rate due to the disease in the infected class. 

𝜇 The natural death rate. 

 

Equations of the model 
𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜋 − 𝛽𝐼𝑆 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆       (1) 

𝑑𝑉

𝑑𝑡
= 𝑝𝜋 + 𝜃𝑆 − (1 − 𝜂)𝛽𝐼𝑉 − 𝜑𝛾𝑉 − (1 − 𝜑)𝜎𝑉 − 𝜇𝑉      (2) 

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉 − (𝛿 + 𝜓 + 𝜇)𝐸       (3) 

𝑑𝐼

𝑑𝑡
= 𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼         (4) 

𝑑𝑅

𝑑𝑡
= 𝛿𝐸 + 𝜅𝐼 + (1 − 𝜑)𝜎𝑉 − 𝜇𝑅        (5) 

𝑁 = 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅         (6) 

where 

𝑆(0) = 𝑆0 > 0, 𝑉(0) = 𝑉0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0,0 ≤ 𝑝 ≤ 1, 0 ≤ 𝜂 ≤ 1, 0 ≤ 𝜑 ≤ 1 

The force of infection for human to human interaction 𝜆 = 𝛽 𝐼.  
 

Model Analysis 

Existence and uniqueness of solution for the model 

Consider the initial value problem (IVP) 

𝑦/ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0         (7) 

whose solution exist and unique. 

In this subsection, we shall establish conditions for the existence and uniqueness of solution for the system of equations.  

Let 𝑦/ = 𝑓(𝑡, 𝑦) = 𝑓(𝑦)          (8) 

such that 

𝑓1(𝑡, 𝑦) = 𝑓1(𝑦) = 𝑓1 = (1 − 𝑝)𝜋 − 𝛽𝐼𝑆 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆      (9) 

𝑓2(𝑡, 𝑦) = 𝑓2(𝑦) = 𝑓2 = 𝑝𝜋 + 𝜃𝑆 − (1 − 𝜂)𝛽𝐼𝑉 − 𝜑𝛾𝑉 − (1 − 𝜑)𝜎𝑉 − 𝜇𝑉     (10) 

𝑓3(𝑡, 𝑦) = 𝑓3(𝑦) = 𝑓3 = 𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉 − (𝛿 + 𝜓 + 𝜇)𝐸      (11) 

𝑓4(𝑡, 𝑦) = 𝑓4(𝑦) = 𝑓4 = 𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼        (12) 

𝑓5(𝑡, 𝑦) = 𝑓5(𝑦) = 𝑓5 = 𝛿𝐸 + 𝜅𝐼 + (1 − 𝜑)𝜎𝑉 − 𝜇𝑅       (13)  

 

Theorem1: (Cauchy-Lipchitz theorem) 

Consider the initial value problem (IVP) 

𝑦/ = 𝑓(𝑡, 𝑦1, 𝑦2, 𝑦3, . . ., 𝑦𝑛),𝑦(𝑡0) = 𝑦0,
 
𝑦1(𝑡0) = 𝑦1,

 
𝑦2(𝑡0) = 𝑦2,. . . , 𝑦1(𝑡0) = 𝑦1

  
(14) 

 Let𝑅denote the region 
|𝑡 − 𝑡0| ≤ 𝑎,‖𝑦 − 𝑦0‖ ≤ 𝑏,𝑦 = (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛),𝑦0 = 𝑦10 , 𝑦20 , 𝑦30 ,

. . ., 𝑦𝑛0 ,    (15)  

Suppose that 𝑓(𝑡, 𝑦) satisfies the Lipchitz condition ‖𝑓(𝑡, 𝑦𝑛) − 𝑓(𝑡, 𝑦𝑛−1)‖ ≤ 𝐿‖𝑦𝑛 − 𝑦𝑛−1‖,𝑛 = 1,2,3, . . . (16) 

 whenever the pair (𝑡, 𝑦𝑛) and (𝑡, 𝑦𝑛−1) belong to𝑅, where 𝐿 is a Lipchitz positive constant, then there exist a constant number 

𝛿 > 0 such that there exists a unique continuous vector solution 𝑦
_
(𝑡) of the system (14) in the interval |𝑡 − 𝑡0| < 𝛿. 

It is important to note that condition (16) is satisfied by the requirement that 
∂𝑓𝑖

∂𝑦𝑗
,
 
∀𝑖, 𝑗 = 1,2,3, . . . , 𝑛 are continuous and 

bounded in the region 𝑅. 

 

Lemma 1. If 𝑓(𝑡, 𝑦) has continuous partial derivative 
∂𝑓𝑖

∂𝑦𝑗
on a bounded closed convex domain R, then it satisfies a Lipchitz 

condition in R. 

We are interested in the region 

1 ≤ 𝜀 ≤ 𝑅.          (17)  

We look for a bounded solution of the form 

0 < 𝑅 ≤ ∞.          (18)  

We shall prove the following existence theorem. 

 

Theorem 2. Let 𝐷/denote the region defined in (16) such that (17) and (18) hold. Then there exist a solution of model system 

(9)-(13) which is bounded in the region𝐷/. 
 

