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ABSTRACT 

This study developed a deterministic mathematical model of COVID-19 infection by incorporating 

asymptomatically and symptomatically infectious individuals, the vital dynamics such as birth rate and 

mortality rate. Face mask use, diagnosis of asymptomatic infectious individuals, and isolation of infected 

individuals as control strategies are also incorporated. The model is shown to have two unique equilibrium 

states, namely: the disease-free equilibrium points and the endemic equilibrium point. The result from the 

stability analysis of the critical points is shown to be local asymptotic stable and also, globally asymptotically 

stable provided the basic reproduction number is less than one (R0 < 1), and the endemic equilibrium state is 

local asymptotic stable and also, globally asymptotically stable provided  R0 > 1. Furthermore, results of the 

sensitivity index on R0   for the different parameters of the model show that the recruitment rate and the 

effective contact rate are the most sensitive parameters and thus critical in disease management and eradication. 

Thus, efforts geared at reducing the recruitment of susceptible individuals and infection transmission rate will 

significantly eliminate the disease burden.  
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INTRODUCTION 

Coronaviruses are a broad family of zoonotic (transmission 

from animals to humans) viruses that cause illnesses ranging 

from the common cold to serious respiratory disorders (Vince, 

2020). Coronaviruses are viral types. There are several 

varieties, some of which cause sickness. They are divided into 

three subgroups: alpha, beta, and gamma. A fourth novel 

category is known as delta coronaviruses (Mehmet et al., 

2021).  

Coronavirus disease 2019 (COVID-19), according to 

Indwiana and Ysrafil (2020), is an infectious illness caused by 

a novel coronavirus termed SARS-CoV-2, which stands for 

Severe Acute Respiratory Syndrome Coronavirus 2. SARS-

CoV-2 is an enclosed virus with a positive-sense, single-

stranded RNA of 29,891 bases that belongs to the 

coronaviridae family's beta subgroup. The genome encodes 

29 proteins important in the processes of infection, 

replication, and virion assembly. The crown-like spikes on the 

surface of the coronavirus give it its name. The common cold, 

Middle East Respiratory Syndrome (MERS), and Severe 

Acute Respiratory Syndrome (SARS) are all examples of 

coronaviruses that can cause mild or severe respiratory 

disease (CDC, 2021). 

The SARS-CoV-2 spike S protein has a receptor binding 

domain (RBD) that binds the human angiotensin-converting 

enzyme 2 (ACE2), promoting membrane fusion and viral 

endocytosis. The coronavirus genome's most variable section 

is the RBD found in the spike protein. According to structural 

and biochemical research, RBD from SARS-CoV-2 binds to 

ACE2 with more affinity than RBD from previous SARS-

CoV viruses. However, the diversity of human ACE2 protein 

may also play a role in the high binding affinity. Because this 

virus is brand new, no one is immune to it. As a result, it has 

the potential to infect a huge number of people (WHO, 2021).  

The duration between being exposed to COVID-19 infection 

and experiencing symptoms is 5-6 days on average but can 

range from 1-14 days (Liu et al., 2020). According to WHO 

(2021), the most frequent symptoms of COVID-19 are fever, 

dry cough, and exhaustion. Symptoms of severe COVID-19 

illness include loss of appetite, shortness of breath, 

disorientation, continuous discomfort or pressure in the chest, 

and a high fever (over). People of all ages who have a fever 

and/or a cough that is accompanied by trouble breathing or 

shortness of breath, chest discomfort or pressure, or loss of 

speech or movement should seek medical attention right once. 

Some patients may get severe sickness, which can lead to 

hospitalization and death (Guan et al., 2020). 

The respiratory droplets produced when an infected person 

talks, coughs, or sneezes are the major method of 

transmission. These droplets can land on surrounding surfaces 

or directly on another person's lips, nose, or eyes, causing 

illness (CDC, 2022).  

However, there is evidence that the virus can be spread via 

aerosols, which are tiny particles that can float in the air for 

extended periods. Indoor places that are poorly ventilated, 

especially those with limited air exchange or recirculation, 

increase the risk of airborne transmission (Zhang et al., 2021). 

The COVID-19 pandemic has served as a sharp reminder of 

how important it is to understand how infectious illnesses 

spread and to take the necessary safeguards to avoid their 

transmission. 

Several models have been developed and tested to explain the 

behavior of COVID-19.  Andrea et al. (2020) presented the 

difficulty of modeling and forecasting the spread of COVID-

19. They stressed that modeling and forecasting the spread of 

COVID-19 remained difficult, but they were able to propose 

three macroscopic models: the exponential growth model, the 

self-exciting branching process, and the SIR (susceptible-

infected-resistant) compartmental model. Their research 

revealed that dealing with the coronavirus disease 2019 

(COVID-19) epidemic will be vitally dependent on the 

successful application of public health measures such as 

social distancing, shelter-in-place orders, disease 

surveillance, contact tracing, isolation, and quarantine.  

Ghassane et al. (2020) proposed a mathematical model that 

described the flow of coronavirus, focusing more on 

asymptomatic individuals. They stated that the asymptomatic 

infectious individuals’ contribution to the spread of the 

infection are largely undetected and thus can demoralize 

efforts to regulate the spread of the ailment. They further 

counseled that if social distancing is taken more seriously, 

then the healthcare system will not be overloaded. 
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The study by Masaki and Mitsuo (2020) showed a 

mathematical model for the COVID-19 pandemic which is 

characterized by presymptomatic and asymptomatic 

populations. They argued that infection propagation is 

difficult in asymptomatic persons since they are not isolated. 

Veera and Prakash (2020) investigated the phase-based 

transmissibility of coronavirus. The generation matrix 

approach was recommended for calculating the basic 

reproduction number (). Their major goal is to expand a 

phase-based mathematical modeling to describe coronavirus 

transferability, therefore they created a reservoir-individuals 

spreading set of connections modeling to simulate the 

potential spread of a person's infectivity. They reported that 

for researchers to better understand and model the dynamics 

of a specific infection, they must consider the influence of 

numerous variables ranging from micro-host-pathogen 

interactions to host-to-host encounters, as well as global 

cultural, social, economic, and local customs. 

Zeb et al. (2020) developed a mathematical model for 

coronavirus disease 2019 (COVID-19) by considering the 

isolation of the infected population. Their findings showed 

that effective contact with infected individuals is the cause of 

epidemics and hence, isolating sick persons can lower the risk 

of a pandemic. 

Gnanvi et al. (2021) conducted a critical examination of 

modeling methodologies by investigating the reliability of 

predictions on COVID-19 dynamics. They performed a global 

systematic literature study on 242 publications to highlight 

trends in the modeling approach used for COVID-19 from 

January 1st, 2020 to November 30th, 2020. They also 

investigated prediction accuracy and precision by comparing 

anticipated and observed values for cumulative cases and 

fatalities, as well as the uncertainty of these forecasts. They 

demonstrated that compartmental and statistical growth 

models are the most often utilized modeling techniques for 

predicting COVID-19 dynamics. Artificial intelligence-based 

models, agent-based models, and Bayesian models were also 

employed, but to a lesser extent. Finally, they argued that 

although some forecasts were valuable in guiding policy-

making, others were not. 

Kumar, et al. (2021) discussed a new fractional mathematical 

modelling of COVID-19 in the presence of vaccine.  They 

formulated the model with integer order and then, generalized 

it in the Atangana-Baleanu derivative sense.  They provided 

the existence of a solution for the given fractional SEIRS 

model.  

