
OPTIMAL SIZING OF SOLAR-WIND…      Sesan et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 6, December (Special Issue), 2023, pp 362 - 372 362 

8 

 

OPTIMAL SIZING OF SOLAR-WIND HYBRID MICROGRID USING IMPROVED GREY WOLF 

OPTIMIZATION ALGORITHM A CASE STUDY OF KADUNA - NIGERIA 

 

Bankole Samson Sesan, *Isiyaku Abubakar, Nasiru B. Kadandani and Isaac B. Olalekan 

 

Department of Electrical Engineering, Bayero University Kano, PMB 3011, Kano, Nigeria 

 

*Corresponding authors’ email: iabubakar.ele@buk.edu.ng   

 

ABSTRACT 

This paper presents an improved grey wolf optimization algorithm (IGWOA) for optimal sizing of an isolated 

photovoltaic (PV), wind turbine (WT), and battery energy storage (BES) hybrid microgrid. To demonstrate the 

effectiveness of the proposed approach, atmospheric data sets comprising of wind, solar, and temperature of 

Kaduna International Airport were collected from Nigerian Meteorological Agency while the load demand 

data was collected from Kaduna International Airport Electricity Distribution Center. The microgrid optimal 

sizing was formulated as a constrained single objective optimization problem. Constraints including, loss of 

power supply probability (LPSP), power balance, generation limits and battery state of charge (SOC) were 

imposed. Three simulation scenarios were considered. Firstly, the target allowable maximum LPSP was fixed 

at 25% and the algorithm was able to determine the optimal sizing of the hybrid microgrid components and 

minimize the initial cost from 169,880.00 USD to 112,356.40 USD per annum resulting in 34% savings in 

cost. Secondly, the effect of the target allowable maximum LPSP variation was investigated, and it was found 

that the total installed capacity of the system decreases with increase in LPSP thereby decreasing the total cost. 

Additionally, a novel electricity price index (EPI) was introduced in order to quantify the degree of optimality 

of the solution. The EPI was found to increase exponentially with increase in LPSP, resulting in an EPI of < 

0.05USD/kWh at 20% LPSP. Lastly, to validate the proposed approach, a comparative analysis between the 

IGWOA and other algorithms was carried out, and the proposed IGWOA proved applicable.  

 

Keywords: Photovoltaic (PV), wind turbine (WT), battery energy storage (BES), improved grey wolf  

optimization algorithm (IGWOA), loss of power supply probability (LPSP) 

 

INTRODUCTION 

The conventional source of energy for power generation is 

mainly from fossil-fuels which is known to be the major cause 

of greenhouse gas emissions (GHG) and global warming. So, 

as the load demand is increasing, there is corresponding 

increase in the usage of fossil-fuels which also results to 

increase in GHG emissions. To counteract the process of 

global warming associated with fossil-fuel based energy 

sources, renewable energy sources such as wind can be 

adapted (Dan-Isa & Kadandani, 2013). Presently, there is 

scarcity and rapid depletion of fossil fuels worldwide in 

addition to the problem of global warming caused by GHG 

emissions. (Traoré, 2018). This rising concerns over global 

warming have stimulated the interest in reducing GHG 

emissions, especially those emitted during electricity 

generation from conventional sources like coal, oil, and 

natural gas. So, new environmental policies are being 

legislated to curtail GHG. For instance, 160 countries around 

the world have signed the Paris agreement to combat against 

the climate changes (unfccc.int/paris_agreement/items/ 

9485.php, 2017). To fulfill the agreement, nations around the 

globe are planning to reduce their GHG emissions, e.g., 

Kingdom of Saudi Arabia has planned to reduce CO2 

emissions by 130 million tons per year by 2030 (Akram et. al, 

2017). Thus, there is urgent need to reduce the utilization of 

fossil fuels by looking for suitable alternative to conventional 

power generation that will be reliable, sustainable, 

economical and eco-friendly.  Also, the energy security 

concerns have urged nations to look for sustainable sources of 

energy to replace depleting fossil fuels (Traoré, 2018).  