Proof: 

From (9) 
𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜋 − 𝛽𝐼𝑆 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆      

Let 
𝑑𝑆

𝑑𝑡
= 𝑓1(𝑡, 𝑦1) ≡ 𝑓1(𝑡, 𝑆)  
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𝑓1(𝑡, 𝑆) = (1 − 𝑝)𝜋 − 𝛽𝐼𝑆 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆  

|
∂𝑓1

∂𝑆
| = |−(𝛽𝐼 + 𝜃 + 𝜇)| < ∞,|

∂𝑓1

∂𝑉
| = |𝜑𝛾| < ∞,|

∂𝑓1

∂𝐸
| = 0 < ∞,|

∂𝑓1

∂𝐼
| = |−𝛽𝑆| < ∞,|

∂𝑓1

∂𝑅
| = 0 < ∞ 

From (10) 
𝑑𝑉

𝑑𝑡
= 𝑝𝜋 + 𝜃𝑆 − (1 − 𝜂)𝛽𝐼𝑉 − 𝜑𝛾𝑉 − (1 − 𝜑)𝜎𝑉 − 𝜇𝑉Let 

𝑑𝑉

𝑑𝑡
= 𝑓2(𝑡, 𝑦2) ≡ 𝑓2(𝑡, 𝑉)  

( ) ( ) ( ) VVVIVSpVtf  −−−−−−+= 11,2
|
∂𝑓2

∂𝑆
| = |𝜃| < ∞ , |

∂𝑓2

∂𝑉
| = |−((1 − 𝜂)𝛽𝐼 + (1 − 𝜑)𝜎 + 𝜑𝛾 +

𝜇)| < ∞,|
∂𝑓2

∂𝐸
| = 0 < ∞,|

∂𝑓2

∂𝐼
| = |−(1 − 𝜂)𝛽𝑉| < ∞,|

∂𝑓2

∂𝑅
| = 0 < ∞ 

Similarly, we can also show that the remaining equations satisfy Lipchitz conditions.
 

This completes the proof. 

Since all 𝑓𝑖

 

and their partial derivatives of the model equations with respect to each dependent variables (i.e. S, V, E, I and R) 

are continuous and bounded in the interval 0 < 𝑅 < ∞ by Lemma1, there exists a unique solution of (9) to (13) in the region 

𝑅. 

 

The positivity of solution of model  

Theorem 3: 

Let the initial values of the parameters be  

{𝑆(0) = 𝑆0 > 0,𝑉(0) = 𝑉0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0,𝑅(0) = 𝑅0 ≥ 0,∈ 𝑅+
5 .  

Then, the solution set {𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)}of the system (1) to (5) is non-negative for all t > 0. 

 

Proof 

From (1) 
𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜋 − 𝛽𝐼𝑆 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆 

It follows by comparison theorem that 
𝑑𝑆

𝑑𝑡
≥ −(𝛽𝐼 + 𝜃 + 𝜇)𝑆         (19) 

Solving (19) with the aid of separation of variables, we have 
𝑑𝑆

𝑆
≥ −(𝛽𝐼 + 𝜃 + 𝜇)𝑑𝑡

 
∫
𝑑𝑆

𝑆
≥ −∫(𝛽𝐼 + 𝜃 + 𝜇) 𝑑𝑡         (20)

  
Integrating (20), we have 

𝑆(𝑡) ≥ 𝑆(0)𝑒−(𝛽𝐼+𝜃+𝜇)𝑡 > 0

 From (2) 

( ) ( ) VVVIVSp
dt

dV
 −−−−−−+= 11

𝑑𝑉

𝑑𝑡
≥ −((1 − 𝜂)𝛽𝐼 − 𝜑𝛾 − (1 − 𝜑)𝜎 − 𝜇)𝑉  (21) 

Solving (21) with the aid of separation of variables, we have

  

𝑑𝑉

𝑉
≥ −((1 − 𝜂)𝛽𝐼 − 𝜑𝛾 − (1 − 𝜑)𝜎 − 𝜇)𝑑𝑡

 
∫
𝑑𝑉

𝑉
≥ −∫((1 − 𝜂)𝛽𝐼 − 𝜑𝛾 − (1 − 𝜑)𝜎 − 𝜇)𝑑𝑡       (22)

 

 

Integrating (22), we have 

𝑉(𝑡) ≥ 𝑉(0)𝑒−∫((1−𝜂)𝛽𝐼−𝜑𝛾−(1−𝜑)𝜎−𝜇)𝑑𝑡

 𝑉(𝑡) ≥ 𝑉(0)𝑒−((1−𝜂)𝛽𝐼−𝜑𝛾−(1−𝜑)𝜎−𝜇)𝑡 > 0

 Similarly, we can show that 𝐸(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0 and 𝑅(𝑡) ≥ 0.
 

This completes the proof. 

 

The boundedness of solutions of the model  

Theorem 4: 

The closed set  

Ω = {(𝑆, 𝑉, 𝐸, 𝐼, 𝑅) ∈ 𝑅+
5 : 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅 = 𝑁; 0 < 𝑁(𝑡) ≤

𝜋

𝜇
}
     

(23) 

is positively invariant. 

Proof  

From the model equations (1) to (5), the total population is given by 

𝑁 = 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅         (24)

 
Differentiating the total human population 𝑁(𝑡)in (24) with respect to time t, we have 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
         (25) 

Substituting the differential equations (1) to (5) in (25), we have 
𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇𝑆 − 𝜇𝑉 − 𝜇𝐸 − 𝜇𝐼 − 𝜇𝑅 − 𝑑𝐼

        

(26) 

𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇(𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅) − 𝑑𝐼          (27) 

Substitute (24) in (27), we have 
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𝑑𝑁ℎ

𝑑𝑡
= 𝜋 − 𝜇𝑁 − 𝑑𝐼                    (28) 

In the absence of measles virus, (i.e.𝑑 = 0) then (28) becomes 
𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇𝑁 

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 = 𝜋                    (29) 