Okolo and Onoja (2021) investigated the impact of physical 

distance and isolation on COVID-19 transmission using a 

mathematical model. They calculated the fundamental 

reproduction number as an epidemic threshold using the next-

generation technique. The study revealed that be mitigated 

with effective enforcement of regulations such as physical 

distance and isolation. 

Okolo et al. (2021) constructed a deterministic mathematical 

model of coronavirus infection 2019 (COVID-19) 

transmission dynamics in the presence of social distance, face 

mask use, and hospitalization. The sensitivity index results 

suggest that the most sensitive parameter is the effective 

contact parameter, which was also used as the social 

distancing parameter. Numerical results suggest that the 

successful combination of social distancing, public usage of 

face masks, and isolation (hospitalization) of sick persons 

would result in a significant decrease in COVID-19 infection 

burden. 

Though research in mathematical models of COVID-19 

transmission dynamics is available and ongoing, the available 

models reviewed are epidemic models that did not incorporate 

vital/demographic dynamics. The results show that the 

epidemics will be mitigated with time, notwithstanding the 

value of the basic reproduction number of the model. We also 

noted that no attempt was made to incorporate the clinical 

diagnosis of an asymptomatic infectious population as a 

control measure. It is thus, instructive to formulate a 

mathematical model that will incorporate vital/demographic 

dynamics, assess the impact of face-mask use, clinical 

diagnosis of asymptomatic individuals, and isolation of 

infectious persons on the management and control of COVID-

19 infection. 

The present study extends some of the above-reviewed 

models but specifically, the Okolo et al. (2021) model by 

incorporating vital/demographic dynamics, a proportion of 

the population that uses face masks, the efficacy of face 

masks, the effect of isolating infected population, and the 

impact of clinical diagnosis of the asymptomatically-

infectious individuals. 

 

MATERIALS AND METHODS 

Model Formulation 

The entire population 𝑁(𝑡) is partitioned into six classes of 

Susceptible 𝑆(𝑡),  Latent 𝐸(𝑡) , Asymptomatic 𝐼𝑎(𝑡) ,  

Symptomatic 𝐼(𝑡),  Isolated 𝐼𝑠(𝑡)  and Recovered 𝑅(𝑡) 

individuals, so that, 

 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼(𝑡) + 𝐼𝑠(𝑡) + 𝑅(𝑡)         (1a) 

 

The description of the model variables and parameters are 

presented in Table 1 

 

Table 1: Description of model variables and parameters  

Variables / Parameters Description 

𝑆(𝑡) Susceptible individuals at time t. 

𝐸(𝑡) Latent individuals at time t. 

𝐼𝐴(𝑡) Asymptomatic individuals at time t. 

𝐼(𝑡) Symptomatic individuals at time t. 

𝐼𝑆(𝑡) Isolated individuals at time t. 

𝑅(𝑡) Recovered individuals at time t. 

Π The influx rate of susceptible individuals. 

𝛽 Infection transmission rate. 

𝜃 The rate of face mask compliance in public. 

𝑞 Efficiency of face masks. 

𝜂 The proportion of the asymptomatic population with symptoms as a result of 

clinical diagnosis. 

𝑣 The rate at which symptomatic individuals are isolated. 

𝜎 The proportion of the latent population who show no COVID symptoms. 

𝜔 The progression of latent individuals to the infectious class. 
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𝛾 The recovery rate for asymptomatic, symptomatic, and isolated compartments. 

𝑑 The COVID-19 fatality rate of the asymptomatically-infected, symptomatically-

infected, and isolated class. 

𝜇 Natural mortality rate. 

   

The description and interaction in the different classes are represented by the diagram in Figure 1. 

 

Model Description  

The susceptible individuals 𝑆(𝑡) are recruited at the rate Π. It 

is decreased by effective contact with symptomatic 

individuals and effective contact with asymptomatic 

individuals at a rate of  𝛽. 0 < 𝜃 ≤ 1 is the rate of face-masks 

compliance in public and 0 < 𝑞 ≤ 1 is the efficiency of face-

masks. It is decreased further by the natural mortality rate, 𝜇. 

Thus, 
𝑑𝑆

𝑑𝑡
= Π − 𝛽(1 − 𝜃𝑞)𝑆

(𝐼+𝐼𝐴)

𝑁
− 𝜇𝑆      (1b) 

The population of the latent individuals' 𝐸(𝑡)  increases 

infection at a rate 𝛽 . It is decreased by the progression of 

latent individuals to the infectious classes at a rate 𝜔 . A 

proportion, 0 < 𝜎 ≤ 1,  of the latent population with no 

symptoms is moved to the asymptomatic class and (1 − 𝜎), 

with symptoms are moved to the symptomatic class. It is 

decreased further by the natural mortality rate 𝜇. so that, 

 
𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝜃𝑞)𝑆

(𝐼+𝐼𝐴)

𝑁
− (𝜔 + 𝜇)𝐸   (1c) 

 
Figure 1: Schematic flow of COVID-19 transmission dynamics. 

 

The population of the Asymptomatic individuals 𝐼𝐴 (t) 

increases by the progression of the latent individuals into the 

asymptomatic class at a rate 𝜎𝜔, where (0 < 𝜎 ≤ 1) of the 

proportion of latent individuals with no symptoms. It is 

reduced by recovery at a rate 𝛾,  and by the proportion of 

individuals who develop symptoms, 𝜂. It is reduced further by 

COVID-19 induced-mortality rate 𝑑 , and natural mortality 

rate 𝜇. Therefore,  

 
𝑑𝐼𝐴

𝑑𝑡
= 𝜎𝜔𝐸 − (𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴     (1d) 

The population of the Symptomatic individuals 𝐼(𝑡) increases 

by the progression of the latent individuals into the 

symptomatic class at a rate (1 − 𝜎)𝜔, and the proportion 𝜂 of 

asymptomatic individuals who developed symptoms. It is 

reduced by recovery at a rate 𝛾,  isolation of symptomatic 

infectious individuals at the rate 𝑣 , COVID-19 induced-

mortality rate 𝑑, and natural mortality rate 𝜇. Hence,  
𝑑𝐼

𝑑𝑡
= (1 − 𝜎)𝜔𝐸 + 𝜂𝐼𝐴 − (𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼  (1e) 

The population of the Isolated individuals 𝐼𝑠(t) increases by 

progression of symptomatic individuals into the isolation 

class 𝑣, and decreases by recovery 𝛾, it is reduced further by 

COVID-19 induced  mortality rate 𝑑, and natural mortality at 

a rate 𝜇.  Thus, 

 
𝑑𝐼𝑠

𝑑𝑡
= 𝑣𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼𝑠     (1f) 

The Recovered population 𝑅(𝑡) is generated by the recovery 

of the symptomatic, asymptomatic, and isolated individuals at 

a rate 𝛾. It is reduced by natural mortality, 𝜇.  Therefore, 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼𝐴 + 𝛾𝐼 + 𝛾𝐼𝑠 − 𝜇𝑅      (1g) 

 

The Model Equations 

For clarity, the equations from the model description are 

written as 
𝑑𝑆

𝑑𝑡
= Π − 𝛽(1 − 𝜃𝑞)𝑆

(𝐼+𝐼𝐴)

𝑁
− 𝜇𝑆   (2) 

 
𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝜃𝑞)𝑆

(𝐼+𝐼𝐴)

𝑁
− (𝜔 + 𝜇)𝐸    (3) 

 
𝑑𝐼𝐴

𝑑𝑡
= 𝜎𝜔𝐸 − (𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴      (4) 

 
𝑑𝐼

𝑑𝑡
= (1 − 𝜎)𝜔𝐸 + 𝜂𝐼𝐴 − (𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼    (5) 

 
𝑑𝐼𝑠

𝑑𝑡
= 𝑣𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼𝑠       (6) 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼𝐴 + 𝛾𝐼 + 𝛾𝐼𝑠 − 𝜇𝑅      (7) 

 

with the non-negative initial condition  

𝑆(0) > 0, 𝐸(0) > 0, 𝐼𝐴(0) > 0 𝐼(0) > 0, 𝐼𝑠(0) > 0, 𝑅(0) >
0   
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RESULTS AND DISCUSSION 

Positivity of Solutions 

The system of equations (2) - (7) is a model that monitors the 

changes in the human population. It is necessary to prove that 

all the state variables are positive at all 𝑡 > 0 by the theorem 

below. 

