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ABSTRACT 

The Weerakoon and Fernando scheme for estimating the solution of nonlinear equations is a modification of 

the Newton iteration scheme (NIS) with better convergence order and efficiency. It was developed based on 

the composition of the NIS with a corrector iterative function that is based on the use of arithmetic mean. In 

this article, we put forward family of power-means variants of the Weerakoon and Fernando iterative scheme. 

The family is shown to have convergence order three. Numerical studies on the family enabled us to decide 

whether the classical Weerakoon and Fernando scheme version is computationally better than its power-means 

variants versions. From the numerical results, it is discovered that there are some highly efficient and 

competitive elements in the developed family of Weerakoon and Fernando scheme version.  
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INTRODUCTION 

The nonlinear equations of the form 

𝑓(𝜐) = 0,   𝜐 ∈ ℝ        (1) 

are often experienced in the field of science and engineering. 

There is no general analytic formulation for solving the 

nonlinear equation in (1) in literature. Consequently, iterative 

schemes were utilized to obtain the solution of (1) up to some 

level of precision. An iterative scheme  recursively computes 

the solution of nonlinear equation via iteration cycles using an 

initial approximation to the solution. It is expected that at the 

end of each complete iteration cycle, a better estimation of the 

true solution is obtained until convergence.  A classical one 

point iterative scheme for solving (1) is the Newton Iterative 

scheme (Traub,1964) given as: 

𝜐𝑗+1 = 𝜐𝑗 − 𝜑𝑗 ,   𝑗 = 0,1,2, …     (2) 

where  𝜑𝑗 =
𝑓(𝜐𝑗)

𝑓′(𝜐𝑗)
. The Newton scheme iteratively decides 

the solution of (1) with convergence order (CO) two. To 

overcome the Newton scheme CO, two-points and multi-

points iterative schemes such as in (Weerakoon & 

Fernando,2000; Jarrats,1966) and many more, have been 

developed in literature, see also the books (Petkovic et 

al.,2013; Amat & Busquier,2016)  and the articles 

(Ogbereyivwe & Izevbizua,2023; Ogbereyivwe & Ojo-

Orobosa,2021) for more detailed overview. 

The Weerakoon and Fernando scheme developed in 

Weerakoon and Fernando (2000) is an excellent modification 

of the Newton scheme developed using two-step composition 

technique. Its corrector iterative function require the 

assessment of the arithmetic mean of the derivative of 

function of values at two iteration points.  Although the 

Weerakoon and Fernando scheme has been existing for over 

two decades and highly cited in literature, much work has not 

been done in developing its variants family and investigation 

on performance measure among its variants. Consequently, 

this paper is aimed at putting forward a new family of 

Weerakoon and Fernando scheme variants that is based on the 

power-means generating function. In this case, we replace the 

arithmetic mean used in the Weerakoon and Fernando scheme 

corrector iteration function, with a generalized power-means 

type generating function to produce infinitely many variants 

of the classical Weerakoon and Fernando scheme versions. 

Furthermore, numerical studies on whether the classical 

Weerakoon and Fernando scheme version is computationally 

best among elements of its power-means family versions was 

also considered.  

 

MATERIALS AND METHODS 

The family of iterative schemes 

Consider an iterative scheme put forward as: 

𝜐𝑗+1 = 𝜐𝑗 −
𝑓(𝜐𝑗)

𝑀𝐺[𝑓′(𝜐𝑗),𝑓′(𝑦𝑗)]
       (3) 

where 𝑀𝐺[𝑓′(𝜐𝑗), 𝑓′(𝑦𝑗)], is power means-type generating 

function involving the data obtained using 𝑓′(𝜐𝑗) and 𝑓′(𝑦𝑗) 

at iteration points 𝜐𝑗  and 𝑦𝑗  respectively. The power-means 

generating function is defined as: 

𝑀𝐺[𝑓′(𝜐𝑗), 𝑓′(𝑦𝑗)] = (
(𝑓′(𝜐𝑗))

𝑚
+(𝑓′(𝑦𝑗))

𝑚

2
)

1

𝑚

 (4) 

We note that 𝑚 ∈ ℝ and 𝑚 ≠ 0 so as not to annihilate the 

contributions of 𝑓′(𝜐𝑗)  and 𝑓′(𝑦𝑗) . Consequently, ∀  value 

 𝑚, a power-mean type is eminently obtained. For instance, 

Table 1 shows some power-means types obtained when  𝑚 is 

assigned values.