𝐼 . 𝐹 = 𝑒∫𝜇𝑑𝑡 = 𝑒𝜇𝑡                   (30) 

Multiply both sides of (29) by (30) 

𝑒𝜇𝑡
𝑑𝑁

𝑑𝑡
+ 𝜇𝑁𝑒𝜇𝑡 = 𝜋𝑒𝜇𝑡                   (31)

 
Equation (31) becomes 
𝑑

𝑑𝑡
(𝑁𝑒𝜇𝑡) = 𝜋𝑒𝜇𝑡 ⇒ 𝑑(𝑁𝑒𝜇𝑡) = 𝜋𝑒𝜇𝑡𝑑𝑡 ∫𝑑(𝑁𝑒𝜇𝑡) = 𝜋 ∫𝑒𝜇𝑡𝑑𝑡 + 𝐶 ⇒ 𝑁(𝑡) =

𝜋

𝜇
+ 𝐶𝑒−𝜇𝑡

 𝑙𝑖𝑚
𝑡→∞

𝑁(𝑡) = 𝑙𝑖𝑚
𝑡→∞

𝜋

𝜇
+ 𝐶𝑙𝑖𝑚

𝑡→∞
𝑒−𝜇𝑡 𝑙𝑖𝑚

𝑡→∞
𝑁(𝑡) =

𝜋

𝜇
+ 𝐶(0) 

𝑙𝑖𝑚
𝑡→∞

𝑁(𝑡) =
𝜋

𝜇
                         (32) 

This result implies that if there is no disease,𝑁 =
𝜋

𝜇
. It also means that we have a steady state population. Therefore, the feasible 

solution set of the population of the system (29) exist in the region 

Ω = {(𝑆, 𝑉, 𝐸, 𝐼, 𝑅) ∈ 𝑅+
5 : 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅 = 𝑁;  0 < 𝑁(𝑡) ≤

𝜋

𝜇
} 

This is a positive invariant set of the model which shows that the model is both biologically and mathematically meaningful 

in the domainΩ.  

 

Disease-free equilibrium points of the model 

The equilibrium points of the system of non-linear ordinary differential equation are obtained by setting the derivatives of the 

model equation to zero (0).  

(𝑖. 𝑒.
𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 0)

 
Thus, at equilibrium point, the system of equation (1) to (5) becomes    
(1 − 𝑝)𝜋 − 𝛽𝐼∘𝑆∘ + 𝜑𝛾𝑉∘ − (𝜃 + 𝜇)𝑆∘ = 0           (33) 

𝑝𝜋 + 𝜃𝑆∘ − (1 − 𝜂)𝛽𝐼∘𝑉∘ − 𝜑𝛾𝑉∘ − (1 − 𝜑)𝜎𝑉∘ − 𝜇𝑉∘ = 0         (34) 

𝛽𝐼∘𝑆∘ + (1 − 𝜂)𝛽𝐼∘𝑉∘ − (𝛿 + 𝜓 + 𝜇)𝐸∘ = 0           (35) 

𝜓𝐸∘ − (𝜅 + 𝑑 + 𝜇)𝐼∘ = 0              (36) 

𝛿𝐸∘ + 𝜅𝐼∘ + (1 − 𝜑)𝜎𝑉∘ − 𝜇𝑅∘ = 0             (37) 

At disease-free equilibrium (in the absence of infection), there will be no exposed individuals  

𝐸∘ = 𝐼∘ = 0              (38) 

Substitute (38) in (33), we have 

𝑆∘ =
(1−𝑝)𝜋+𝜑𝛾𝑉∘

𝜃+𝜇               (39) 

Similarly, substitute (38) in (37), we have 

𝑅∘ =
(1−𝜑)𝜎𝑉∘

𝜇                (40) 

Substitute (39) in (34), we have 

𝑉∘ =
𝑝𝜋𝜇 + 𝜃𝜋

(𝜃 + 𝜇)(1 − 𝜑)𝜎 + 𝜇(𝜃 + 𝜑𝛾 + 𝜇)
 

Therefore, the disease-free equilibrium point is denoted by Φ∘ = (𝑆∘, 𝑉∘, 𝐸∘, 𝐼∘, 𝑅∘) 

Φ∘ =

{
 

 
(1−𝑝)𝜋[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)]+𝜑𝛾[𝑝𝜋𝜇+𝜃𝜋]

(𝜃+𝜇)[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)]
,

𝑝𝜋𝜇+𝜃𝜋

(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)
, 0, 0,

(1−𝜑)𝜎[𝑝𝜋𝜇+𝜃𝜋]

𝜇[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)] }
 

 

        

(41) 

Disease-endemic equilibrium points of the model 

The equilibrium points of the system of non-linear ordinary differential equation are obtained by setting the derivatives of the 

model equation to zero.  

