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ABSTRACT 

In this study, a mathematical model for Tuberculosis infection transmission dynamics is developed by 

incorporating testing and therapy of latent individuals, the isolation of infectious individuals and the treatment 

of the isolated individuals. The basic reproduction number was computed using the next generation matrix 

method. Analysis of the model at the disease-free equilibrium state and the endemic equilibrium states shows 

that it is locally and globally asymptomatically stable whenever the basic reproduction number is less than 

unity at the disease -free equilibrium state and locally and globally asymptotically stable whenever the basic 

reproduction number is greater than unity. The result from the sensitivity index of 𝑅0 show that the infection 

transmission parameter and other control parameters such as early detection and therapy, the isolation of 

infected individuals and treatment are crucial parameters to tuberculosis management.  It is shown from 

numerical simulations that the early detection and therapy, isolation and treatment of infected individuals will 

reduce the infection transmission. Further numerical results show that the combination of early detection and 

therapy, isolation and treatment of infectious individuals will decrease the infection transmission and its 

eventual eradication from the human population.  
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INTRODUCTION 

Tuberculosis (TB) is a contagious disease that continue to be 

a major cause of morbidity and mortality in many countries 

worldwide. Until the coronavirus (COVID-19) pandemic, TB 

according to World Health Organisation (WHO, 2020) report, 

was the leading cause of death from single infectious agent, 

ranking above HIV/AIDS. It is the second leading cause of 

deaths related to infectious pathology, affecting many 

countries, especially in the low resource region of Africa and 

Asia (Kasznia-Brown, 2023). 

Tuberculosis (TB) is caused by a bacterium called 

mycobacterium tuberculosis. The disease typically affects the 

lungs (Pulmonary TB) but TB bacteria can attack other part 

of the body such as the kidney, spine, and brain (Sakula, 1982; 

Hershkovitz et al., 2015). 

TB bacteria spread when a person with TB disease of the 

lungs or throat expel bacteria into the air (e.g. by coughing, 

speaking or singing). People nearby may breathe in these 

bacteria and become infected (WHO, 2023; Hershkovitz et 

al., 2015). TB in other parts of the body, such as the kidney or 

spine, is usually not infectious (WHO, 2023). 

In 2022, approximately 10.6 million people developed active 

TB disease, up from best estimates of 10.3 million in 2021 

and 10.0 million in 2020. Also, TB caused an estimated 1.30 

million deaths globally in 2022 (WHO, 2023). Of concern, is 

the fact that a person with TB disease can infect 10 to 15 

persons he or she comes into contact with (Houben & Dodd, 

2016). Nigeria is among the thirty countries with the highest 

TB, Tuberculosis/ Human Immunodeficiency Virus (TB 

/HIV) and Multi-Drug Resistant TB (MDR-TB) burden 

(WHO 2023).  

The probability of developing TB disease is much higher 

among people living with HIV, and among people affected by 

risk factors such as undernutrition, diabetes, smoking and 

alcohol consumption (WHO, 2023). Once infected, a person 

stays infected for many years, possibly latently-infected for 

life. The clinical observation of this disease reveals that the 

patient suffers from a latent fever that begins towards the 

evening and vanishes again at the break of day. It is 

accompanied by violent coughing, which expel thin purulent 

sputum. The patient speak with hoarse voice, breathes with 

difficulty and has flushed cheeks (Lienhardt et al., 2012). 

Tuberculosis is not only a health problem but also an 

economic problem of mankind as out breaks usually lead to 

enormous expenditure on health care. Economic and financial 

barriers can affect access to health care for TB diagnosis and 

completion of TB treatment; about half of TB patients and 

their households face catastrophic total costs due to TB 

disease (Houben & Dodd, 2016). 

A number of mathematical modelling studies have been 

carried out in recent time to quantify Tuberculosis burden. A 

global modelling study published in 2016 estimated that about 

a quarter of the world’s population had been infected with M. 

tuberculosis (Houben & Dodd, 2016).  

Zhao, et al., (2017) proposed a susceptible-exposed-

infectious-recovered (SEIR) epidemic model with age 

groupings, involving three categories: children, the middle – 

aged and senior to investigate the role of age on the 

transmission of tuberculosis in Mainland China from 2015 to 

2016. They estimated the basic reproduction number, 𝑅0 =
1.7858 and further demonstrated that diverse age groups have 

different effects on TB and that increase in the recovery rate 

and reduction in the infection rate of senior aged group would 

help reach the goals of the WHO End TB strategy. 