More so, the epileptic nature of power supply system and its 

socio-economic effects on the people in developing countries 

like Nigeria has become a thing of concern to all stake 

holders. Inadequate power supply due to insufficient power 

generation and regular grid system collapse in the country 

have crippled a lot of businesses and render a lot of people 

jobless especially in some major cities and major markets in 

Nigeria. The work reported in (Kadandani 2015) have 

proposed grid integration of wind farms for complementing 

the national grid in meeting the electricity demand.   

Currently, about 1.3 billion people out of the total population 

of 7 billion do not have access to modern energy supply 

(Enerdata, 2017). The International Energy Association (IEA) 

reported that about 622 million people out of the 1.3 billion 

populations do not have access to electricity in Africa 

(Administration, 2016). While 621 million people out of the 

1.3 billion populations are from sub-Saharan Africa, only 

approximately 1 million people are from Africa’s northern 

region (Ainah, 2015). The energy report further reveals that 

the sub-Saharan Africa has the lowest electrification access 

rate in the world. For instance, more than 60% of Nigeria’s 

citizens do not have access to its national grid (Akinyele, 

2016).  

In addition to this, most of the world’s population live in 

remote or rural areas, which are sporadically populated and 

geographically isolated. Due to the low demand, some of 

these areas are not connected to the grid. To develop such 

areas, a well-organized and financially feasible method needs 

to be found to provide such areas with electricity.  Therefore, 

renewable energy sources are recommended as the most 

suitable alternative energy sources because they are pollution 

free, economical and also offer power supply solutions for 

remote areas not accessible by the grid supply (Mousa et. al, 

2010; & Bagdanov et. al, 2021).  

Renewable energy sources such as solar and wind are clean, 

inexhaustible, limitless, and environmental friendly 

(Jayachandran, 2017). Such properties have fascinated the 

energy sector to use renewable energy sources on a higher 
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scale (Varetsky & Hanzelka, 2015). However, all renewable 

energy sources have one form of disadvantage or the other. 

The one that is common to wind and solar sources is their 

dependency on unpredictable factors such as weather and 

climatic conditions. Fortunately, due to complementary 

nature of both sources, some of these complications can be 

addressed by overcoming the weaknesses of one with the 

strengths of the other (Varetsky & Hanzelka, 2015). This 

brings us to the concept of hybrid micro-grid power system. 

Furthermore, a smooth integration of these renewable energy 

resources with the grid network can be achieved with the aid 

of solid state transformer (SST) which apart from providing 

voltage transformation can also provide other additional 

ancillary services to the grid (Kadandani, Hassan & Abubakar 

(2023a). Current source converter (CSC) and voltage source 

converter (VSC) based high voltage direct current (HVDC) 

transmission system can be used to transmit and connect the 

electricity in bulk form to stiff and weak grids respectively 

(Kadandani, Hassan & Abubakar (2023b). 

Micro-grids comprise of low-voltage distribution systems 

with distributed energy sources, storage devices, and 

controllable loads that are operated either islanded or 

connected to the main power grid in a controlled and 

coordinated way. This new concept requires further research 

to ascertain its suitability and affordability in developing 

countries like Nigeria in order to take advantage of its 

numerous benefits. Therefore, this research is set out to 

develop an improved grey wolf optimization algorithm 

(IGWOA) for optimal sizing of an isolated photovoltaic (PV), 

wind turbine (WT), and battery energy storage (BES) based 

hybrid microgrid system. 

The aim of this research work is to find the optimal size of PV 

array, WT and BES system for standalone hybrid microgrid 

system for rural communities using Kaduna international 

airport as a case study. The schematic diagram of a typical 

remote solar-wind hybrid microgrid system is shown in 

Figure 1 (Traoré, 2018).