 

Theorem 1: Let 𝑁(0) = 𝑁0, 𝑡0 > 0 and the initial conditions 

for equation (2) - (7) satisfy 𝑆(𝑡0) > 0, 𝐸(𝑡0) > 0, 𝐼𝐴(𝑡0) >
0, 𝐼(𝑡0) > 0, 𝐼𝑆(𝑡0) > 0, 𝑎𝑛𝑑 𝑅(𝑡0) > 0,  then the solution 

𝑆(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼(𝑡), 𝐼𝑆(𝑡), 𝑅(𝑡) of system  (2) – (7) are non-

negative for all 𝑡 ≥ 0. 

 

Proof: By eliminating the non-negative term Π Equation (2), 

it can be expressed as an inequality, 
𝑑𝑆

𝑑𝑡
≥ −[𝛽(1 − 𝜃𝑞)

(𝐼+𝐼𝐴)

𝑁
+ 𝜇]𝑆      (8) 

Integrating equation (8) by separating the variables, gives 

∫
𝑑𝑆

𝑆
≥ ∫− [𝛽(1 − 𝜃𝑞)

(𝐼+𝐼𝐴)

𝑁
+ 𝜇] 𝑑𝑡    

That is, 

𝑆(𝑡) ≥ 𝑆(0)𝑒−𝜇𝑡−𝛽(1−𝜃𝑞)
𝐼

𝑁
𝑡−𝛽(1−𝜃𝑞)

𝐼𝐴
𝑁

𝑡   (9) 

where 𝑆(0) is obtained from the initial condition. Since the 

exponential function is always non-negative, the function 

𝑒−𝜇𝑡−𝛽(1−𝜃𝑞)
𝐼

𝑁
𝑡−𝛽(1−𝜃𝑞)

𝐼𝐴
𝑁

𝑡
 is a positive quantity. Hence, we 

concluded that: 𝑆(𝑡) ≥ 0 .   
 

Equation (3) can be expressed as, 
𝑑𝐸

𝑑𝑡
≥ −(𝜔 + 𝜇)𝐸       (10) 

Integrating equation (10) by separating the variables, gives 

𝐸(𝑡) ≥ 𝐸(0)𝑒−𝜔𝑡−𝜇𝑡        (11) 

where 𝐸(0) is obtained from the initial condition. Since the 

exponential function is always non-negative, the function 

𝑒−𝜔𝑡−𝜇𝑡   is a positive quantity. Hence, we concluded that:  

𝐸(𝑡)
≥ 0.                                                                                                           
Similarly, following the above procedure by separating the 

variables and applying the initial conditions, Equations (4), 

(5), (6) and (7) can be solved to obtain, 

 

𝐼𝐴(𝑡) ≥ 𝐼𝐴(0)𝑒−𝛾𝑡−𝜂𝑡−𝜇𝑡−𝑑𝑡      (12) 

𝐼(𝑡) ≥ 𝐼𝐴(0)𝑒−𝛾𝑡−𝑣𝑡−𝜇𝑡−𝑑𝑡   (13) 

𝐼𝑆(𝑡) ≥ 𝐼𝑆(0)𝑒−𝛾𝑡−𝜇𝑡−𝑑𝑡   (14) 

𝑅(𝑡) ≥ 𝑅(0)𝑒−𝜇𝑡        (15) 

 

Therefore, 𝑆(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼(𝑡), 𝐼𝑆(𝑡) 𝑎𝑛𝑑 𝑅(𝑡) are all non-

negative for all 𝑡 ≥ 0.  

 

Invariant Region 

Consider the biologically feasible region 

Ω = {(𝑆(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡)) ∈ ℝ6: 𝑁 ≤
𝜋

𝜇
}  

 (16) 

Lemma 2: The closed set Ω  is positively invariant with 

respect to the system equations 

(2) – (7). 

Proof: 

Using equation (2) – (7) we have 
𝑑𝑁

𝑑𝑡
= Π − 𝜇𝑁 − 𝑑(𝐼𝐴 + 𝐼 + 𝐼𝑠)     (17) 

It is clear from the equation (17) that 
𝑑𝑁

𝑑𝑡
≤ Π − 𝜇𝑁          (18) 

Thus, 
𝑑𝑁

𝑑𝑡
≤ 0, if 𝑁(𝑡) ≥

Π

𝜇
      

Following  Lakstimikantham et al. (1989) we have that  

𝑁(𝑡) = 𝑁(0)𝑒−𝜇𝑡 + 
Π

𝜇
(1 − 𝑒−𝜇𝑡)     (19) 

Specifically, 

𝑁(𝑡) ≤
Π

𝜇
    if    𝑁(0) ≤

Π

𝜇
        

Hence, Ω = {(𝑆, 𝐸, 𝐼𝐴 𝐼, 𝐼𝑆, 𝑅) ∈ ℝ6: 𝑁 ≤
𝜋

𝜇
} is positively and 

attract. However, if 𝑁(𝑡) ≤
Π

𝜇
, then either the solution enters 

Ω in a finite time, or 𝑁(𝑡) approaches 
Π

𝜇
 asymptotically.  

 

Disease-Free Equilibrium (DFE) Point 

The model equations (2) - (7) have a Disease-Free 

Equilibrium (DFE) state, ℇ0 where  

ℇ0  = (𝑆0, 0, 0, 0, 0, 0) = (
Π

𝜇
, 0, 0, 0, 0, 0) (20) 

The computation of the basic reproduction number 𝑅0  is 

required to assess the stability of COVID-19.

 

 

Basic Reproduction Number (𝑹𝟎) 

The average number of secondary infections, when one sick individual is introduced into a host community where everyone 

is prone to the disease is the basic reproduction number. (Diekmann et al., 1990; Van Den Driessche & Watmough, 2002). To 

calculate the reproduction number 𝑅0, we employ the next-generation matrix method. The maximum eigenvalue of  𝐹𝑉−1 is 

the basic reproduction number. Thus, 

𝑅0 = 𝜎(𝐹𝑉−1)           (21) 

where 𝜎 denotes the maximum eigenvalue. 

