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ABSTRACT  

In this paper, the mathematical analysis of Rayleigh beam with damping coefficient subjected to moving load 

is investigated. The governing partial differential equation of order four was reduced to an ordinary differential 

equation using series solution. Numerical result was presented and it is found that the dynamic response of the 

beam increases as the length of the mass increases, the same result is also found for the length of the beam and 

the mass of the load but the dynamic response of the beam decreases as the length of the load. It also reduces 

as the speed at which the load moves increases. Also, the dynamic response of the beam is not affected by the 

damping coefficient. 
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INTRODUCTION 

The study of beams has been a trending research for some time 

now. The study of beam practically deals with the bearing of 

loads. A beam is a structured member used for carrying loads. 

It is typically used for resisting vertical loads, shear forces and 

bending moments. It is also a component that is designed to 

support transverse loads (loads that act perpendicular to 

longitudinal axis of the beam). Nguyen et al.(2011) beam 

supports loads by bending only. Moving loads have a great 

effect on the bodies or structures over which they travel. It 

causes them to vibrate intensively, especially at high velocities. 

Modern means of transportation are very fast and heavier, while 

the structure they are moving over are slender and lighter. That 

is why the dynamic stresses they produce are larger than the 

static one. Load is the quantity that can be carried at one time 

by a specified means. Load also refers to the mass or weight 

that is well supported. It is the forces to which a structure is 

subjected due to superposed weight or to wind pressure on the 

vertical surfaces. Moving loads cause solid bodies to vibrate 

intensively, particularly at high temperatures. Thus, the study 

of the response of bodies subjected to moving loads has been of 

concern to several researchers. Emem et al., Jang and 

Bert[2014, 1989] investigated the dynamic behavior of an 

elastic isotropic rectangular plate under travelling distributed 

loads. Their study centers on the flexural vibrations of a simply 

supported rectangular plate under travelling distributed loads. 

Both gravity and inertia effects of the distributed loads are taken 

into consideration. The solution technique is based on the two-

dimensional finite Fourier Sine integral transformations and a 

modification of the Struble’s asymptotic technique Chen, W.Q. 

Lu, C.F and Bian Z.G (2004). The closed form solutions are 

obtained and numerical analyses in plotted curves are 

presented. Results show that as the foundation moduli K and 

rotatory inertia correction factor R0 increase, the response 

amplitudes of the dynamical system decrease Lu and Law 

(2009). Analyses further show that for the same natural 

frequency, the critical speed for the moving distributed mass 

problem is smaller than that of the moving distributed force 

problem. Hence resonance is reached earlier in the moving 

distributed mass problem Liu and Gurram (2009). Furthermore, 

it is clearly seen that the response amplitude of the moving 

distributed mass system is higher than that of the moving 

distributed force system for fixed values of rotatory inertia 

correction factor and foundation moduli Adamek (2008). Thus 

for the simply supported moving distributed load problem, it is 

established that the moving distributed force solution is not an 

upper bound for an accurate solution of the moving distributed 

mass problem. For the two-dimensional plate problem, the 

solution techniques is based on the double Fourier Finite Sine 

integral transformation, the expansion of the Dirac Delta 

function in series form, a modification of Struble’s asymptotic 

method and the use of Fresnel sine and Fresnel cosine integrals 

Lee et al. (1994). Numerical analyses in plotted curves are 

presented. The analyses reveal interesting results on the effect 

of structural parameters such as foundation moduli, rotatory 

inertia correction factor and prestressing forces on the dynamic 

behavior of isotropic rectangular plate under the actions of 

concentrated masses moving at variable velocity. Jaworski et 

al. (2008) in particular it is found that the critical velocity of the 

travelling load which brings about the occurrence of a 

resonance state increases as the values of these structural 

parameters increase. Laura (1983) investigated the Response of 

a Prestressed Beam-type Structure subjected to Partially 

Distributed Load Moving at Non-Uniform Velocities. The 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 4 No. 1, March, 2020, pp 93 – 104   

mailto:usman.mustapha@oouagoiwoye.edu.ng


MATHEMATICAL ANALYSIS… Usman and Adefela FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 1, March, 2020, pp 93  - 104 