 

 
Figure 1: Schematic Diagram of Islanded Wind-Solar Hybrid Microgrid System 

 

MATERIALS AND METHODS 

Mathematical Model of the System 

This subsection describes the mathematical models governing 

the system operation. This includes the PV model, WT model, 

BES system model, and the system reliability model. The 

models were adopted from (Traoré, 2018). However, pseudo 

code approach was employed for easy implementation in 

MATLAB environment.  

 

Photovoltaic System Model 

The output power of the PV module, the efficiency of the PV 

module and the cell temperature can be determined by using 

equations 1, 2 and 3 respectively (Traoré, 2018); 

𝑃𝑃𝑉 (𝑡) =  𝜇𝑃𝑉  .  𝐴𝑃𝑉  .  𝐺(𝑡)            (1) 

𝜇𝑃𝑉  =   𝜇𝑆𝑇𝐶   .  𝜇𝑀𝑃𝑃𝑇   [1 −  𝑎 (𝑇𝑐 − 𝑇𝑆𝑇𝐶)] (2) 

𝑇𝑐 =  𝑇𝑎 + [
𝑁𝑂𝐶𝑇−20

800
] . 𝐺 (𝑡)     (3) 

where Apv is the area of a PV module in (m2), G(t ) is the 

hourly total solar irradiance in (W/m), ηpv is the efficiency of 

the PV module, ηSTC is reference efficiency of the PV cell at 

standard temperature condition (STC), ηMPPT is the efficiency 

of the maximum peak power tracker, Tc is the temperature of 

the PV cell in (˚C), Ta is the ambient temperature, TSTC is the 

reference temperature of the PV cell at STC (25˚C), NOCT is 

the nominal operating cell temperature and α is the 

temperature coefficient of the PV cell. 

 

Wind Turbine Model 

The output power from a WT at time t depends on the wind 

speed and can be obtained from equation (4) (Traoré, 2018); 
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𝑃𝑊𝑇 (𝑡) =  

{
 
 

 
 0                                              𝑉(𝑡) < 𝑉𝑐𝑖         

𝑎. 𝑉3(𝑡) − 𝑏. 𝑃𝑊𝑇
𝑟               𝑉𝑐𝑖 < 𝑉 (𝑡) < 𝑉𝑟

𝑃𝑊𝑇
𝑟                                        𝑉𝑟 <  𝑉 (𝑡) <  𝑉𝑐𝑜
0                                                      𝑉(𝑡) >  𝑉𝑐𝑜 }

 
 

 
 

    

     (4) 

where 𝑎 =  
𝑃𝑊𝑇
𝑟

𝑉𝑟
3− 𝑉𝑐𝑖

3  ;   𝑏 =   
𝑉𝑐𝑖
3

𝑉𝑟
3− 𝑉𝑐𝑖

3  ; 𝑉(𝑡)  is the wind speed at 

time 𝑡 in m/s; 𝑃𝑤𝑡
𝑟 , 𝑣𝑐𝑖 , v𝑟 , and 𝑣𝑐𝑜 represent the rated power 

of wind turbine, the cut-in speed, rated speed and cut-out 

speed respectively.  

Similarly, the WT system is modelled as a wind energy 

conversion system (WECS) that takes-in the wind speed (𝑣𝑤) 
as variable, and a set of constants which include, 𝑃𝑤𝑡

𝑟 , 𝑣𝑐𝑖 , 
v𝑟 , and 𝑣𝑐𝑜. The model evaluates the power output per wind 

turbine, which is scaled by another parameter, 𝑁𝑤𝑡, to obtain 

the generated wind power 𝑃𝑤𝑡.  
 

Battery Energy Storage System Model 

The discharging and charging energies of the BES at time t 

can be obtained from (5) and (6), respectively (Traoré, 2018). 