 

Table 1: 𝒎 − values and corresponding power-mean 

  𝒎 Power-means type 

   1 Arithmetic mean 

−1 Harmonic mean 

   2 Root mean square 

−2 Inverse-root, inverse-square mean 

1 2⁄  Square mean-root 

   3 Cube-root mean cube 
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Clearly, for 𝑚 = 1 in the iterative scheme (3), the famous 

Weerakoon and Fernando scheme version is obtained and for 

other values of 𝑚  other than 0 , power means variants of 

Weerakoon and Fernando schemes are obtained. The question 

is, will these power-means variants of the Weerakoon and 

Fernando scheme, computationally performed better than the 

classical Weerakoon and Fernando scheme version or is the 

classical Weerakoon and Fernando scheme version the best of 

its power means variants? To answer these questions, we first 

determine the convergence of the family of schemes in (3). 

 

 

The scheme convergence analysis 

This section establishes the convergence of sequence of 

iteration results generated by any element of the scheme (3) 

that is generated by any value of 𝑚. This is achieved via the 

proof of the next theorem. 

Theorem 2.1: Let the function 𝑓: 𝐷 ⊂ ℝ ⟶ ℝ  be defined 

and sufficiently differentiable on the domain 𝐷 such that 𝑓′(∙
) ≠ 0. Suppose that 𝜈0 is sufficiently close to 𝜈∗ the solution 

of (1) and if 𝜈0 is used as an iteration starting value in (3), 

then a sequence of approximations {𝜈𝑗} will be generated  ∋  

lim
𝑗⟶𝑛

{𝜈𝑗} = 𝜈∗. 

Proof: The third order Taylor’s expansion of 𝑓(𝜈) about 𝜈𝑖  is: 

 𝑓(𝜈) = 𝑓(𝜈𝑗) + ∑
1

𝑘!
𝑓(𝑘)(𝜐𝑗)(𝜐 − 𝜐𝑗)𝑘3

𝑘=1 + 𝑂 (|𝜐 − 𝜐𝑗|
4

)      (5) 

where 𝑓(𝑘)(∙) is 𝑘th derivative of 𝑓(∙). 

Suppose  𝑒𝑗 = |𝜐 − 𝜐𝑗| is the 𝑗th iteration error of the scheme and set  𝜐 = 𝜈∗ in (5), then 

𝑓(𝜈𝑗) = ∑ [(−1)𝑘+1 1

𝑘!
𝑓(𝑘)(𝜐𝑗)𝑒𝑗

𝑘]3
𝑘=1 + 𝑂 (|𝑒𝑗|

4
).       (6) 

When the expression in (6) is multiplied by 
1

𝑓′(𝜐𝑗)
, the next equation is obtained. 

𝑓(𝜈𝑗)

𝑓′(𝜐𝑗)
= 𝑒𝑗 + ∑ [(−1)𝑘+1 1

𝑘!

𝑓(𝑘)(𝜐𝑗)

𝑓(𝜈𝑗)
𝑒𝑗

𝑘]3
𝑘=1 + 𝑂 (|𝑒𝑗|

4
).       (7) 

From the first step of (3), we have 

 𝑦𝑗 − 𝜐𝑗 = −𝑒𝑗 + ∑ [(−1)𝑘+1 1

𝑘!

𝑓(𝑘)(𝜐𝑗)

𝑓(𝜈𝑗)
𝑒𝑗

𝑘]3
𝑘=1 + 𝑂 (|𝑒𝑗|

4
).        (8) 

Using (8), the next equations are obtained. 

(𝑦𝑗 − 𝜐𝑗)2 = 𝑒𝑗
2 +

𝑓′′(𝜐𝑗)

𝑓′(𝜐𝑗)
 𝑒𝑗

3 + 𝑂 (|𝑒𝑗|
4

)           (9) 

and 

 (𝑦𝑗 − 𝜐𝑗)3 = −𝑒𝑗
3 + 𝑂 (|𝑒𝑗|

4
).                (10) 

Now, the Taylor’s expansion of  𝑓′(𝑦𝑗) about  𝜐𝑗 is: 

𝑓′(𝑦𝑗) = ∑ [
1

𝑘!
𝑓(𝑘)(𝜐𝑗)(𝑦𝑗 − 𝜐𝑗)𝑘−1] + 𝑂 (|𝑦𝑗 − 𝜐𝑗|

4
)3

𝑘=1  .      (11) 

Now, (3) can be re-written as: 

𝑀𝐺[𝑓′(𝜐𝑗), 𝑓′(𝑦𝑗)] 𝑒𝑗+1 = 𝑀𝐺[𝑓′(𝜐𝑗), 𝑓′(𝑦𝑗)]𝑒𝑗 − 𝑓(𝜐𝑗) .       (12) 

Consequent upon (12), we need to show that the right hand side of (12) is of error order three. Using equations (4), (6) and 

(11) in (12) and after simplifications, the next equation is obtained. 