(𝑖. 𝑒.
𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 0)

 
Thus, at equilibrium point, the system of equation (1) to (5) becomes   
(1 − 𝑝)𝜋 − 𝛽𝐼∗𝑆∗ +𝜑𝛾𝑉∗ − (𝜃 + 𝜇)𝑆∗ = 0         (42) 

𝑝𝜋 + 𝜃𝑆∗ − (1 − 𝜂)𝛽𝐼∗𝑉∗ − 𝜑𝛾𝑉∗ − (1 − 𝜑)𝜎𝑉∗ − 𝜇𝑉∗ = 0     (43) 

𝛽𝐼∗𝑆∗ + (1 − 𝜂)𝛽𝐼∗𝑉∗ − (𝛿 + 𝜓 + 𝜇)𝐸∗ = 0       (44) 

𝜓𝐸∗ − (𝜅 + 𝑑 + 𝜇)𝐼∗ = 0         (45) 

𝛿𝐸∗ + 𝜅𝐼∗ + (1 − 𝜑)𝜎𝑉∗ − 𝜇𝑅∗ = 0        (46) 
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At endemic equilibrium (i.e. in the presence of infection),   

𝐸∗ ≠ 0, 𝐼∗ ≠ 0          (47) 

From (45), 

𝐸∗ =
(𝜅+𝑑+𝜇)𝐼∗

𝜓
          (48) 

Substitute (48) in (44), we have 

𝑆∗ =
(𝜅+𝑑+𝜇)(𝛿+𝜓+𝜇)𝐼∗

𝛽𝜓
− (1 − 𝜂)𝑉∗         (49)  

Substitute (49) in (43), we have 

𝑉∗ =
𝑝𝜋𝛽𝜓+𝜃(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)

𝛽𝜓[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇]
            (50)  

Substitute (50) in (49), we have 

𝑆∗ =
(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇−𝛽𝜓(1−𝜂)𝜃]−(1−𝜂)𝑝𝜋(𝛽𝜓)2

𝛽𝜓[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇]
    (51) 

Substitute (48) and (50) in (46), we have 

𝛿(𝜅 + 𝑑 + 𝜇)𝐼∗

𝜓
+ 𝜅𝐼∗ + (1 − 𝜑)𝜎 [

𝑝𝜋𝛽𝜓 + 𝜃(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)

𝛽𝜓[(1 − 𝜂)(𝜃 + 𝛽𝐼∗) + 𝜑𝛾 + (1 − 𝜑)𝜎 + 𝜇]
] − 𝜇𝑅∗ = 0 

𝑅∗ =

𝛿(𝜅 + 𝑑 + 𝜇)𝐼∗

𝜓
+ 𝜅𝐼∗ + (1 − 𝜑)𝜎 [

𝑝𝜋𝛽𝜓 + 𝜃(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)
𝛽𝜓[(1 − 𝜂)(𝜃 + 𝛽𝐼∗) + 𝜑𝛾 + (1 − 𝜑)𝜎 + 𝜇]

]

𝜇
 

𝑅∗ =
𝛿(𝜅+𝑑+𝜇)𝐼∗+𝜅𝜓𝐼∗+(1−𝜑)𝜓𝜎[

𝑝𝜋𝛽𝜓+𝜃(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)

𝛽𝜓[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇]
]

𝜓𝜇
      (52) 

Therefore, the endemic equilibrium point is denoted by Φ∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗) 

Φ∗ =

{
  
 

  
 
(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇−𝛽𝜓(1−𝜂)𝜃]−(1−𝜂)𝑝𝜋(𝛽𝜓)2

𝛽𝜓[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇]
,

𝑝𝜋𝛽𝜓+𝜃(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)

𝛽𝜓[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇]
,
(𝜅+𝑑+𝜇)𝐼∗

𝜓
, 𝐼∗,

[𝛿(𝜅+𝑑+𝜇)+𝜅𝜓]𝐼∗+(1−𝜑)𝜓𝜎[
𝑝𝜋𝛽𝜓+𝜃(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)

𝛽𝜓[(1−𝜂)(𝜃+𝛽𝐼∗)+𝜑𝛾+(1−𝜑)𝜎+𝜇]
]

𝜓𝜇 }
  
 

  
 

         

(53) 

 

Computation of the basic reproduction Number 𝑅0 

The basic reproduction number 𝑅0 is the average number of new infections that one infected case will generate during their 

entire infectious lifetime (Heffernan et al., 2005). It is very important in determining whether the disease persists in the 

population or die out. We use the next generation matrix to compute the basic reproduction number 𝑅0 which is formulated in 

(Van den Driessche & Watmough, 2002; Guerra et al., 2017). 

 . Let us assume that there are 𝑛 compartments of which the first 𝑚 compartments correspond to infected individuals.  

Let 

• 𝐹𝑖(𝑦) be the rate of appearance of new infections in compartment𝑖,  
• 𝑉𝑖

+(𝑦) be the rate of transfer of individuals into compartment 𝑖 by all other means, and  

• 𝑉𝑖
−(𝑦) be the rate of transfer of individuals out of compartments𝑖.  

It is assumed that each function is continuously differentiable at least twice in each variable. The disease transmission model 

consists of nonnegative initial conditions together with the following system of equations:  
𝑑𝑦𝑖

𝑑𝑡
= 𝑓𝑖(𝑦) = 𝐹𝑖(𝑦) − 𝑉𝑖(𝑦), 𝑖 = 1,2,3, . . . , 𝑛       (54) 

 where𝑉𝑖(𝑦) = 𝑉𝑖
−(𝑦) − 𝑉𝑖

+(𝑦).        (55)  
𝑑

𝑑𝑡
= 𝐹 − 𝑉 = (

𝛽𝐼𝑆 + (1 − 𝜂𝛽𝐼𝑉)

0
) − (

(𝛿 + 𝜓 + 𝜇)𝐸
(𝜅 + 𝑑 + 𝜇)𝐼 − 𝜓𝐸

) 

 

 

𝑅0 = 𝜌(𝐹𝑉
−1) = 𝜌((

∂𝐹𝑖

∂𝑦𝑗
|
𝐸0
)(

∂𝑉𝑖

∂𝑦𝑗
|
𝐸0
)

−1

),        (56) 

where 𝐹are the new infection transfer terms and 𝑉is the non-singular matrix of the remaining transfer terms. The basic 

reproduction number 𝑅0of the model (1) – (5) is calculated using the next generation matrix (Van den Driessche & Watmough, 