Jerubet et al., (2019) developed a mathematical model that 

explains the transmission of Tuberculosis consisting of four 

compartments: the susceptible humans, infectious humans, 

latently infected humans and the recovered humans. Results 

from the sensitivity analysis shows that the recruitment and 

contact rate are the most sensitive parameter that contributes 

to the basic reproduction number. Further findings showed 

that as more people come into contact with infectious 

individuals, the spread of TB would increase. However, the 

recovery rate of infectious individuals showed that the spread 

of the disease will reduce with time which could help curb TB 

transmission. 
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Nayeem and Sultana (2019) developed a dynamical model to 

understand the underlying dynamics of Tuberculosis infection 

at the population level by incorporating treatment of 

individuals, the infection of latent and recovery individuals. 

Their analysis revealed that the model exhibits a backward 

bifurcation when TB treatment remains in the infected class. 

Omale et al., (2019) formulated a mathematical model for the 

transmission dynamics of tuberculosis, a case study of Ika 

Christian hospital, Ankpa LGA, Kogi State, Nigeria by 

incorporating treatment and vaccination as control strategies. 

Their numerical results shows that the disease will be 

eradicated from the population with time by using vaccination 

and treatment as intervention strategies. 

Mettle et al., (2020) developed both deterministic and 

statistical model for tuberculosis (TB) dynamics among high-

burden districts in the Ashanti Region of Ghana by employing 

SEIR model with demography. Their findings on the effect of 

treatment at the incubation stage of TB transmission shows 

that treatment decreased the spread of TB. 

Andrawus et al., (2020) presented a mathematical model of 

tuberculosis transmission dynamics by incorporating first and 

second line treatment. Their analytical results shows that the 

disease-free equilibrium and endemic equilibrium states exist 

and is locally asymptotically stable. Further results shows that 

the numerical results are consistent with the analytical results. 

Liu et al., (2020) investigated the impact of control strategy 

(i.e., new vaccine and improving treatment) on the 

transmission of tuberculosis in China by dynamic model. 

Their theoretical analysis based on the data reported by 

National Bureau of Statistics of China (NBSC), shows that the 

basic reproduction number 𝑅0, of each stage is estimated as 

1.7885  and 1.0740  respectively. The diagnosis and 

treatment of TB according to their findings have promoted a 

lot and the basic reproduction number 𝑅0, is reduced by full 

coverage of DOTs strategy, however the 𝑅0 in China is still 

greater than one. 

Sulayman et al., (2021) extended a deterministic 

mathematical model for the dynamics of tuberculosis 

transmission to examine the impact of an imperfect vaccine 

and other exogenous factor, such as re-infection. Their 

findings revealed that imperfect tuberculosis vaccine is 

effective at reducing the spread of infectious diseases within 

the population. Specifically, being vaccinated at steady-state 

and vaccine efficacy assume an equivalent role in decreasing 

disease burden. Further numerical results showed that using 

an imperfect vaccine led to effective control of tuberculosis in 

a population, provided that the efficacy of the vaccine and its 

coverage are reasonably high. 

Kuddus et al., (2022) developed a mathematical model of a 

two-strain (drug-susceptible (DS) and drug-resistant (DR)) 

tuberculosis infection in Bangladesh. Both their analytical and 

numerical results showed that the presence of drug-resistant 

infection increases with increasing drug use through 

amplification. Sensitivity analysis of the model parameters 

found that the transmission rate of both strains had the greatest 

influence on DS and DRTB prevalence, indicated that 

inadequate or in appropriate treatment makes co-existence of 

DRTB infection. 

Dauda et al., (2020) formulated a mathematical model for the 

transmission dynamics of tuberculosis in Kaduna Metropolis. 

Using secondary data, they obtained a basic reproduction 

number 𝑅0 = 1.0623. This finding revealed that tuberculosis 

infection will remain endemic in Kaduna Metropolis. 

However, their model did not capture any control strategy in 

mitigating the transmission of tuberculosis disease in Kaduna 

Metropolis. 