𝑀𝐺[𝑓′(𝜐𝑗), 𝑓′(𝑦𝑗)] 𝑒𝑗+1 = (
𝑓(3)(𝜐𝑗)

6
+

𝑓′(𝜐𝑗)(2𝑓′(𝜐𝑗)𝑓(3)(𝜐𝑗)+(𝑓(′′)(𝜐𝑗))
2

)

8(𝑓(′)(𝜐𝑗))
2 (1 + 𝑚)) 𝑒𝑗

3 + 𝑂 (|𝑒𝑗|
4

).   (13)  

The expression in (13) is the error equation of the family of iterative scheme (3) and has convergence order three. This 

concludes the proof.  

 

Remark 2.1 

Note that, for all 𝑚 value used in (3) will produce a variant 

version of the Weerakoon and Fernando scheme version that 

is of order three and the factor (1 + 𝑚) in (13) is responsible 

for error difference in their respective nonlinear solution 

approximations. 

 

RESULTS AND DISCUSSION 

This subsection offers numerical experiments conducted on 

the family of schemes in (3) with the aim of establishing 

whether the Weerakoon and Fernando scheme version which 

is a typical member of the scheme (3) is computationally best 

of its variants. In all conducted experiments, 200 digits 

precision and |𝑓(𝜈𝑗+1)| ≤ 10−100  were used as stopping 

criterion in the designed computational program written in 

Maple 2017 version environment. The numerical outputs of 

some typical elements of the family of iterative schemes  in 

(3), obtained by varying the value of 𝑚 were compared on the 

basis of number of iterations (N), residual error 

function ( |𝑓(𝜈𝑗+1)|) , computational order of convergence 

(𝜌𝑐𝑜𝑐) given in Jay (2001) as 𝜌𝑐𝑜𝑐 =
log|𝑓(𝜐𝑖+1)|

log|𝑓(𝜐𝑖)|
 , efficiency 

index (E.I) and approximate computational cost 

(computational complexity) ACC. In this case, the ACC of an 

iterative scheme per an iteration cycle is approximated as: 

𝐴𝐶𝐶 = 𝑛𝐹𝐸 + 𝑛𝐹𝑂 

where, 𝑛𝐹𝐸  and 𝑛𝐹𝑂  represents number of functions 

evaluation and functions arithmetic operations respectively. 

According to Traub in Traub (1964), the metrics for  𝐸. 𝐼 of 

an iterative scheme is obtained by 𝐸. 𝐼 = 𝜌
1

𝑇, where 𝑇 is total 

number distinct function assessment in the scheme. For 

sufficiency, we modify the Traub’s 𝐸. 𝐼  as  𝐸𝐼 = 𝜌
1

𝑛𝐹𝐸+𝑛𝐹𝑂 . 

Here, we assume that the computational complexity for 𝐹𝐸 

and 𝐹𝑂 are same. Consequently, for one complete iteration 

cycle, the computational complexity of the various schemes 

obtained from (3) are given in Table 1.
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Table 1: Schemes computational complexity per cycle 

𝒎 𝝆 𝑨𝑪𝑪 𝑬𝑰 

1 3 9 
3

1
9 

𝑚 ≠ 1 3 12 
3

1
12 

 

The functions taken from Ogbereyivwe and Izevbizua (2023) 

and used for computational test are presented next. 

𝑓1(𝜐) = (𝜐 − 1)3 − 2 = 0, 𝜐∗ = 2.2599 …  

𝑓2(𝜐) = sin(𝜐) − 𝜐2 + 1 = 0,   𝜐∗ = 1.40449 … 

𝑓3(𝜐) = 𝜐2 − exp(𝑥) − 3𝜐 + 2 = 0, 𝜐∗ = 0.2575 … 

𝑓4(𝜐) = 𝑡𝑎𝑛−1𝜐 = 0,   𝜐∗ = 0,  
 

Table 2 provides the computational outcomes when some 

concretes members of the family of power-means type 

Weerakoon and Fernando schemes put forward in (3) where 

computationally experimented on some nonlinear equations. 