2002; Heffernan et al., 2005). In using their approach (Van den Driessche & Watmough, 2002; Heffernan et al., 2005), we 

have: 

𝐹 = (
∂𝐹𝑖

∂𝑦𝑗
|
𝐸∘
) = (

0 𝛽𝑆∘ + (1 − 𝜂)𝛽𝑉∘

0 0
)       (57) 

Similarly, 

𝑉 = (
∂𝑉𝑖

∂𝑦𝑗
|
𝐸∘
) = (

(𝛿 + 𝜓 + 𝜇) 0

−𝜓 (𝛿 + 𝜓 + 𝜇)
)

  

|𝑉| = |
(𝛿 + 𝜓 + 𝜇) 0

−𝜓 (𝜅 + 𝑑 + 𝜇)
| ⇒ |𝑉| = (𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)

 

𝐴𝑑𝑗𝑉 = (
(𝜅 + 𝑑 + 𝜇) 0

𝜓 (𝛿 + 𝜓 + 𝜇)
)
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𝑉−1 =
1

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)
(
(𝜅 + 𝑑 + 𝜇) 0

𝜓 (𝛿 + 𝜓 + 𝜇)
)

 

     (58)

 

Substitute (57) and (58) in (56), we have 

𝐹𝑉−1 =
1

(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)
(
0 [𝑆∘ + (1 − 𝜂)𝑉∘]𝛽
0 0

) (
(𝜅 + 𝑑 + 𝜇) 0

𝜓 (𝛿 + 𝜓 + 𝜇)
)

 

𝐹𝑉−1 =
1

(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)
(
[𝑆 + (1 − 𝜂)𝑉]𝛽𝜓 [𝛽𝑆 + (1 − 𝜂)𝛽𝑉](𝛿 + 𝜓 + 𝜇)

0 0
)

 

|𝐹𝑉−1 − 𝜆𝐼| = |(

[𝑆∘ + (1 − 𝜂)𝑉∘]𝛽𝜓

(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)

[𝑆∘ + (1 − 𝜂)𝑉∘]𝛽

(𝜅 + 𝑑 + 𝜇)
0 0

) − (
𝜆 0
0 𝜆

)| = 0

 

|𝐹𝑉−1 − 𝜆𝐼| = |
[𝑆∘+(1−𝜂)𝑉∘]𝛽𝜓

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)
− 𝜆

[𝑆∘+(1−𝜂)𝑉∘]𝛽

(𝜅+𝑑+𝜇)

0 −𝜆
| = 0

 

 

−𝜆 (
[𝑆∘+(1−𝜂)𝑉∘]𝛽𝜓

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)
− 𝜆) = 0𝜆1 = 0and 𝜆2 =

[𝑆∘+(1−𝜂)𝑉∘]𝛽𝜓

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)
 

𝜆2 = 𝑅𝑒 =
[𝑆+(1−𝜂)𝑉∘]𝛽𝜓

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)
   

𝑅𝑒 =
[
(1 − 𝑝)𝜋[(𝜃 + 𝜇)(1 − 𝜑)𝜎 + 𝜇(𝜃 + 𝜑𝛾 + 𝜇)] + 𝜑𝛾[𝑝𝜋𝜇 + 𝜃𝜋]

(𝜃 + 𝜇)[(𝜃 + 𝜇)(1 − 𝜑)𝜎 + 𝜇(𝜃 + 𝜑𝛾 + 𝜇)]
+ (1 − 𝜂)

𝑝𝜋𝜇 + 𝜃𝜋
(𝜃 + 𝜇)(1 − 𝜑)𝜎 + 𝜇(𝜃 + 𝜑𝛾 + 𝜇)

]𝛽𝜓

(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)
 

𝑅𝑒 =
[
(1 − 𝑝)𝜋[(𝜃 + 𝜇)(1 − 𝜑)𝜎 + 𝜇(𝜃 + 𝜑𝛾 + 𝜇)] + 𝜑𝛾[𝑝𝜋𝜇 + 𝜃𝜋] + (1 − 𝜂)(𝑝𝜋𝜇 + 𝜃𝜋)(𝜃 + 𝜇)

(𝜃 + 𝜇)[(𝜃 + 𝜇)(1 − 𝜑)𝜎 + 𝜇(𝜃 + 𝜑𝛾 + 𝜇)]
] 𝛽𝜓

(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)
 

 𝑅𝑒 =
[(1−𝑝)𝜋[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)]+𝜑𝛾[𝑝𝜋𝜇+𝜃𝜋]+(1−𝜂)(𝑝𝜋𝜇+𝜃𝜋)(𝜃+𝜇)]𝛽𝜓

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)(𝜃+𝜇)[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)]
    

  

𝑅𝑒 =
[(1−𝑝)𝜋[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)]+𝜑𝛾𝜋[𝑝𝜇+𝜃]+(1−𝜂)𝜋(𝑝𝜇+𝜃)(𝜃+𝜇)]𝛽𝜓

(𝛿+𝜓+𝜇)(𝜅+𝑑+𝜇)(𝜃+𝜇)[(𝜃+𝜇)(1−𝜑)𝜎+𝜇(𝜃+𝜑𝛾+𝜇)]
     (59) 

The local stability analysis of the disease-free equilibrium of the model 

 

To examine the local stability of the disease-free 𝐸∘ equilibrium, we obtain the Jacobian matrix by differentiating the functions 
(𝑓𝑖 : 𝑖 = 1,2,3,4,5) partially with respect to the variables in the system of the modified equations.  