𝐸𝐸𝑆𝑆
𝑑  (𝑡) = 𝐸𝑆𝑆 (𝑡 − 1)

− [𝐸𝐿𝑜𝑎𝑑 (𝑡) − 𝐸𝑃𝑉 (𝑡) − 𝐸𝑊𝑇 (𝑡)]/𝜇𝑑 

     (5) 

𝐸𝐸𝑆𝑆
𝑐  (𝑡) = 𝐸𝑆𝑆 (𝑡 − 1)

− [𝐸𝑃𝑉 (𝑡) − 𝐸𝑊𝑇 (𝑡) −  𝐸𝐿𝑜𝑎𝑑  (𝑡)]. 𝜇𝑐  

     (6) 

where 𝐸𝑆𝑆 (𝑡 − 1) is the energy at time 𝑡 − 1  in kWh 

𝐸𝑃𝑉 , 𝐸𝑊𝑇 , 𝐸𝐿𝑜𝑎𝑑   are the respective energies in PV, WT and 

load; ηd and  ηc are the discharge and charge efficiencies of the 

ESS, respectively. 

Equations (5) and (6) can be rewritten as (7) and (8) (Traoré, 

2018). 

𝐸𝐸𝑆𝑆
𝑑  (𝑡) = 𝐸𝑆𝑆 (𝑡 − 1) − 𝑃𝐸𝑆𝑆

𝑑  (𝑡). ∆𝑡/𝜇𝑑   (7) 

 

𝐸𝐸𝑆𝑆
𝑐  (𝑡) = 𝐸𝑆𝑆 (𝑡 − 1) − 𝑃𝐸𝑆𝑆

𝑐  (𝑡). ∆𝑡/𝜇𝑐    (8) 

 

where 𝑃𝐸𝑆𝑆
𝑑  (𝑡) = 𝑃𝐿𝑜𝑎𝑑 (𝑡) − 𝑃𝑃𝑉(𝑡) − 𝑃𝑊𝑇 (𝑡) is the power 

discharged by the ESS; 𝐸𝐸𝑆𝑆
𝑐  (𝑡) =  𝑃𝑃𝑉(𝑡) − 𝑃𝑊𝑇(𝑡) −

𝑃𝐿𝑜𝑎𝑑 (t) is power charged into the ESS;   and ∆t = 1 since 

the time interval is 1 hour. 

 

Reliability Model 

A microgrid is said to be reliable if it can satisfy consumers’ 

electricity demand at the time of need. The reliability of the 

system is described using the loss of power supply probability 

(LPSP) given by equation 9 (Traoré, 2018). 

𝐿𝑃𝑆 (𝑡) =  𝑃𝐿𝑜𝑎𝑑(𝑡) − [𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) +  𝑃𝐸𝑆𝑆
𝑑  (t)]. 𝜇𝑖𝑛𝑣 

     (9) 

 

Improved Grey Wolf Optimization (IGWO) Algorithm 

Grey wolf optimizer (GWO) is a population-based meta-

heuristics algorithm that simulates the leadership hierarchy 

and hunting mechanism of grey wolves in nature as 

proposed by (Mirjalili, 2014). The proposed IGWO 

algorithm incorporates crossover and mutation into the 

conventional grey wolf optimization algorithm (Liu et. al 

2019, Wang et. al, 2019; & Long, 2016). 

Kaduna international airport situated at Afaka in Igabi local 

government area of Kaduna state, Nigeria (which is about 

22.9km northwest of Kaduna and about 63.8km southwest of 

Zaria on latitude 10.6966°and longitude 7.32045°) was used 

as the case study for the hybrid microgrid system (HMGS). 

The data for wind speed, solar irradiance and ambient 

temperature were collected from NiMET while the load 

demand data was collected from Kaduna international airport 

electricity distribution center. The data collected were used 

for determining the optimal size of the HMGS components. 