94 

transverse vibration of a prismatic Rayleigh beam resting on bi-

parametric Vlasov foundation and continuously acted upon by 

partially distributed masses moving at varying velocities Lujuin 

et al.(2018). The solution of the fourth order partial differential 

equation with singular and variable coefficients, use is made of 

the technique based on the Generalized Finite Fourier Integral 

Transform, Struble’s asymptotic technique and the use of 

Fresnel sine and cosine identities. Bapat (1987) Numerical 

results in plotted curves are presented. The results show that the 

response amplitude of the beam traversed by a distributed load 

moving with variable velocity decrease with an increase in the 

value of foundation modulus, Other structural parameters such 

as axial force, rotatory inertia and shear modulus are also found 

to reduce the displacement response of the beam as their values 

are increased in the dynamical system. The results also show 

that the critical speed for the system traversed by a moving 

distributed force is found to be greater than that traversed by 

moving mass Arched Mehmood (2015). This confirms that the 

inertia effect of the moving distributed load must be considered 

for accurate and safe assessment of the response to moving 

distributed load of elastic structural members. Also, Emem et 

al worked on the flexural motions under a transversing partially 

distributed load of a uniform Rayleigh beam with general 

boundary conditions. Firouz-Abadi, et al. (2007) the dynamic 

analysis of a uniform Rayleigh beam resting on Winkler-type 

foundation and under uniform distributed moving masses is 

investigated in this paper Kacar (2014), Kim et al. (2001). A 

procedure involving the generalized integral transformation 

with beam function as kernel, the use of properties of Heaviside 

function to express it in series form and a modification of the 

Struble’s asymptotic technique was used to obtain an analytical 

solution valid for all variants of classical boundary conditions 

to the dynamical problem. Yeih et al.(1999) the analytical 

solution and numerical analysis show that the critical speed for 

the moving distributed mass problem is reached earlier than that 

of the moving distributed force problem for both illustration 

examples considered. The results further show that an upward 

variations of rotatory inertia correction factor and foundation 

stiffness decrease the response amplitudes of the uniform 

Rayleigh beam whether the beam is traversed by moving 

distributed force or moving distributed mass Rao and Naidu 

(1983). 

Nguyen (2017) investigated Comparative Spectral Analysis 

of Flexible Structure Models: the Euler-Bernoulli Beam model, 

the Rayleigh Beam model, and the Timoshenko Beam Model. 

The approximate spectra for three different models of 

transversely vibrating beams is derived. Each model consists of 

a system of partial differential equations (PDEs) with various 

boundary conditions. The three models that we consider are the 

Euler-Bernoulli model, the Rayleigh model, and the 

Timoshenko model. Lastly, the asymptotic approximations of 

some of the various spectral equations found from each model 

is presented Amiri and Onayango (2010). 

Ratnadeep (2015) investigated Dynamic Response of 

Uniform Rayleigh Beams on Variable Biparametric Elastic 

Foundation under Partially Distributed Loads. Paul F. Doyle 

and Milija N. Pavlovic (1982) presents the dynamic response of 

pre-stressed Rayleigh beam resting on variable bi-parametric 

elastic foundation under moving distributed masses. The 

system is governed by fourth order partial differential equation 

with variable and singular coefficients. De Rosa (1994) aim of 

the study was to obtain the dynamic deflections of the bi-

parametric elastic subgrade having shear layer under moving 

distributed force and moving distributed mass, respectively. 

Generalized Galerkin Method (GGM) was employed to reduce 

the governing equation to second order ordinary differential 

equations and a modification of Struble’s asymptotic technique 

was used to solve the reduced equations BalaSubramanian and 

Subramanian (1985). From the obtained results, it was observed 

that the deflection profile of moving distributed mass was 

higher than the moving distributed force for the boundary 

conditions considered in this new study. From this study, the 

moving distributed force is not a safe approximation to the 

moving distributed mass problem. Thus, safety not guaranteed 

for a design based on the moving distributed force solution Hsu 

et al.(2008). Wang and Lin(1996) investigated Isospectrals of 

non-uniform Rayleigh beams with respect to their uniform 

counterparts. In this paper, the non-uniform Rayleigh beams 

isospectral to a given uniform Rayleigh beam is found. 

Isospectral systems are those that have the same spectral 

properties, i.e. the same free vibration natural frequencies for a 

given boundary condition. Maurizi et al. (1976) proposed the 

fourth-order governing differential equation of non-uniform 

Rayleigh beam into a uniform Rayleigh beam. If the 

coefficients of the transformed equation match with those of the 

uniform beam equation, then the non-uniform beam is 

isospectral to the given uniform beam De Rosa (1982). The 

boundary-condition configuration should be preserved under 

this transformation. P.B. Ojih et al investigated the dynamic 

response under moving concentrated loads of uniform Rayleigh 

beam resting on Pasternak foundation. The dynamic response 

under moving concentrated masses on Uniform Rayleigh beam 

resting on Pasternak foundation, with simply supported 

boundary condition is investigated in this paper Bert et al. 

(1989). The governing equation is a fourth order partial 

differential equation, a technique based on the generalized 

integral transform (GIT) is used to reduce the governing 

equation to a sequence of second order differential equation 

Zhou (2013). 