The various studies from available literatures focuses on 

vaccination of susceptible population, testing and treatment 

for TB disease when they become symptomatic. However, 

screening individuals in any community especially the latent 

population has not really been in place. Thus, it is needful to 

carry out a study that focuses on testing and therapy of 

exposed individuals, isolation and treatment of an infected 

individuals. The present study extends the Dauda et al., (2020) 

study by incorporating screening (detection) and therapy at 

the latent population, isolation and treatment of individuals 

with tuberculosis disease.  

The remaining part of this paper is organized as follows. The 

mathematical model is formulated in Section 2. The basic 

reproduction number, local and global analysis of the disease-

free equilibrium and endemic equilibrium states and 

sensitivity analysis of the basic reproduction number with 

respect to the model parameters are presented in Section 3. 

Numerical simulations and discussion of results are carried 

out in Section 4. The conclusive remarks are passed in section 

5. 

 

Model Formulation 

We begin our model formulation by introducing the model by 

Dauda et al., (2020). 

 

Model Assumption and definition of Variables and 

Parameter by Dauda et al, (2020): 

The following are the assumptions of the model by Dauda et 

al (2020) 

i. The birth and deaths occur at equal rates. 

ii. An infected individual has a latency period before 

becoming infectious. 

iii. Those that recovered from the disease become immune. 

The variables and parameter used in the existing model are 

defined in Table 1.

 

Table 1: Description of Variables and Parameter used by Dauda et al (2020). 

Variable/Parameter Description 

𝑆(𝑡) The number of Susceptible individuals at time 𝑡 
𝐸(𝑡) The number of Exposed individuals at time 𝑡 
𝐼(𝑡) The number of Infectious individuals at time 𝑡 
𝑅(𝑡) The number of Recovered individuals at time 𝑡 
𝛽 Infection transmission rate 

𝜏 Loss of latency rate 

𝜌 Recovery rate 

𝜇 Recruitment/Natural death rate 

 

The Equations of the Existing Model 

Using the above assumptions, variables and parameters, 

Dauda et al (2020) derived the following model equations 

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝛽

𝐼𝑆

𝑁
− 𝜇𝑆              (1) 

 
𝑑𝐸

𝑑𝑡
= 𝛽

𝐼𝑆

𝑁
− (𝜏 + 𝜇)𝐸           (2) 
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𝑑𝐼

𝑑𝑡
= 𝜏𝐸 − (𝜌 + 𝜇)𝐼           (3) 

 
𝑑𝑅

𝑑𝑡
= 𝜌𝐼 − 𝜇𝑅         (4) 

 

The system (1) – (4) expressed in proportion is given as 

 
𝑑𝑠

𝑑𝑡
= 𝜇 − 𝛽𝑖𝑠 − 𝜇𝑠       (5) 

 
𝑑𝑒

𝑑𝑡
= 𝛽𝑖𝑠 − (𝜏 + 𝜇)𝑒     (6) 

 
𝑑𝑖

𝑑𝑡
= 𝜏𝑒 − (𝜌 + 𝜇)𝑖       (7) 

 
𝑑𝑟

𝑑𝑡
= 𝜌𝑖 − 𝜇𝑟                (8) 

 

 

Basic Assumptions and Description of Variables and 

Parameters of the Modified Model 

Here, we modify the Tuberculosis disease model proposed by 

Dauda et al (2020) by incorporating 

i. The role of testing and therapy at the rate 𝑘  in our 

model. 

ii. A proportion of the infectious individuals are isolated at 

the rate 𝛼. 

iii. Recruitment into the susceptible population at the rate 

Π and natural death rate 𝜇. 

iv. Disease induced death rate 𝜎. 

The total population at time 𝑡, denoted by 𝑁(𝑡) is sub-divided 

into five mutually-exclusive compartments namely 

susceptible individuals 𝑆(𝑡), individuals who are exposed to 

the tuberculosis infection but not infectious 𝐸(𝑡), infectious 

individuals 𝐼(𝑡) , isolated individuals 𝑄(𝑡)  and recovered 

individuals 𝑅(𝑡) . So that, 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) +
𝑄(𝑡) + 𝑅(𝑡)

 

 

Table 2: Description of Variables and Parameters of the Extended Model. 