The members were designed by assigning 𝑚 =
1, −1, 2, −2, 3  and −3  at different instances. Note that the 

case 𝑚 = 1, produces the Weerakoon and Fernando scheme 

version and for other values, its variants were obtained. 

Observe that the scheme obtained with 𝑚 = 1  (i.e 

Weerakoon and Fernando scheme version), solved all the 

tested problems with the lowest iteration number 𝑁  to 

converge to solution of nonlinear equations. It also produced 

the lowest corresponding total computation complexity in the 

𝑇𝐴𝐶𝐶 column. In addition, it had the highest computational 

order of convergence 𝜌𝑐𝑜𝑐 . Furthermore, the corresponding 

𝜌𝑐𝑜𝑐  for all the schemes are in the neigbourhood of 3. This 

confirmed the theoretical CO obtained in Subsection 2.1. 

Also, the Weerakoon and Fernando scheme version gives the 

highest 𝐸. 𝐼  value. Finally, although the schemes obtained 

with negative values of 𝑚 (in particular  𝑚 = −1) converge 

faster than  when 𝑚 = 1  (i.e Weerakoon and Fernando 

scheme version) and with lower error , its 𝐸. 𝐼 is always lower 

than the later scheme

 

Table 2: Schemes performance comparison 

𝒇𝒊(𝝊) 𝝊𝟎 𝒎 𝑵 𝑻𝑨𝑪𝑪 |𝒇(𝝊𝒊+𝟏)| 𝝆𝒄𝒐𝒄 𝑬. 𝑰 

 

 

 

𝑓1(𝜐) 

 

 

 

1.5 

1 7 63 2.7𝑒 − 096 3.0478 1.1318 

−1    6 72 1.9𝑒 − 122 3.0409 1.0971 

2 8 96 4.4𝑒 − 135 3.0303 1.0968 

−2    6 72 3.7𝑒 − 133 3.0466 1.0973 

3 8 96 6.6𝑒 − 090 3.0418 1.0971 

−3    6 72 1.9𝑒 − 122 3.0409 1.0971 

        

 

 

 

𝑓2(𝜐) 

 

 

 

1 

1 5 45 1.9𝑒 − 198 3.0320 1.1308 

−1    4 48 1.9𝑒 − 198 3.0226 1.0966 

2 9 108 3.0𝑒 − 070 3.0657 1.0979 

−2    7 84 1.6𝑒 − 133 3.0385 1.0970 

3 9 108 5.8𝑒 − 221 3.0191 1.0965 

−3    8 96 1.9𝑒 − 198 3.0226 1.0966 

        

 

 

 

𝑓3(𝜐) 

 

 

 

0 

1 5 45 7.8𝑒 − 106 3.0756 1.1330 

−1    5 60 4.3𝑒 − 112 3.0745 1.0981 

2                      Failed to converge 

−2                         Failed to converge 

3 11 132 1.2𝑒 − 186 3.0333 1.0084 

−3    10 120 2.7𝑒 − 100 3.0772 1.0094 

        

 

 

 

𝑓4(𝜐) 

 

 

 

0 

1 4 36 2.5𝑒 − 073 3.0303 1.0313 

−1    5 60 5.8𝑒 − 196 3.0056 1.0185 

2 4 48 3.3𝑒 − 070 3.0110 1.0232 

−2    5 60 4.1𝑒 − 182 3.0015 1.0185 

3 4 48 3.9𝑒 − 070 3.0022 1.0232 

−3    5 60 3.3𝑒 − 172 2.9990 1.0185 

Note: 𝐴. 𝐵𝑒 − 𝐶 represents 𝐴. 𝐵 × 10−𝐶,  𝐴, 𝐵, 𝐶 ∈ ℝ. 

 

CONCLUSION 

This paper offers a family of power-means type based 

Weerakoon and Fernando iterative scheme for solving 

nonlinear equation. The Taylor’s series technique was utilized 

to prove that the convergence order of the family of schemes 

is three. After numerical studies on the family, we conclude 

that classical Weerakoon and Fernando scheme version 

performed better among all the members of its power-means 

based family versions. In future research, further investigation 

can be done on the chaotic behavior and stability of members 

of the family. Also, extension of the family to tackle the 

solution of multidimensional nonlinear equation can be 

considered. 
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