The Jacobian matrix from the partial derivatives of (1) to (5) at disease-free (𝐽𝐸∘) is given by: 

𝐽𝐸∘ =

(

  
 

−(𝜃 + 𝜇) 𝜑𝛾 0 𝛽𝑆∘ 0

𝜃 −(𝜑𝛾 + (1 − 𝜑)𝜎 + 𝜇) 0 −(1 − 𝜂)𝛽𝑉∘ 0

0 0 −(𝛿 + 𝜓 + 𝜇) 𝛽𝑆∘ + (1 − 𝜂)𝛽𝑉∘ 0

0 0 𝜓 −(𝜅 + 𝑑 + 𝜇) 0

0 (1 − 𝜑)𝜎 𝛿 𝜅 −𝜇)

  
 

 

 

Let𝑝 = (𝜃 + 𝜇),𝑞 = (𝜑𝛾 + (1 − 𝜑)𝜎 + 𝜇), 𝑟 = (1 − 𝜂)𝛽𝑉∘, 𝑑 = (𝛿 + 𝜓 + 𝜇), 𝑒 = 𝛽𝑆∘ + (1 − 𝜂)𝛽𝑉∘, 
        𝑓 = (𝜅 + 𝑑 + 𝜇), 𝑔 = (1 − 𝜑)𝜎 

|𝐽𝐸∘ − 𝜆𝐼| = |
|

−𝑝 − 𝜆 𝜑𝛾 0 𝛽𝑆∘ 0
𝜃 −𝑞 − 𝜆 0 −𝑟 0
0 0 −𝑑 − 𝜆 𝑒 0
0 0 𝜓 −𝑓 − 𝜆 0
0 𝑔 𝛿 𝜅 −𝜇 − 𝜆

|
|
= 0 

[−𝜇 − 𝜆] [|
−𝑝 − 𝜆 𝜑𝛾
𝜃 −𝑞 − 𝜆

| [(𝑑 + 𝜆)(𝑓 + 𝜆) − 𝑒𝜓]] = 0 

[−𝜇 − 𝜆][(𝑑 + 𝜆)(𝑓 + 𝜆) − 𝑒𝜓][(𝑝 + 𝜆)(𝑞 + 𝜆) − 𝜃𝜑𝛾] = 0 

Therefore, the eigenvalues of the Jacobian matrix are: 

−𝜇 − 𝜆 = 0 ⇒ 𝜆1 = −𝜇 

(𝑑 + 𝜆)(𝑓 + 𝜆) − 𝑒𝜓 = 0 ⇒ 𝑑𝑓 + (𝑑 + 𝑓)𝜆 + 𝜆2 − 𝑒𝜓 = 0𝜆2 + (𝑑 + 𝑓)𝜆 + (𝑑𝑓 − 𝑒𝜓) = 0 

From quadratic equation: 𝑎 = 1, 𝑏 = 𝑑 + 𝑓, 𝑐 = 𝑑𝑓 − 𝑒𝜓 

𝜆2,3 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
=
−(𝑑+𝑓)±√(𝑑+𝑓)2−4(𝑑𝑓−𝑒𝜓)

2
 

𝜆2,3 =
−(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇) ± √(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇)2 − 4[(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇) − 𝜓[𝛽𝑆∘ + (1 − 𝜂)𝛽𝑉∘]]

2
 

𝜆2,3 =

−(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇) ± √(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇)2 − 4(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇) [1 −
𝛽𝜓[𝑆∘ + (1 − 𝜂)𝑉∘]

(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)
]

2
 

𝜆2,3 =
−(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇) ± √(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇)2 − 4(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)[1 − 𝑅𝑒]

2
 

𝜆2 =
−(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇) + √(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇)2 − 4(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)[1 − 𝑅𝑒]

2
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𝜆3 =
−(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇) − √(𝛿 + 𝜓 + 𝜅 + 𝑑 + 2𝜇)2 − 4(𝛿 + 𝜓 + 𝜇)(𝜅 + 𝑑 + 𝜇)[1 − 𝑅𝑒]

2
 

Similarly, 

(𝑝 + 𝜆)(𝑞 + 𝜆) − 𝜃𝜑𝛾 = 0 ⇒ 𝑝𝑞 + (𝑝 + 𝑞)𝜆 + 𝜆2 − 𝜃𝜑𝛾 = 0𝜆2 + (𝑝 + 𝑞)𝜆 + (𝑝𝑞 − 𝜃𝜑𝛾) = 0 

From quadratic equation: 𝑎 = 1, 𝑏 = 𝑝 + 𝑞, 𝑐 = 𝑝𝑞 − 𝜃𝜑𝛾 

𝜆4,5 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
=
−(𝑝+𝑞)±√(𝑝+𝑞)2−4(𝑝𝑞−𝜃𝜑𝛾)

2
 

𝜆4 =
−(𝜃 + 𝜑𝛾 + (1 − 𝜑)𝜎 + 2𝜇) + √(𝜃 + 𝜑𝛾 + (1 − 𝜑)𝜎 + 2𝜇)2 − 4[(𝜃 + 𝜇)(𝜑𝛾 + (1 − 𝜑)𝜎 + 𝜇) − 𝜃𝜑𝛾]

2
 

𝜆5 =
−(𝜃 + 𝜑𝛾 + (1 − 𝜑)𝜎 + 2𝜇) − √(𝜃 + 𝜑𝛾 + (1 − 𝜑)𝜎 + 2𝜇)2 − 4[(𝜃 + 𝜇)(𝜑𝛾 + (1 − 𝜑)𝜎 + 𝜇) − 𝜃𝜑𝛾]

2

The global stability analysis of the disease-free equilibrium of the model 

 

We investigated the global asymptotic stability of the disease- free equilibrium of measles infections using Castillo-Chavez 

theorem (Castillo-Chavez and Song, 2004; Delamater et al., 2019). 