The non-negative matrix 𝐹, for the appearance of new infection terms, and the transition rate matrix, 𝑉, for the transfer of 

individuals into and out of this class by all other means given by 

𝐹𝑥(ℇ0) = (
0 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁

0 0 0
0 0 0

)        (22) 

and 

𝑉𝑥 = (

(𝜔 + 𝜇) 0 0

−𝜎𝜔 (𝛾 + 𝜂 + 𝜇 + 𝑑) 0

−(1 − 𝜎)𝜔 −𝜂 (𝛾 + 𝑣 + 𝜇 + 𝑑) 

)       (23) 

𝑉𝑥
−1 =

(

 
 

1

(𝜔+𝜇)
0 0

𝜎𝜔

𝑎1(𝜔+𝜇)

1

𝑎1
0

𝜂𝜎𝜔+𝑎1(1−𝜎)𝜔

𝑎1𝑎2(𝜔+𝜇)

𝜂

𝑎1𝑎2

1

𝑎2)

 
 

         (24) 

where, 
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𝑎1 = (𝛾 + 𝜂 + 𝜇 + 𝑑) 

𝑎2 = (𝛾 + 𝑣 + 𝜇 + 𝑑) 

so that 

𝐹𝑥𝑉𝑥
−1 = 

(
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[

𝜎𝜔

𝑎1(𝜔+𝜇)
] + 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[
𝜂𝜎𝜔+𝑎1(1−𝜎)𝜔

𝑎1𝑎2(𝜔+𝜇)
] 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[

1

𝑎2
] + 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[

𝜂

𝑎1𝑎2
] 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[

1

𝑎1
]

0 0 0
0 0 0

) 

            (25) 

The maximum eigenvalue (𝐹𝑉−1) is the basic reproduction number 𝑅0, is 

𝑅0 =
𝛽(1−𝜃𝑞)Π

𝜇Ν(𝜔+𝜇)
[

𝜎𝜔

(𝛾+𝜂+𝜇+𝑑)
+

𝜂𝜎𝜔

(𝛾+𝜂+𝜇+𝑑)(𝛾+𝑣+𝜇+𝑑)
+

(1−𝜎)𝜔

(𝛾+𝑣+𝜇+𝑑)
]      (26) 

 

Analysis of the Local Asymptotic Stability (LAS) of the Disease-Free Equilibrium (DFE) State 

To establish the local and asymptotic stability of the Disease-Free Equilibrium (DFE) state, the associated matrix of partial 

derivatives of the model (2) – (7) , that is, the Jacobian matrix is obtained at the DFE state.  

The matrix of the partial derivatives (Jacobian matrix) at the DFE state, 𝐽(ℇ0) is given by 

 

𝐽(ℇ0) =

(

 
 
 
 
 

−𝜇 0 −𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
−𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0 0

0 −(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0 0

0 𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0 0

0 (1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0 0

0 0 0 𝑣 −(𝛾 + 𝜇 + 𝑑) 0
0 0 𝛾 𝛾 𝛾 −𝜇)

 
 
 
 
 

    (27) 

 

Theorem 3: The DFE state of the equations  (2) – (7), is locally asymptotically stable whenever 𝑅0 < 1 and is unstable if  

𝑅0 > 1. 

 

Proof: 

It is enough to prove that all the eigenvalues of the characteristic equation of 𝐽(ℇ0), have negative real parts. The eigenvalues 

are determined by solving the characteristics equation det(𝐽(ℇ0) − 𝜆𝐼) = 0. Thus, 

(−𝜇 − 𝜆)(−𝜇 − 𝜆)(−𝑎3 − 𝜆) |

−(𝜔 + 𝜇) − 𝜆 𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁

𝜎𝜔 −𝑎1 − 𝜆 0
(1 − 𝜎)𝜔 𝜂 −𝑎2 − 𝜆

| = 0     (28) 

 

𝑎1 = (𝛾 + 𝜂 + 𝜇 + 𝑑) 

𝑎2 = (𝛾 + 𝑣 + 𝜇 + 𝑑) 

𝑎3 = (𝛾 + 𝜇 + 𝑑) 

Simplifying to obtain 

(−𝜇 − 𝜆 ) ( −𝜇 − 𝜆) ( −𝑎3 − 𝜆)  [𝜆3 + 𝜆2(𝑎1 + 𝑎2 +  𝜔 + 𝜇) + 𝜆 [−𝛽(1 − 𝜃𝑞)
Π𝜎𝜔

𝜇𝑁
− 𝛽(1 − 𝜃𝑞)

Π(1−𝜎)𝜔

𝜇𝑁
 + 𝑎1𝑎2 + (𝑎1 +

𝑎2)(𝜔 + 𝜇)] −  𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
[𝜂𝜎𝜔 + 𝑎1𝜔 − 𝑎1𝜎𝜔 + 𝑎2𝜎𝜔] + 𝑎1𝑎2(𝜔 + 𝜇)] = 0         (29)  

Thus, the eigenvalues are 

 𝜆 =  −𝜇 (twice),  𝜆 = − 𝑎3 and the root of 

 𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0            (30) 

where, 

𝐴 = 𝑎1 + 𝑎2 +  𝜔 + 𝜇,          (31) 

𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) + 𝑎2( 𝜔 + 𝜇) − 𝛽(1 − 𝜃𝑞)
Π𝜎𝜔

𝜇𝑁
− 𝛽(1 − 𝜃𝑞)

Π(1−𝜎)𝜔

𝜇𝑁
,     (32) 

𝐶 = −
𝛽(1−𝜃𝑞)

Π

𝜇𝑁

(𝜔+𝜇)
[
𝜂𝜎𝜔+𝑎1(1−𝜎)𝜔

𝑎1𝑎2
+

𝜎𝜔

𝑎1
] + 𝑎1𝑎2(𝜔 + 𝜇),       (33) 

 

All the roots of the characteristic equation (30) have negative real parts if,  𝐴,𝐵, 𝐶 > 0, 𝐴𝐵 − 𝐶 > 0  according to Routh-

Hurwitz stability criteria (Routh-Hurwitz, 1964).         

Obviously,     

𝐴 = 𝑎1 + 𝑎2 +  𝜔 + 𝜇 > 0             (34) 

 

𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) + 𝑎2( 𝜔 + 𝜇) − 𝛽(1 − 𝜃𝑞)
Π𝜎𝜔

𝜇𝑁
− 𝛽(1 − 𝜃𝑞)

Π(1 − 𝜎)𝜔

𝜇𝑁
 

𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) [1 −
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
] + 𝑎2( 𝜔 + 𝜇) [1 −

𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
] 
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𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) [1 − (𝑅0 − (
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)]

+ 𝑎2( 𝜔 + 𝜇) [1 − (𝑅0 − (
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] 

 

𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 + (

𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
)] > 0, if 𝑅0 < 1                  (35)   

 

 

𝐶 = −
𝛽(1 − 𝜃𝑞)

Π
𝜇𝑁

(𝜔 + 𝜇)
[
𝜂𝜎𝜔 + 𝑎1(1 − 𝜎)𝜔

𝑎1𝑎2
+

𝜎𝜔

𝑎1
] + 𝑎1𝑎2(𝜔 + 𝜇)   

𝐶 =  𝑎1𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] > 0, 𝑖𝑓 𝑅0 < 1     (36)  

 

Next, consider 𝐴𝐵 − 𝐶, 

𝐴𝐵 − 𝐶 =  

(𝑎1 + 𝑎2 𝜔 + 𝜇 {𝑎1𝑎2 + 𝑎1(𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)]

+ 𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
)]} 

                        –  𝑎1𝑎2( 𝜔 + 𝜇)[1 − 𝑅0] 

= 𝑎1
2𝑎2 + 𝑎1

2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)]

+ +𝑎1𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] + 𝑎1𝑎2

2 + 𝑎1𝑎2( 𝜔 + 𝜇)[1 − 𝑅0

+ (
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] + 𝑎2

2( 𝜔 + 𝜇)[1 − 𝑅0

+ (
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] + 𝑎1𝑎2( 𝜔 + 𝜇) + 𝑎1( 𝜔 + 𝜇)2[1 − 𝑅0

+ (
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] + 𝑎2( 𝜔 + 𝜇)2 (

𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
+

𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
)

− 𝑎1𝑎2( 𝜔 + 𝜇)[1 − 𝑅0]  
 

= 𝑎1
2𝑎2 + 𝑎1

2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + +𝑎1𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 + (

𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎1𝑎2

2 + 𝑎1𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎2

2( 𝜔 + 𝜇) [1 − 𝑅0 +

(
𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎1𝑎2( 𝜔 + 𝜇) + 𝑎1( 𝜔 + 𝜇)2 [1 − 𝑅0 + (

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎2( 𝜔 +

𝜇)2 (
𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
) − 𝑎1𝑎2( 𝜔 + 𝜇)+𝑎1𝑎2( 𝜔 + 𝜇)𝑅0 > 0, if 𝑅0 < 1          (37) 

 

Global Asymptotic Stability of the Disease-Free Equilibrium (DFE) State 

To certify that COVID-19 disease eradication is not dependent on the initial size of the model population, it is imperative to 

prove that the DFE of the equations (2) - (7) 𝑖𝑠 globally asymptotically stable (GAS). To achieve this, we will use the following 

results by (Castillo-Chavez et al., 2002). 