Variable/Parameter Description 

𝑆(𝑡) The total number of Susceptible individuals at time 𝑡 
𝐸(𝑡) The total number of Exposed individuals at time 𝑡 
𝐼(𝑡) The total number of Infectious individuals at time 𝑡 
𝑄(𝑡) The total number of Isolated individuals at time 𝑡 
𝑅(𝑡) The total number of Recovered individuals at time 𝑡 
𝛽 Infection transmission rate 

𝑧 Progression rate from exposed class to infectious class 

𝜌 Recovery rate 

Π Recruitment rate 

𝜇 Natural death rate 

𝛿 Disease-induced death rate 

𝛼 Isolation rate 

𝑘 Tuberculosis testing and therapy rate 

 

From the above assumptions, description of variables and parameters, the interactions and flow in the different compartments 

are as depicted in the schematic diagram below: 

 

 
Figure 1: Schematic description of the tuberculosis disease model. 

 

Description of the Model Equations 

The population of Susceptible individuals 𝑆(𝑡) are recruited 

at the rate Π. It is reduced by infection, following contact with 

infectious individuals at a rate 𝛽  and further reduced by 

natural death at the rate 𝜇 . Putting all these definitions 

together leads to the following expression for the rate of 

change of the susceptible population. 

𝑑𝑆

𝑑𝑡
= Π − 𝛽𝑆𝐼 − 𝜇𝑆 

The population of Exposed individuals 𝐸(𝑡)  is generated 

following infection at the rate 𝛽 . They are decreased as a 

result of progression to infectious compartment at the rate 𝜏, 
tuberculosis testing and therapy at the rate 𝑘 , and natural 

death rate 𝜇, so that  
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𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸 

Infectious individuals 𝐼(𝑡)  are generated as a result of 

progression into the infectious class from the exposed class at 

the rate 𝜏. It is diminished by isolation at the rate 𝛼, disease-

induced death at the rate 𝛿, and natural death at the rate 𝜇, so 

that 
𝑑𝐼

𝑑𝑡
= 𝜏𝐸 − (𝛼 + 𝛿 + 𝜇)𝐼 

The population of isolated individuals 𝑄(𝑡), are generated 

following isolation of infectious individuals at the rate 𝛼. It is 

diminished by recovery as a result of treatment at the rate 𝜌 

and natural death rate 𝜇, so that 
𝑑𝑄

𝑑𝑡
= 𝛼𝐼 − (𝜌 + 𝜇)𝑄 

The population of the recovered individuals 𝑅, are generated 

following tuberculosis testing and therapy at the rate 𝑘, and 

recovery from the tuberculosis infection at the rate 𝜌. It is 

reduced by natural death at the rate 𝜇, so that 
𝑑𝑅

𝑑𝑡
= 𝑘𝐸 + 𝜌𝑄 − 𝜇𝑅 

 

Model Equations 

The above assumptions and formulations lead to the following 

system of ordinary differential equation: 
𝑑𝑆

𝑑𝑡
= Π − 𝛽𝑆𝐼 − 𝜇𝑆       (9) 

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸        (10) 

 
𝑑𝐼

𝑑𝑡
= 𝜏𝐸 − (𝛼 + 𝛿 + 𝜇)𝐼         (11) 

 
𝑑𝑄

𝑑𝑡
= 𝛼𝐼 − (𝜌 + 𝜇)𝑄      (12) 

 
𝑑𝑅

𝑑𝑡
= 𝑘𝐸 + 𝜌𝑄 − 𝜇𝑅         (13) 

 

with the non-negative initial conditions 

 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0    (14) 

 

Invariant Region 

Consider the biological feasible region 

Ω = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ ℝ5: 𝑁 ≤
𝜋

𝜇
} 

Lemma 1: The closed set Ω is positively and attracting with 

respect to the system equations 

(9) – (13). 