 

 

MATHEMATICAL FORMULATION 
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Consider a non-prismatic Rayleigh beam with damping coefficient of length L and transverse by uniform partially distributed 

moving mass. The resulting vibrational behavior of this system is described by the following partial differential equation: 

)   (1) 

where 

 

    P(x,t) = (
1

𝜖
) [−𝑀𝑔 − 𝑀

𝑑2𝑣

𝑑𝑡2 
 ] [𝐻 (𝑥 − 𝜖 +

𝜖

2
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)]                (2) 

𝑑2

𝑑𝑡2
 is the acceleration operator defined as follows 
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+ 2𝑣

𝑑2
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Where 

= is the transverse displacement 

M = is the mass of the beam  

x = spatial coordinate  

t = Time  

E = Young’s modulus  

I = moment of inertia  

m = Mass per unit length of the beam  

H(x) 

𝑅0 is the measure of rotating inertia With the 

boundary conditions 

= Heaviside function 

 

 

 

 

  
V (0,t) = 0 = V (l,t)    (3) 

  
  

      (4) 

Without loss of generality, one can consider the initial conditions of the form 

       (5) 

Method of Solution 

In this section, in order to compute the response of the Rayleigh beam due to the moving load the non-homogeneous partial 

differential equation of order four is solved by using a series solution method defined by 𝑉(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛
𝑗𝜋𝑥

𝐿

∞
𝑗=1 𝑇𝑗(𝑡) 

 

 

 

 

 

 

(6) 
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Now multiplying equation 3.8 by sin  and integrating the resulting expression with respect to x over an interval (0,L), we 

have 

 

 

 
i.e 

C15 = C11 + C12 + C13 + C14 

where 

   

 

   

and by orthogonality condition 

       

Evaluating the integrals in equation 6 - 10, we have 

       

   

 

  

 

and 

C15 = Tfj (t).......     

Combining equations 11 -15, we finally obtained 

 

 

 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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where 

 

 
Numerical Analysis 

The numerical method alluded to is the central difference technique applying the central difference formula to the derivative in 

equation (17), we obtain 

      (18) 

Substituting equation (18) into equation (17) , 

 

 

 

 

 

 

 

 

 

 

(16) 

(17) 
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= 0 provided that 

EI (π/L)4 j4Tj (t) + NT¨
j (t) 

 

 

 

 

 

 

 

 

 

(22) 
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RESULTS AND DISCUSSION 

In order to validate our model in the previous section, the following beam dimension and specification were used: 

Table 1: Beam Specification and Dimension. 

The beam was made of steel E 2.10×1011N 

Length(L) 2m, 6m, 10 m 

Breadth 0.05 m 

Height 0.15 m 

Flexural Rigidity EI 2910937.5 

Mass of the beam (M) 50kg,70kg,100kg 

Length of the mass () 1,3,5 

Length of the load (ξ) 1,2,3 

Foundation Modulus K 0, 1, 2, 3, 5N/m3 

Mass per unit length of the beam m 7.04 

 

 
Fig. 1: Dynamic response of Beam for various values of 𝜖 

 

Figure 1 Shows the dynamic response of the Beam at various values of. It is observed that the dynamic response of the beam 

increases as the length of the mass increases. 
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Fig. 2: Dynamic response of Beam for various values of M 

 

Figure 2 Shows the dynamic response of the beam at various values of M. It is also observed that the dynamic response of the 

beam increases as the mass of the load increases. 

 

 
Fig, 3: Dynamic response of Beam for various values of L 

 

Figure 3 Displays the dynamic response profile for the length of the beam L. It is observed that the dynamic response of the beam 

decreases with an increase in the length of the beam. 
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Fig, 4: Dynamic response of Beam for v 

 

Figure 4 Shows the dynamic response profile for the speed at which the load is moves. It is observed that the dynamic response of 

the beam decreases as the value of the speed of the increases. 

 

 
Fig. 5: Dynamic response of Beam for various values of R 

 

Figure 5 Displays the dynamic beam’s response variation profile for damping coefficient. It is observed that the dynamic response 

of the beam is the same for all values of the damping coefficient. 
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Fig. 6: Dynamic response of Beam for various values of ξ 

 

Figure 6 Displays the dynamic beam’s response variation profile for the length of the load. It is observed that the dynamic response 

of the beam decreases with an increase in the mass of the load. 

 

CONCLUSION 

Mathematical analysis of Rayleigh beam with damping 

coefficients subjected to moving load was considered in this 

study. The governing partial differential equation of fourth 

order was reduced to an ordinary differential equation using 

series solution. The frequency of the oscillation was found and 

substituted back into the assumed series solution which is the 

solution of the governing equation. Numerical result was 

presented and plotted against x for various parameters using a 

computer program (MATLAB). 

From the numerical results, this study concludes that the 

dynamic response of the beam increases as the length of the 

mass increases, the same result was also found for the length of 

the beam and the mass of the load but the dynamic response of 

the beam decreases as the length of the load. It also reduces as 

the speed at which the load moves increases. Also, the dynamic 

response of the beam is not affected by the damping coefficient. 
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