 

Lemma 4: (Castillo-Chavez et al., 2002). Let systems of equation (2) – (7) be put as follows  
𝑑𝑋1

𝑑𝑡
= 𝑊(𝑋1, 𝑋2)                                                       (38) 

𝑑𝑋2

𝑑𝑡
= 𝐺(𝑋1, 𝑋2), 𝐺(𝑋1, 0) = 0                                   (39) 

where 𝑋1 ∈ ℝ𝑚 denotes (its components), the population of uninfected classes and 𝑋2 ∈ ℝ𝑛 denotes (its components), the 

population of infected compartments including latent, infectious, etc.  Also, the conditions 𝐻1 and 𝐻2 are assumed as follows 

(𝐻1),  
𝑑𝑋1

𝑑𝑡
= 𝑊(𝑋1, 0), 𝑋1

∗ is global asymptotic stable (GAS), 

(𝐻2), 𝐺(𝑋1, 𝑋2) = 𝑄𝑌 − �̂�(𝑋1, 𝑋2), �̂�(𝑋1, 𝑋2) ≥ 0 for (𝑋1, 𝑋2) ∈ Q,  

where the Jacobian 𝑄 = (
𝜕𝐺

𝜕𝑌
)
𝑋0

is a Metzler matrix.  

 

Lemma 5: The fixed point  X0 = (X1
∗ , 0) is a global asymptotically stable (GAS) of the system of equations (2) - (7) 

provided that R0 < 1 and that the assumptions H1 and H2 are fulfilled. 

We present the following theorem. 

 

Theorem 6: The fixed point of the model (2) – (7) is globally asymptotically stable provided that  𝑅0 < 1. 
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Proof: To show this we implement the notations in Lemma 4 and verify the conditions  (𝐻1) 𝑎𝑛𝑑 (𝐻2).  

From our model,  𝑋1 = (𝑆, 𝑅)𝑇, 𝑋2 = (𝐸, 𝐼𝐴, 𝐼, 𝐼𝑆), and 𝑋1
∗ = (

𝜋

𝜇
, 0). 

The uninfected subsystem is 

 
𝑑

𝑑𝑡
[
𝑆
𝑅
] = 𝑊 = [

Π − 𝛽(1 − 𝜃𝑞)𝑆
(𝐼+𝐼𝐴)

𝑁
− 𝜇𝑆

𝑌(𝐼𝐴 + 𝐼 + 𝐼𝑆) − 𝜇𝑅
]                                           (40) 

And the infected subsystem is 

𝑑

𝑑𝑡
[

𝐸
𝐼𝐴
𝐼
𝐼𝑆

] = 𝐺 =

[
 
 
 
 𝛽(1 − 𝜃𝑞)𝑆

(𝐼+𝐼𝐴)

𝑁
− (𝜔 + 𝜇)𝐸

𝜎𝜔𝐸 − (𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴
(𝐼 − 𝜎)𝜔𝐸 + 𝜂𝐼𝐴 − (𝛾 + 𝑣 + 𝜇 + 𝑑)

𝑣𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼𝑆 ]
 
 
 
 

        (41) 

In addition, this follows that 𝑄 = (
𝜕𝐺

𝜕𝑌
)
𝑋0

 

When 𝐸 = 𝐼𝐴 = 𝐼 = 𝐼𝑆 = 0, the uninfected subsystem (41) becomes, 

 
𝑑

𝑑𝑡
[
𝑆
𝑅
] = [

Π − 𝜇𝑆
−𝜇𝑅

]             (42) 

and its solution is, 

𝑅(𝑡) = 𝑅(0)𝑒−𝜇𝑡, 𝑆(𝑡) = 𝑆(0)𝑒−𝜇𝑡 +
Π

𝜇
(1 − 𝑒−𝜇𝑡)         (43) 

clearly,  𝑅(𝑡) ⟶ 0 𝑎𝑛𝑑 𝑆(𝑡) ⟶
Π

𝜇
 𝑎𝑠 𝑡 ⟶ ∞, 

irrespective of the values of 𝑅(0) 𝑎𝑛𝑑 𝑆(0). Thus, 𝑋∗ = (
Π

𝜇
, 0) is a global asymptotical stable equilibrium for the subsystem, 

𝑑𝑋1

𝑑𝑡
= 𝑊(𝑋1, 0).             (44) 

Next, we have 

 

𝑄 =

(

 
 

−(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0

𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0
(1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0

0 0 𝑣 −(𝛾 + 𝜇 + 𝑑))

 
 

      (45) 

 

From 𝐺(𝑋1, 𝑋2) = 𝑄𝑋2 − �̂�(𝑋1, 𝑋2) 

�̂�(𝑋1, 𝑋2) =  𝑄𝑋2 − 𝐺(𝑋1, 𝑋2) 

(

 
 

−(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0

𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0

(1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0
0 0 𝑣 −(𝛾 + 𝜇 + 𝑑))

 
 

(

𝐸
𝐼𝐴
𝐼
𝐼𝑆

) −

(

 
 

𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
(𝐼𝐴 + 𝐼) − (𝜔 + 𝜇)𝐸

𝜎𝜔𝐸 − (𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴
(1 − 𝜎)𝜔𝐸 + 𝜂𝐼𝐴 − (𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼

𝑣𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼𝑆 )

 
 

 

            (46) 

  

�̂�(𝑋1, 𝑋2) =

(

 
 

𝛽(1 − 𝜃𝑞)
(𝐼+𝐼𝐴)

𝑁
[
Π

𝜇
− 𝑆]

0
0
0 )

 
 

        (47) 

Hence,  �̂�(𝑋1, 𝑋2) ≥ 0 for  (𝑋1, 𝑋2) ∈ Ω. We also note that 𝐺 is an M-matrix. Thus, the DFE ℇ0 = (
Π

𝜇
, 0,0,0,0) is a global 

asymptotically stable of the system (2) – (7) provided 𝑅0 < 1. 
 