 

RESULTS AND DISCUSSION 

Description of the System Set-up 

The renewable resources; wind, solar and temperature data 

were used to simulate optimum size of the proposed HMGS 

to supply the load data collected from a remote area in Kaduna 

state, Nigeria, in order to investigate and demonstrate the 

effectiveness of the proposed IGWO strategy. To validate the 

developed models and algorithm, a validation case that serves 

as a comparative analysis between the IGWO and four other 

algorithms, namely; particle swarm optimizer (PSO); 

differential evolution (DE); water cycle algorithm (WCA); 

and the conventional grey wolf optimizer (GWO) was carried 

out and the results obtained are presented in Figure 2 through 

7. Table 1 presents the numerical values of some of the main 

simulation parameters. In this work, each solution candidate 

was represented by a row vector of 3 elements representing 

Npv, Nwt, and SOCmax respectively. A population of 100 

solution candidates (grey wolves) was chosen. Each of the 

elements in the solution was bounded by [0, 1000000]. The 

number of iterations was fixed at 100. The mean hourly solar 

irradiance; wind speed; and load diversity factor of a single 

day was determined and used through this work. The total 

electrical energy demand was maintained at 2731.4kWh. The 

simulation scenarios and the results obtained are further 

described in the following sub-sections. 

 

Table 1: Simulation Input Parameter Description 

S/No. Symbol Description Value Unit 

1   Parameter of BESS life span  5 years 

2 pv

capC  
Capital cost of PV  0.8 US$/W 

3 pv

opC  
Operational cost of PV 0.04 US$/W 

4 wt

capC  
Capital cost of WT 0.67 US$/W 

5 wt

opC  
Operational cost of WT 0.1005 US$/W 

6 B

capC  
Capital cost of BESS  0.15 US$/Wh 

7 B

opC  
Operational cost of BESS 0.015 US$/Wh 

8 
stc  

Efficiency at standard test condition 15.7 % 
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9 
mppt  

Efficiency at maximum power point  65 % 

10 
pvA  

Area of PV panel 1.6236 m2 

11 r

pvP  
Rated power of a PV panel 255 W 

12 
stcT  

Temperature at standard test condition 25 OC 

13 NOCT Nominal operating cell temperature 47 OC 

14   Temperature coefficient of PV panel 0.006 1/(OC) 

15 r

wtP  
Rated power of a WT 1500 W 

16 
civ  

Cut-in wind speed 2.5 m/s 

17 
rv  

Rated wind speed 15 m/s 

18 
cov  

Cut-out wind speed 25 m/s 

19 DOD BESS Depth of Discharge  0.8 p.u. 

20 
ch  

BESS charging efficiency  85 % 

21 
dch  

BESS discharging efficiency 90 % 

22 
inv  

Inversion efficiency of the converter 95 % 

23 max

LP  
Peak load 155 kW 

24 sdr  BESS self-discharge rate 0.1 % 

 

Simulation Case 1: Optimal Sizing at the Maximum 

Allowable LPSP 

In this scenario, the maximum allowable LPSP was kept at 

25%, and the IGWO algorithm was executed, with all other 

input parameters as specified above. Under this condition, 

LPSP of 20.08% was obtained. The optimum Npv and Nwt 

were found to be 2113 and 252 units respectively. This 

corresponds to 539KW and 378KW installed capacities of PV 

and WT respectively while the optimum BESS capacity was 

found to be 386 kWh, corresponding to the maximum state of 

charge (SOCmax). The optimum cost (minimum objective 

function value) of the system was found to be 112,356.4 USD 

per annum, from an initial cost of 169,880 USD per annum, 

resulting in at least 34% savings in cost. Figure 2 shows the 

hourly generation schedule of the system. It represents daily 

power balance where the total power generated by the PV, 

WT and BES are supplied to the load but when there is excess 

power generation, BES is used for storage purpose.

  

 
Figure 2: Mean Hourly Power Generation Optimum Schedule 

 



OPTIMAL SIZING OF SOLAR-WIND…      Sesan et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 6, December (Special Issue), 2023, pp 362 - 372 366 

Similarly, the total energy produced by the PV and WT 

generating system; the total energy charged and discharged by 

the BES; the total energy not served and the total energy 

consumed by the dump load are also determined over an entire 

day as shown in the pie chart in Figure 3.