We write the model equations (1 – 5) in the form: 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑍)           (60) 

𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑍), 𝐺(X,0) = 0         (61) 

Where 𝑋 = (𝑆, 𝑉, 𝑅) ∈ 𝑅+
3 represents the uninfected individuals and 𝑍 = (𝐸, 𝐼) ∈ 𝑅+

2  represents the infected individuals. Let 

𝐸∘ = (𝑋∘, 0)
 
represents the disease-free equilibrium point of the system. 

The disease-free equilibrium 𝐸∘ to be globally asymptotically stable equilibrium for the model, the conditions (𝐻1)and 
(𝐻2)shown below should be satisfied: 

𝐻1: For 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0), 𝑋∘, globally asymptotically stable. 

𝐻2: For 
𝑑𝑍

𝑑𝑡
= 𝐷𝑍𝐺(𝑋

∘, 0)𝑍 − 𝐺(𝑋, 𝑍), 𝐺(𝑋, 𝑍) ≥ 0 for all(𝑋, 𝑍) ∈ Ω, where 𝐷𝑍𝐺(𝑋
∘, 0) is the  

Jacobian of 𝐺(𝑋, 0) evaluated at(𝑋∘, 0). 
  

Theorem 5: 

The equilibrium point 𝐸∘ = (𝑋∘, 0)of the system (60) and (61) is globally asymptotically stable if 𝑅𝑒 < 1and the conditions 
(𝐻1)and (𝐻2)are satisfied. 

 

Proof: 

We partitioned the modified model system into two subsystems. These are   𝑋 = (𝑆, 𝑉, 𝑅) ∈ 𝑅+
3and𝑍 = (𝐸, 𝐼) ∈ 𝑅+

2 . From 

equation (60) and (61) we have two functions: 𝐹(𝑋, 𝑍)and𝐺(𝑋, 𝑍), where 

Condition(𝐻1): 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑍) =

(

 
 

𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜋 − 𝛽𝐼𝑆 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆

𝑑𝑉

𝑑𝑡
= 𝑝𝜋 + 𝜃𝑆 − (1 − 𝜂)𝛽𝐼𝑉 − 𝜑𝛾𝑉 − (1 − 𝜑)𝜎𝑉 − 𝜇𝑉

𝑑𝑅

𝑑𝑡
= 𝛿𝐸 + 𝜅𝐼 + (1 − 𝜑)𝜎𝑉 − 𝜇𝑅

)

 
 

 
 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0) =

(

 
 

𝑑𝑆

𝑑𝑡
|
𝐸∘
= (1 − 𝑝)𝜋 + 𝜑𝛾𝑉 − (𝜃 + 𝜇)𝑆

𝑑𝑉

𝑑𝑡
|
𝐸∘
= 𝑝𝜋 + 𝜃𝑆 − 𝜑𝛾𝑉 − (1 − 𝜑)𝜎𝑉 − 𝜇𝑉

𝑑𝑅

𝑑𝑡
|
𝐸∘
= (1 − 𝜑)𝜎𝑉 − 𝜇𝑅 )

 
 

   (62)  

Therefore, the convergence of the solutions of the reduced system equation (62) is globally asymptotically stable in Ω.  

Condition(𝐻2):
𝑑𝑍

𝑑𝑡
= 𝐺(𝑋, 𝑍) = (

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉 − (𝛿 + 𝜓 + 𝜇)𝐸

𝑑𝐼

𝑑𝑡
= 𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼

) 

  
𝑑𝑍

𝑑𝑡
= 𝐺(𝑋, 0) = (

𝑑𝐸

𝑑𝑡
|
𝐸∘
= 0

𝑑𝐼

𝑑𝑡
|
𝐸∘
= 0

) = 0 

 

More so,  

𝐺(𝑋, 𝑍) = 𝐴𝑍 − 𝐺
∧
(𝑋, 𝑍) 𝐺

∧
(𝑋, 𝑍) = 𝐴𝑍 − 𝐺(𝑋, 𝑍) 

Where 

𝐴 =
∂𝐺

∂𝑍
(𝑋∘, 0) = 𝐷𝑍(𝑋

∘, 0) is a metzler matrix. 

Let  
𝑑𝐸

𝑑𝑡
= 𝑓1 = 𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉 − (𝛿 + 𝜓 + 𝜇)𝐸       

𝑑𝐼

𝑑𝑡
= 𝑓2 = 𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼         

The Jacobian matrix from the partial derivatives of (3) and (4) with respect to the infected variables at disease-free(𝐴 = 𝐽𝐸∘) 
is given by: 
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𝐴 = 𝐽𝐸∘ = (
−(𝛿 + 𝜓 + 𝜇) 𝛽𝑆∘ + (1 − 𝜂)𝛽𝑉∘

𝜓 −(𝜅 + 𝑑 + 𝜇)
) 

𝐺
∧

(𝑋, 𝑍) = 𝐴𝑍 − 𝐺(𝑋, 𝑍) 

= (
−(𝛿 + 𝜓 + 𝜇) 𝛽𝑆∘ + (1 − 𝜂)𝛽𝑉∘

𝜓 −(𝜅 + 𝑑 + 𝜇)
) (
𝐸
𝐼
) − (

𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉 − (𝛿 + 𝜓 + 𝜇)𝐸
𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼

) 

𝐺
∧

1(𝑋, 𝑍) = −(𝛿 + 𝜓 + 𝜇)𝐸 + [𝛽𝑆
∘ + (1 − 𝜂)𝛽𝑉∘]𝐼 − [𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉 − (𝛿 + 𝜓 + 𝜇)𝐸] 

𝐺
∧

1(𝑋, 𝑍) = [𝛽𝑆
∘ + (1 − 𝜂)𝛽𝑉∘]𝐼 − [𝛽𝐼𝑆 + (1 − 𝜂)𝛽𝐼𝑉] 

𝐺
∧

1(𝑋, 𝑍) = 𝛽𝐼(𝑆
∘ − 𝑆) + (1 − 𝜂)𝛽𝐼(𝑉∘ − 𝑉) 

𝐺
∧

1(𝑋, 𝑍) = 𝛽𝐼[(𝑆
∘ − 𝑆) + (1 − 𝜂)(𝑉∘ − 𝑉)] 

𝐺
∧

2(𝑋, 𝑍) = 𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼 − [𝜓𝐸 − (𝜅 + 𝑑 + 𝜇)𝐼] = 0 

𝐺
∧
(𝑋, 𝑍) = (

𝐺1
∧
(𝑋, 𝑍)

𝐺2
∧
(𝑋, 𝑍)

) =𝐺
∧
(𝑋, 𝑍) = (

𝛽𝐼[(𝑆∘ − 𝑆) + (1 − 𝜂)(𝑉∘ − 𝑉)]

0
) 

𝐺
∧

1(𝑋, 𝑍) = 𝛽𝐼[(𝑆
∘ − 𝑆) + (1 − 𝜂)(𝑉∘ − 𝑉)] ≥ 0 

𝐺
∧

(𝑋, 𝑍) ≥ 0 ∀ (X,Z) ∈ Ω, provided that 𝑆∘ ≥ 𝑆and𝑉∘ ≥ 𝑉. 

 

RESULTS AND DISCUSSION 

In this section, the numerical solution of the system (1) – (5) was carried out using the Runge-Kutta of order four scheme 

(RK4). The numerical results are shown in Figure 2. Figure 2, represented the graph of the model when the basic reproduction 

number is less than one.  

 

 
Figure 2(a) 

 
Figure 2(b) 

 
Figure 2(c) 

 
Figure 2(d) 
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Figure 2(e) 

Figure 2: The graphical behaviour of the dynamic system (1) – (5) with a given initial conditions and parameter values: when 

𝑅𝑒 = 0.3452 < 1, the endemic equilibrium point is locally asymptotically stable, where𝜋 = 1000,𝜇 = 0.01,𝜂 = 0.95,𝑝 =
0.7,𝜑 = 0.3,𝛽 = 0.0002, 𝑘 = 0.6,𝜓 = 0.07,𝜃 = 0.06,𝛾 = 0.25,𝑑 = 0.04,𝛿 = 0.30,𝜎 = 0.75. 

 

Interpretation of the graphical results  

In figure 2(a), the dynamics of the disease shows that there is 

rapid increase in the number of susceptible population from 

the initial population of 500 to 4500 throughout the remaining 

days. 

In figure 2(b), the dynamics of the disease shows that there is 

rapid increase of the vaccinated population from the initial 

population of 500 to 1200 after t = 4days and then a slow 

growth in the number of vaccinated population from 1200 to 

4500 throughout the remaining days. 

In figure 2(c), the dynamics of the disease shows that there is 

rapid decline in the exposed population from the initial 

population of 50 to 10 after t = 6days and then a slow decline 

in the number of exposed population from 10 to its eradication 

point at  t = 18days. 

In figure 2(d), the dynamics of the disease shows that there is 

rapid decline in the infected population from the initial 

population of 30 to 2 after t = 6days and then a slow decline 

in the number of infected population from 2 to its eradication 

point at  t = 14days. 

In figure 2(e), the dynamics of the disease shows that there is 

a rapid increase in the number of recovered population from 

the initial population of 25 to 12700 from t = 0 to t = 20days. 

 

Discussion of the results 

From the numerical results above, Figures 2(a), 2(b), 2(c), 

2(d) and 2(e) represents the graphs of the susceptible, 

vaccinated, exposed, infected and recovered individuals of the 

measles epidemic model. The decline in the number of 

exposed individuals is due to routine immunization program 

and as well as social distancing of the susceptible individuals 

from the infected individuals while the decline in the number 

of infected individuals may be due to early detection and 

treatment of the infectives in the community. 

 

CONCLUSION 

In this Paper, we formulated mathematical model equations 

of measles infection with the aid of the system of ordinary 

differential equations to study the dynamics of measles 

infection with five compartments; susceptible class
 

(S), 

vaccinated class
 
(V), exposed class (E), infected class

 
(I),

 
and 

Recovered class (R) with their corresponding parameters. We 

investigated the existence and uniqueness of solution for the 

dynamic system using the Lipchitz condition to ascertain the 

effectiveness of the model as well as the positively invariant 

region of the system. The next generation matrix approach 

was used to determine the basic reproduction number 𝑅0.The 

disease free equilibrium (DFE) was obtained. We also 

obtained the local and global stability of the disease free 

equilibrium. We obtained the numerical solution of the model 

system in MATLAB. From the simulation, we observed that 

the measles infection eradicated in the environment with the 

original parameter values whose𝑅𝑒 = 0.3452 < 1. 
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