Local Stability Analysis of the Endemic Equilibrium State  

The model equations  (2) – (7) have an endemic equilibrium given by 

ℇ1 = (𝑆∗, 𝐸∗, 𝐼𝐴
∗, 𝐼∗, 𝐼𝑆

∗, 𝑅∗) =  (
𝑎1𝑎2

2𝑁(𝜔+𝜇)

𝛽(1−𝜃𝑞)[(1−𝜎)𝜔𝑎2
2+𝜂𝜎𝜔𝑎2+𝜎𝜔𝑎1𝑎2]

) ,
Π

(𝜔+𝜇)𝑅0
[𝑅0 − 1],

𝜎𝜔

𝑎2

Π

(𝜔+𝜇)𝑅0
[𝑅0 −

1] ,  
(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2

Π

(𝜔+𝜇)𝑅0
[𝑅0 − 1],

𝑣

𝑎3
[
(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2
 ]

Π

(𝜔+𝜇)𝑅0
[𝑅0 − 1] ,  

𝛾

𝜇
[
𝜎𝜔

𝑎2
+

(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2
+

𝑣

𝑎3
[
(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2
 ]] 

Π

(𝜔+𝜇)𝑅0
[𝑅0 − 1]         (48) 

To establish the existence and local asymptotic stability of the Endemic Equilibrium (EE) state, the associated matrix of partial 

derivatives of the model (2) – (7) , that is, the Jacobian matrix is obtained at the EE state, ℇ1.  

The matrix of the partial derivatives (Jacobian matrix) at the EE state, 𝐽(ℇ1) is given by 
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𝐽(ℇ1) ==

(

 
 
 
 
 

−𝛽(1 − 𝜃𝑞)
(𝐼∗+𝐼𝐴

∗ )

𝑁
− 𝜇 0 −𝛽(1 − 𝜃𝑞)

S∗

𝑁
−𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

𝛽(1 − 𝜃𝑞)
(𝐼∗+𝐼𝐴

∗ )

𝑁
−(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)

S∗

𝑁
𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

0 𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0 0

0 (1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0 0

0 0 0 𝑣 −(𝛾 + 𝜇 + 𝑑) 0
0 0 𝛾 𝛾 𝛾 −𝜇)

 
 
 
 
 

 (49) 

Theorem 7: The EE state ℇ1, of the equations (2) – (7)  is locally asymptotically stable provided  𝑅0 > 1. 

Proof: 

It is enough to show that all the eigenvalues of the characteristic equation of 𝐽(ℇ1), have negative real parts. The characteristics 

equation det(𝐽(ℇ1) − 𝜆𝐼) = 0 is given by  

|

|

−𝛽(1 − 𝜃𝑞)
(𝐼∗+𝐼𝐴

∗ )

𝑁
− 𝜇 − 𝜆 0 −𝛽(1 − 𝜃𝑞)

S∗

𝑁
−𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

𝛽(1 − 𝜃𝑞)
(𝐼∗+𝐼𝐴

∗ )

𝑁
−(𝜔 + 𝜇) − 𝜆 𝛽(1 − 𝜃𝑞)

S∗

𝑁
𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

0 𝜎𝜔 −𝑎1 − 𝜆 0 0 0

0 (1 − 𝜎)𝜔 𝜂 −𝑎2 − 𝜆 0 0
0 0 0 𝑣 −𝑎3 − 𝜆 0
0 0 𝛾 𝛾 𝛾 −𝜇 − 𝜆

|

|

= 0  (50)    

where 

𝑎1 = (𝛾 + 𝜂 + 𝜇 + 𝑑), 
𝑎2 = (𝛾 + 𝑣 + 𝜇 + 𝑑), 
𝑎3 = (𝛾 + 𝜇 + 𝑑), 
Evaluating equation (50) to obtain,  

 

(−𝜇 − 𝜆) (−(𝛾 + 𝜇 + 𝑑) − 𝜆)  

|

|

−𝛽(1−𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎1
+

(1−𝜎)𝜔𝑎1+𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔+𝜇)𝑅0
[𝑅0 − 1] − 𝜇 − 𝜆 0 −

𝑎1𝑎2(𝜔+𝜇)

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
 −

𝑎1𝑎2(𝜔+𝜇)

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
 

𝛽(1−𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎1
+

(1−𝜎)𝜔𝑎1+𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔+𝜇)𝑅0
[𝑅0 − 1] −(𝜔 + 𝜇) − 𝜆

𝑎1𝑎2(𝜔+𝜇)

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
 

𝑎1𝑎2(𝜔+𝜇)

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
 

0 𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) − 𝜆 0

0 (1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) − 𝜆

|

|
= 0

            (51) 

That is, 

(−𝜇 − 𝜆) (−𝑎3 − 𝜆)  

  |

𝑎4 − 𝜇 − 𝜆 0 𝑏 𝑏

−𝑎4 −(𝜔 + 𝜇) − 𝜆 −𝑏 −𝑏
0 𝜎𝜔 −𝑎1 − 𝜆 0

0 (1 − 𝜎)𝜔 𝜂 −𝑎2 − 𝜆

| = 0     

where, 

𝑏 =
−𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
 ,  

𝑎4 =
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[1 − 𝑅0]  

 

Simplifying to have, 

(−𝜇 − 𝜆) (−𝑎3 − 𝜆) [𝜆4 + [(𝜔 + 𝜇) + (𝑎1 + 𝑎2) + 𝜇 − 𝑎4)]𝜆
3 + [(𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝑏𝜎𝜔 + 𝜇(𝜔 + 𝜇) + 𝜇(𝑎1 +

𝑎2) − 𝑎4(𝜔 + 𝜇) + (𝑎1 + 𝑎2)]𝜆
2 + [(𝜔 + 𝜇)𝑎1𝑎2 + 𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 + 𝜇((𝜔 + 𝜇)(𝑎1 + 𝑎2)) + 𝑎1𝑎2 +

𝑏𝜎𝜔 − 𝑎4((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝑏𝜎𝜔) + 𝑏(𝜎𝜔 + (1 − 𝜎)𝜔 + 𝑎4𝜎𝜔 + 𝑎4(1 − 𝜎)𝜔]𝜆 + [𝜇(𝜔 + 𝜇)𝑎1𝑎2 +
𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 − 𝑎4[𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 + (𝜔+𝜇)𝑎1𝑎2] + 𝑏(𝜎𝜔𝑎2 + 𝜎𝜔𝜂 + (1 − 𝜎)𝜔𝑎1 +
𝑎4𝜎𝜔𝑎2 + 𝑎4𝜎𝜔𝜂 + 𝑎4(1 − 𝜎)𝜔𝑎1 = 0             

 (52)   

Thus, the eigenvalues are 

 𝜆1 = −𝜇, 𝜆2 = −𝑎3 and  𝜆4 + 𝐴𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + 𝐷 = 0                  (53) 

where, 

𝐴 = (𝜔 + 𝜇) + (𝑎1 + 𝑎2) + 𝜇 − 𝑎4)  

𝐴 = (𝜔 + 𝜇) + (𝑎1 + 𝑎2) + 𝜇 +
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[𝑅0 − 1] > 0 

 𝑖𝑓 𝑅0 > 1                  (54) 

 

𝐵 = (𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝑏𝜎𝜔 + 𝜇(𝜔 + 𝜇) + 𝜇(𝑎1 + 𝑎2) − 𝑎4(𝜔 + 𝜇) + (𝑎1 + 𝑎2)] 

𝐵 = (𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 −
𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
𝜎𝜔 + 𝜇(𝜔 + 𝜇) + 𝜇(𝑎1 + 𝑎2)

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[𝑅0 − 1](𝜔 + 𝜇) + (𝑎1 + 𝑎2) 
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𝐵 = (𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝜇(𝜔 + 𝜇) + 𝜇(𝑎1 + 𝑎2) +
𝛽(1−𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔+𝜇)𝑅0

[𝑅0 − 1](𝜔 + 𝜇) +

(𝑎1 + 𝑎2)] >
𝑎1𝑎2(𝜔+𝜇)𝜎𝜔

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
 𝑖𝑓 𝑅0 > 1            (55) 