 

 
Figure 3: Energy Supply Composition by the Hybrid MG System 

 

Simulation Case 2: The Effect of Variation in LPSP on 

the Total Installed Capacity of the HMGS 

This case is intended to investigate the effect of LPSP on the 

HMGS design/sizing. This case is similar to case 1, in that all 

the input parameters, except the LPSP remain the same. 

However, the LPSP was gradually decreased between 97% 

and 0%, at approximately 10% interval and the results 

obtained are shown in Table 2. The results obtained in Table 

2 are further described in figures 4 and 5 where figure 4 

represents installed capacities of the HMGS components 

while figure 5 represents total energy production and BES 

losses respectively.

  

Table 2: Capacities, Cost and Energy Output with Varying LPSP 

LPSP 

(%) 

Cost 

(USD/year) 

 PV WT   BESS   

𝑷𝑷𝑽
𝑰𝒏𝒔𝒕 

(kW) 

Output 

(kWh) 

𝑷𝑾𝑻
𝑰𝒏𝒔𝒕 

(kW) 

Output 

(kWh) 

𝑷𝑩𝑬𝑺𝑺
𝑰𝒏𝒔𝒕  

(kW) 

𝑬𝑩𝑬𝑺𝑺
𝑰𝒏𝒔𝒕  

(kWh) 

Losses 

(kWh) 

97 2467 14 33 11 36 0 0 0 

88 11998 68 165 50 171 0 0 0 

79 22499 144 352 83 285 0 0 0 

69 36141 166 407 158 545 38 38 10 

58 52180 184 452 239 825 114 114 32 

48 70411 179 440 342 1183 211 211 74 

39 82655 567 1393 162 560 101 322 101 

28 120579 184 450 555 1919 412 648 215 

19 147596 181 444 668 2308 518 897 294 

8 161891 937 2303 234 809 271 1142 350 

1 169880 425 1044 678 2344 527 925 384 

0 162824 737 1813 465 1608 327 853 386 
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Figure 4: Installed Capacities of the PV, WT and BESS 

 

 
Figure 5: Total Energy Production and BESS Losses 

 

A novel index called “electricity price index” (EPI) is 

proposed to quantify the degree of optimality. The value of 

EPI for each LPSP was computed using equation 10 and 

represented by Figure 6. As shown in the figure, the lower the 

value of EPI, the higher the degree of optimality of a given 

solution.  

 

𝐸𝑃𝐼 =
𝑂𝐹

((1−
𝐿𝑃𝑆𝑃

100
)∑ 𝑃𝐿(𝑡)

24
𝑡=1 )(𝑃𝑃𝑉

𝐼𝑛𝑠𝑡+𝑃𝑊𝑇
𝐼𝑛𝑠𝑡+𝑃𝐵𝐸𝑆𝑆

𝐼𝑛𝑠𝑡 )
 (10) 

where 𝑃𝑃𝑉
𝐼𝑛𝑠𝑡 , 𝑃𝑊𝑇

𝐼𝑛𝑠𝑡  and 𝑃𝐵𝐸𝑆𝑆
𝐼𝑛𝑠𝑡 represents kW installed 

capacities of PV, WT and BES respectively,  

OF represents the value of the objective function, and 𝑃𝐿 (t) 

represents the instantaneous value of load demand.
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Figure 6: Electricity Price Index (EPI)  

 

Finally, the optimization curve is also shown in Figure 7. It 

can be observed that the algorithm has faster rate of 

convergence such that in less than 30% of the iterations the 

algorithm had already converged.