 

𝐶 = (𝜔 + 𝜇)𝑎1𝑎2 + 𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 + 𝜇((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝑏𝜎𝜔) − 𝑎4((𝜔 + 𝜇)(𝑎1 + 𝑎2)
+ 𝑎1𝑎2 + 𝑏𝜎𝜔)) + 𝑏(𝜎𝜔 + (1 − 𝜎)𝜔 + 𝑎4𝜎𝜔 + 𝑎4(1 − 𝜎)𝜔) 

𝐶 = (𝜔 + 𝜇)𝑎1𝑎2 − 𝑎4((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2)) + 𝜇((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2) + 𝑏(𝜎𝜔𝜂 + 𝜔𝑎2 + 𝜇𝜎𝜔 + 𝜔)

+ 𝑎4𝑏(𝜔 + 𝜎𝜔) 

𝐶 = (𝜔 + 𝜇)𝑎1𝑎2 +
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[𝑅0 − 1]((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2))

+ 𝜇((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2) −
𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
(𝜎𝜔𝜂 + 𝜔𝑎2 + 𝜇𝜎𝜔 + 𝜔)

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[𝑅0 − 1] [
𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
] (𝜔

+ 𝜎𝜔) 

𝐶 = (𝜔 + 𝜇)𝑎1𝑎2 +
𝛽(1−𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔+𝜇)𝑅0

[𝑅0 − 1]((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2)) + 𝜇((𝜔 + 𝜇)(𝑎1 + 𝑎2) +

𝑎1𝑎2) +
𝛽(1−𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔+𝜇)𝑅0

[𝑅0 − 1] [
𝑎1𝑎2(𝜔+𝜇)

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
] (𝜔 + 𝜎𝜔) >

𝑎1𝑎2(𝜔+𝜇)[(𝜎𝜔𝜂+𝜔𝑎2+𝜇𝜎𝜔+𝜔)]

[(1−𝜎)𝜔𝑎2+𝜂𝜎𝜔+𝜎𝜔𝑎1]
 𝑖𝑓 𝑅0 > 1          (56) 

 

𝐷 = 𝜇(𝜔 + 𝜇)𝑎1𝑎2 + 𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 − 𝑎4[𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 + (𝜔+𝜇)𝑎1𝑎2] + 𝑏(𝜎𝜔𝑎2

+ 𝜎𝜔𝜂 + (1 − 𝜎)𝜔𝑎1 + 𝑎4𝜎𝜔𝑎2 + 𝑎4𝜎𝜔𝜂 + 𝑎4(1 − 𝜎)𝜔𝑎1 

𝐷 = 𝜇(𝜔 + 𝜇)𝑎1𝑎2 − 𝑎4(𝜔+𝜇)𝑎1𝑎2 + 𝑎4𝑏[(1 − 𝜎)𝜔𝑎1] − 𝑎4𝑏[(1 − 𝜎)𝜔𝑎2] + 𝑏[2𝜎𝜔𝜂 + 𝜔𝑎2 + 𝜎𝜔𝑎2 + (1 − 𝜎)𝜔𝑎1] 

𝐷 = 𝜇(𝜔 + 𝜇)𝑎1𝑎2 +
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[𝑅0 − 1](𝜔+𝜇)𝑎1𝑎2

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+

(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0

[𝑅0

− 1] [
𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
] [(1 − 𝜎)𝜔𝑎1]

>
𝛽(1 − 𝜃𝑞)Π[𝑅0 − 1][(1 − 𝜎)𝜔𝑎2]

𝑁𝑅0
+ [

𝑎1𝑎2(𝜔 + 𝜇)[2𝜎𝜔𝜂 + 𝜔𝑎2 + 𝜎𝜔𝑎2 + (1 − 𝜎)𝜔𝑎1]

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
]  𝑖𝑓 𝑅0

> 1                                                                                                                                                                         (57)    
All the roots of the characteristic equation (53) have negative real parts if: 𝐴, 𝐵, 𝐶, 𝐷 > 0, 𝐴𝐵𝐶 − 𝐶2 − 𝐴2𝐷 > 0, 𝑎𝑛𝑑 𝐴𝐵 −
𝐶 > 0, by the Routh-Hurwitz stability criteria (Routh-Hurwitz, 1964).   

 

Global Asymptotic Stability of Endemic Equilibrium (EE) State 

Theorem 8: The system of equations (2) – (7) contains no periodic orbits. 

 

Proof: We employ Dulac's stability criterion was implemented. 

Let 𝑋 = (𝑆, 𝐸, 𝐼𝐴, 𝐼, 𝐼𝑆, 𝑅). Taking the Dulac’s function: 

𝐺 =
1

𝑆𝐸
                   (58) 

we have, 

𝐺
𝑑𝑆

𝑑𝑡
=

Π

𝑆𝐸
− 𝛽(1 − 𝜃𝑞)

(𝐼+𝐼𝐴)

𝑁𝐸
−

𝜇

𝐸
              (59) 

 

𝐺
𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝜃𝑞)

(𝐼+𝐼𝐴)

𝑁𝐸
−

(𝜔+𝜇)

𝑆
           (60) 

 

𝐺
𝑑𝐼𝐴

𝑑𝑡
=

𝜎𝜔

𝑆
−

(𝛾+𝜂+𝜇+𝑑)𝐼𝐴

𝑆𝐸
          (61) 

 

𝐺
𝑑𝐼

𝑑𝑡
=

(1−𝜎)𝜔

𝑆
+

𝜂𝐼𝐴

𝑆𝐸
−

(𝛾+𝑣+𝜇+𝑑)𝐼  

𝑆𝐸
             (62) 

 

𝐺
𝑑𝐼𝑆

𝑑𝑡
=

𝑣𝐼

𝑆𝐸
−

(𝛾+𝜇+𝑑)𝐼𝑠

𝑆𝐸
               (63) 

𝐺
𝑑𝑅

𝑑𝑡
=

𝛾𝐼𝐴

𝑆𝐸
+

𝛾𝐼

𝑆𝐸
+

𝛾𝐼𝑠

𝑆𝐸
−

𝜇𝑅

𝑆𝐸
               (64) 

Thus, 
𝑑𝐺𝑋

𝑑𝑡
=

𝜕

𝜕𝑆
(𝐺

𝑑𝑆

𝑑𝑡
) +

𝜕

𝜕𝐸
(𝐺

𝑑𝐸

𝑑𝑡
) +

𝜕

𝜕𝐼𝐴
(𝐺

𝑑𝐼𝐴
𝑑𝑡

) +
𝜕

𝜕𝐼
(𝐺

𝑑𝐼

𝑑𝑡
) +

𝜕

𝜕𝐼𝑆
(𝐺

𝑑𝐼𝑆
𝑑𝑡

) +
𝜕

𝜕𝑅
(𝐺

𝑑𝑅

𝑑𝑡
) 
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=
𝜕

𝜕𝑆
(

Π

𝑆𝐸
− 𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁𝐸
−

𝜇

𝐸
) +

𝜕

𝜕𝐸
(𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁𝐸
−

(𝜔 + 𝜇)

𝑆
) +

𝜕

𝜕𝐼𝐴
(
𝜎𝜔

𝑆
−

(𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴
𝑆𝐸

 )

+
𝜕

𝜕𝐼
(
(1 − 𝜎)𝜔

𝑆
+

𝜂𝐼𝐴
𝑆𝐸

−
(𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼  

𝑆𝐸
) +

𝜕

𝜕𝐼𝑆
(
𝑣𝐼

𝑆𝐸
−

(𝛾 + 𝜇 + 𝑑)𝐼𝑠
𝑆𝐸

)