 

 
Figure 7: The IGWO Based Hybrid MG Sizing Optimization Curve 

 

Comparative Analysis for Validation of Results 

To investigate the accuracy and performance of the IGWO 

algorithm, an islanded microgrid optimal sizing problem 

comprising of 4 distinct energy resource configurations was 

considered (Fathi et. al, 2021) and validation results are given 

in Table 3. The microgrid configuration includes: 

i. DG-FT microgrid system comprising of a fuel tank (FT) 

coupled with a diesel generator (DG) only. 

ii. DG-FT-PV-WT microgrid system comprising of DG-

FT, PV and WT system. 

iii. DG-FT-PV-WT-BB microgrid system comprising of 

DG-FT, PV, WT and battery bank (BB).  

iv. PV-WT-BB renewable energy system comprising of a 

PV, WT and BB.
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Table 3: Optimal Component Sizing 

    DG (kW) FT (kL) PV (kW) WT (kW) BB (kW) 

DG-FT 

PSO 700 60 N/A N/A N/A 

DE 700 60 N/A N/A N/A 

WCA 700 60 N/A N/A N/A 

GWO 700 60 N/A N/A N/A 

IGWO 700 60 N/A N/A N/A 

       

DG-FT-PV-WT 

PSO 700 60 74.9 0 N/A 

DE 700 60 10 10 N/A 

WCA 700 60 74.9 0 N/A 

GWO 700 60 74.9 0 N/A 

IGWO 700 60 10 10 N/A 

       

DG-FT-PV-WT-BB 

PSO 700 40 385.5 300 891 

DE 700 50 10 250 526.5 

WCA 700 40 333.9 360 607.5 

GWO 700 40 385.5 300 891 

IGWO 700 50 10 255 522.5 

       

PV-WT-BB 

PSO N/A N/A 1520.9 470 9450 

DE N/A N/A 1665.4 630 8802 

WCA N/A N/A 1501.9 490 9612 

GWO N/A N/A 1520.9 470 9450 

IGWO N/A N/A 1655.4 630 8836 

 

Table 4 presents the NPV values of the overall system 

obtained via the metaheuristic algorithms over 10 consecutive 

runs. It was found that, the presence of PV and WT can result 

in a randomly varying NPV with simulation runs. This may 

be associated with the uncertain nature of renewable energy 

resource. In DG-FT system, the NPV was fixed at 8.00 for all 

runs. However, the addition of renewable resource slightly 

decreases the NPV while omission of DG results in a higher 

NPV. The proposed IGWO was able to minimize the NPV 

lower than some algorithm and as such proved applicable for 

optimal sizing of HMGS.

 

Table 4: Comparison of NPV for Different Approaches 

Number of Runs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

DG-FT 

PSO 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 

DE 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 

WCA 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 

GWO 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 

IGWO 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 

            

DG-FT-

PV-WT 

PSO 7.94 7.98 7.94 7.94 7.98 7.94 7.94 7.97 7.94 7.94 

DE 7.98 7.98 7.98 7.98 7.99 7.98 7.99 7.98 7.98 7.98 

WCA 7.94 7.94 7.97 7.94 7.98 7.96 7.98 7.94 7.94 7.96 

GWO 7.94 7.94 7.94 7.94 7.97 7.94 7.96 7.94 7.98 7.94 

IGWO 7.96 7.96 7.98 7.95 7.98 7.98 7.99 7.98 7.96 7.95 

            

DG-FT-

PV-

WT-BB 

PSO 6.86 6.95 6.86 6.86 6.88 6.89 6.91 6.86 6.86 6.88 

DE 7.62 7.68 7.72 7.62 7.65 7.66 7.70 7.62 7.63 7.62 

WCA 7.12 7.12 7.18 7.21 7.28 7.12 7.25 7.25 7.12 7.18 

GWO 6.89 6.86 6.86 6.92 6.88 6.86 6.86 6.94 6.86 6.88 

IGWO 6.87 6.87 6.89 6.95 6.99 6.86 6.96 6.98 6.86 6.92 

            

PV-

WT-BB 

PSO 11.68 11.68 11.68 11.70 11.68 11.68 11.68 11.70 11.68 11.70 

DE 12.07 12.09 12.07 12.07 12.07 12.09 12.07 12.14 12.07 12.12 

WCA 11.90 11.84 11.89 11.84 11.86 11.84 11.84 11.84 11.88 11.84 

GWO 11.68 11.68 11.68 11.70 11.68 11.69 11.68 11.68 11.70 11.68 

IGWO 11.73 11.71 11.73 11.73 11.72 11.72 11.71 11.71 11.73 11.71 

 

Finally, the developed IGWO was compared with the other 

existing algorithm in terms of annual operational results with 

different methods for the system configurations. In general it 

may be observed in Table 5 that, the higher the uncertainty, 

the higher the dumped energy supply. The presence of BB 

system minimizes fuel consumption and gas emission, 

thereby raising the renewable generation utilization higher 

than the diesel generation counterpart. Also, it can be 

observed that the CPU time for IGWOA was relatively lower.
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Table 5: Comparison of Energy Production, and Fuel Consumption 

  

Diesel generation 

(MWh) 

Renewable 

generation (MWh) 

Fuel consumption 

(kL) 

CO2 emission 

(tons) 

Dumped 

energy (MWh) 

DG-

FT 

PSO 1263.75 N/A 429.68 1164 54.21 

DE 1263.75 N/A 429.68 1164 54.21 

WCA 1263.75 N/A 429.68 1164 54.21 

GWO 1263.75 N/A 429.68 1164 54.21 

IGWO 1263.75 N/A 429.68 1164 54.21 

       

DG-

FT-

PV-

WT 

PSO 1232.24 97.25 418.96 1135 119.95 

DE 1251.13 24.78 425.38 1153 66.37 

WCA 1232.24 97.25 418.96 1135 119.95 

GWO 1232.24 97.25 418.96 1135 119.95 

IGWO 1232.24 97.25 418.96 1135 119.95 

       

DG-

FT-

PV-

WT

-BB 

PSO 607.57 854.64 206.57 5509.74 232.1 

DE 960.69 308.07 326.64 885.1 51.55 

WCA 677.95 858.46 230.5 624.59 311.76 

GWO 607.57 854.64 206.57 559.74 232.1 

IGWO 713.45 718.95 242.57 1894.79 206.88 

       

PV-

WT

-BB 

PSO N/A 2529.49 N/A N/A 1256.16 

DE N/A 2905.97 N/A N/A 1637.09 

WCA N/A 2528.43 N/A N/A 1255.56 

GWO N/A 2529.49 N/A N/A 1256.16 

IGWO N/A 2623.35 N/A N/A 1351.24 

 

Optimization Performance Analysis 

The proposed IGWO was further compared with four other 

existing algorithms including WCA, GWO, DE, and PSO 

using the NPV optimization curves, LCOE and 

simulation/CPU time. The graphical description of the 

performances is presented in Figure 8 through 10. It can be 

observed from Figures 8 that the developed IGWO was able 

to minimize the LCOE lower than the other algorithms, and 

over a relatively shorter computational time as presented in 

Figure 9. Furthermore, the developed IGWO demonstrated a 

faster convergence speed (to a global minimum) than its 

counterparts as may be observed in Figure 10(a) through 

10(d).

 

 
Figure 8: Comparison of LCOE 

 
Figure 9: Comparison of Computational Time(s) 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 10: Comparison of NPV, (a) System-1, (b) System-2, (c) System-3, (d) System-4 

 

CONCLUSION 

A standalone hybrid microgrid system has been proposed for 

electricity production in a rural community of Kaduna State 

in Nigeria. In this work, IGWOA was used in conjunction 

with four developed models, namely; PV-model, WT-model, 

LPSP/reliability-model, and BES-model, to carry out an 

investigative analysis of optimal PV, WT and BES sizing for 

reliable microgrid operation. The pseudo codes of the 

aforementioned models have been developed to ease 

implementation in MATLAB environment. A novel 

performance index namely, EPI have been introduced to 

quantify the degree of optimality of the solution. It has also 

been found that with an investment cost of 162,824 USD per 

year, the LPSP can be decreased to 0%, whereas a 50% LPSP 

will result in about 70,411 USD per annum. As such, larger 

investment cost results in cheaper electricity. The depth of 

discharge, the charging and discharging efficiency are three 

main parameters affecting the installed capacity of BES 

system.   
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