+
𝜕

𝜕𝑅
(
𝛾𝐼𝐴
𝑆𝐸

+
𝛾𝐼

𝑆𝐸
+

𝛾𝐼𝑠
𝑆𝐸

−
𝜇𝑅

𝑆𝐸
)  

 

= −
Π

𝑆2𝐸
−

𝛽(1 − 𝜃𝑞)(𝐼 + 𝐼𝐴)

𝑁2𝐸
−

(𝛾 + 𝜂 + 𝜇 + 𝑑)

𝑆𝐸
−

(𝛾 + 𝑣 + 𝜇 + 𝑑)  

𝑆𝐸
−

(𝛾 + 𝜇 + 𝑑)

𝑆𝐸
−

𝜇

𝑆𝐸
 

= −(
Π

𝑆2𝐸
+

(𝛾 + 𝜂 + 𝜇 + 𝑑) + (𝛾 + 𝑣 + 𝜇 + 𝑑) + (𝛾 + 𝜇 + 𝑑) + 𝜇

𝑆𝐸
) 

< 0.            (65) 

Hence, the systems of equation (2) - (7) have no periodic orbit. Thus proven. Since Ω is positive and attracting, then, from 

Poincare Bendixson theorem, all solutions of the systems of equation (2) – (7) start and stay in Ω for all 𝑡. Hence, the following 

theorem. 

Theorem 9: The systems of equations (2) – (7) have an endemic equilibrium that is globally asymptotically stable provided  

𝑅0 > 1. 
 

Sensitivity Analysis of 𝑹𝟎 

We carried out sensitivity index on 𝑅0  for the population influx rate ( Π), infection transmission rate (𝛽), proportion of 

individuals who wear face-masks in public (𝜃), Efficacy of face-masks use (𝑞), clinical diagnosis of asymptomatic individuals 

(𝜂) and isolation rate (𝑣). We adopt the normalized forward sensitivity index using the following formula (Chitnis et al., 2008). 

ΛQ
𝑅0 =

𝜕𝑅0

𝜕𝑄
(

𝑄

𝑅0
)            (66) 

where 𝑄 denotes the model parameter. 

The results are given as follows, 

∆𝚷
𝑹𝟎=

𝛽(1 − 𝜃𝑞)

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)
+

𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] .

𝚷

𝑹𝟎
= 1,                                             (67)  

 

∆𝜷
𝑹𝟎=

(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)
+

𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] .

𝜷

𝑹𝟎
= 1,                                           (68) 

 

 

∆𝛉
𝑹𝟎=

−𝛽𝑞Π

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)
+

𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] .

𝛉

𝑹𝟎
=

−𝑞𝜃

(1 − 𝜃𝑞)
 ,                              (69) 

 

∆𝐪
𝑹𝟎=

−𝛽𝜃Π

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)
+

𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] .

𝐪

𝑹𝟎
=   

−𝑞𝜃

(1 − 𝜃𝑞)
 ,                            (70) 

∆𝛈
𝑹𝟎

=
𝛽(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[

−𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)2

+
(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)[𝜎𝜔 + (1 − 𝜎)𝜔] − [𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔](𝛾 + 𝑣 + 𝜇 + 𝑑)

[(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)]2
 ] .

𝜼

𝑹𝟎
 ,      

 (71) 

∆𝒗
𝑹𝟎=

𝛽(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[
−(𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔). (𝛾 + 𝜂 + 𝜇 + 𝑑)

[(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)]2
] .

𝐯

𝑹𝟎
 ,                                                    (72) 

 

 

Discussion 

We developed a deterministic mathematical model of COVID-19 infection dynamics incorporating vital/demographic 

dynamics, face-mask use, asymptomatically and symptomatically infectious individuals, clinical diagnosis of asymptomatic 

individuals and isolation of infected individuals. 

 

The analytical result shows that the model is bounded, positive, and attracting. Fundamental to our result is the basic 

reproduction number 𝑅0, given by  

𝑅0 =
𝛽(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)
+

𝜂𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
+

(1 − 𝜎)𝜔

(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] 

as a tool for effective disease management. The basic reproduction number, 𝑅0 has three different constituents, namely, the 

multiplication of the infection transmission parameter of the susceptible population who are not face-masks compliant at the 

critical point  
𝛽(1−𝜃𝑞)Π

𝜇Ν
 and 
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i. the rate of latent population with no COVID 

symptoms moves into asymptomatic class 𝜎𝜔, 
average duration in the latent and asymptomatic 

compartment 
1

(𝜔+𝜇)(𝛾+𝜂+𝜇+𝑑)
 . 

ii. the proportion of the latent population with no 

COVID symptoms but who have been diagnosed 

transfers into the asymptomatic category. 𝜂𝜎𝜔,  
average duration in latent compartment, 

asymptomatic compartment and symptomatic 

compartment 
1

(𝜔+𝜇)(𝛾+𝜂+𝜇+𝑑)(𝛾+𝑣+𝜇+𝑑)
 . 

the proportion of the latent population with OVID symptoms 

moves to the symptomatic category. (1 − 𝜎)𝜔, the average 

duration in the latent compartment and the symptomatic 

compartment  
1

(𝜔+𝜇)(𝛾+𝑣+𝜇+𝑑)
 . 

The result from the stability analysis of the critical points is 

shown to be local asymptotic stable and also, globally 

asymptotically stable provided 𝑅0 < 1, as shown in Theorem 

3 and Theorem 6. The inference of Theorem 3 and Theorem 

6 is that, the slight influx of COVID-19 cases will not create 

a COVID-19 epidemic provided 𝑅0 < 1.  Theorem 7 and 

Theorem 8 revealed that the endemic equilibrium (EE) state 

is local asymptotic stable and also, globally asymptotically 

stable provided 𝑅0 > 1. We can deduce that, COVID-19 will 

persist in the population and can result in a pandemic.  

The sensitivity index on 𝑅0 for the population influx rate ( Π), 
infection transmission rate (𝛽), the proportion of face-masks 

compliance in public (𝜃) , Efficiency of face-masks (𝑞) , 

clinical diagnosis of asymptomatic individuals (𝜂)  and 

isolation rate (𝑣) was computed. The results of the analysis 

show that the recruitment rate Π,  and the infection 

transmission rate 𝛽 are the most sensitive parameters. Thus, 

by decreasing recruitment, infection parameters will decrease 

𝑅0  and vice-versa. The sensitivity index for the 

vital/demographic indicates that the COVID-19 infection will 

remain in the population provided 𝑅0 > 1.  This may as a 

result of not restricting the influx of those prone to the disease 

into the population. This enables the infection to get likely 

targets to infect. This is in contrast with the models with no 

demography, where the epidemic diminishes over time, the 

value of the basic reproduction number notwithstanding.  

 

CONCLUSION 

We extended and analyzed a deterministic mathematical 

model of COVID-19 infection by assessing the impact of 

vital/demographic dynamics. We further assessed the impact 

of the infection transmission, face-mask use and compliance, 

clinical diagnosis of infectious asymptomatic individuals, and 

isolation of infected individuals on the disease burden. It was 

evident that the recruitment rate and infection transmission 

(contact) rate play a significant role in disease management 

and eradication. Thus, efforts geared at reducing the 

recruitment of susceptible individuals and infection 

transmission rate will significantly eliminate the disease 

burden. It was further established that the basic reproduction 

number, 𝑅𝑂  can be employed by public health or control 

agencies in the effort to eradicate the disease. 
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