Proof: 

Adding equation (9) – (13) gives the rate of change of the total 

population 
𝑑𝑁

𝑑𝑡
= Π − 𝜇𝑁 − 𝛿𝐼      (15) 

It is clear from the equation (15) that 
𝑑𝑁

𝑑𝑡
≤ Π − 𝜇𝑁 

it follows that 
𝑑𝑁

𝑑𝑡
≤ 0, if 𝑁(𝑡) ≥

Π

𝜇
 

Thus, by a standard comparison theorem (Lakstimikantham et 

al., 1989) can be used to show that  

𝑁(𝑡) = 𝑁(0)𝑒−𝜇𝑡 ≤
Π

𝜇
(1 − 𝑒−𝜇𝑡)      (16) 

In particular, 

𝑁(𝑡) ≤
Π

𝜇
      if    𝑁(0) ≤

Π

𝜇
 

Thus, the region Ω = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ ℝ5: 𝑁 ≤
𝜋

𝜇
}  is 

positively invariant. However, if 𝑁(𝑡) ≤
Π

𝜇
, then either the 

solution enters Ω  in a finite time, or 𝑁(𝑡)  approaches 
Π

𝜇
 

asymptotically. Hence, the region Ω attracts all solutions in 

ℝ5. 

 

Therefore, it is sufficient to consider the dynamics of the flow 

generated by equations (9) – (13) in Ω  where the usual 

existence, uniqueness, continuation results hold for the 

system (9) – (13), that is, the system is mathematically and 

epidemiologically well-posed in Ω. 

 

Model Analysis 

Disease-Free Equilibrium (DFE) and Endemic Equilibrium 

(EE) States 

Since the equation (9) – (13) are independent of the variable, 

𝑅(𝑡), it suffices to consider the first four equations of the 

system (9) – (12), as our new system. 

 

Setting the right-hand sides of the equations (9) – (12) to zero, 

we have  

 

Π − 𝛽𝑆𝐼 − 𝜇𝑆 = 0          (17) 

 

𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸 = 0       (18) 

 

𝜏𝐸 − (𝛼 + 𝛿 + 𝜇)𝐼 = 0         (19) 

 

𝛼𝐼 − (𝜌 + 𝜇)𝑄 = 0         (20) 

 

From equation (19) 

𝐼 =
𝜏𝐸

(𝛼+𝛿+𝜇)
        (21) 

From equation (20) 

𝑄 =
𝛼𝐼

(𝜌+𝜇)
        (22) 

substitute equation (21) into equation (18) to have 

 
𝜏𝛽𝑆𝐸

(𝛼 + 𝛿 + 𝜇)
− (𝜏 + 𝑘 + 𝜇)𝐸 = 0 

i.e. 

𝐸 [
𝜏𝛽𝑆−(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

(𝛼+𝛿+𝜇)
] = 0  

 

Either 𝐸 = 0 or 𝑆 =
(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

𝜏𝛽
        (23) 

 

CASE I: 

 For 𝐸∗ = 0    (24) 

Substitute 𝐸 = 0 into equation (21) to obtain 

𝐼∗ = 0                 (25) 

and substitute 𝐼 = 0 into equation (22) and equation (17) to 

obtain 

𝑄∗ = 0            (26) 

and 

𝑆∗ =
Π

𝜇
           (27) 

From equation (24), (25), (26) and (27), we obtain the 

Disease-Free Equilibrium (DFE) state 

Ω0 = (𝑆
∗, 𝐸∗, 𝐼∗, 𝑄∗) as  

Ω0 = (
Π

𝜇
, 0, 0, 0)              (28) 

CASE II: When 𝐸 ≠ 0 

Then from equation (23) 

𝑆∗∗ =
(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

𝜏𝛽
           (29) 

substituting equation (29) into equation (17) will give 
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Π −
(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

𝜏
−
𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

𝜏𝛽
= 0  

solving for 𝐼∗∗ gives 

𝐼∗∗ =
𝜇

𝛽
[

𝜏𝛽Π

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
− 1]         (30) 

substituting equation (30) into equation (20) and solving for 

𝐸∗∗ to obtain 

𝐸∗∗ =
𝜇(𝛼+𝛿+𝜇)

𝛼𝛽
[

𝜏𝛽Π

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
− 1]   (31) 

And substituting equation (21) into (22) to have 

𝑄∗∗ =
𝛼𝜇

𝛽(𝜌+𝜇)
[

𝜏𝛽Π

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
− 1]       (32) 

Therefore, from equation (28), (30), (31) and (32), it follows 

that the Endemic Equilibrium (EE) state, 

Ω1 = (𝑆
∗∗, 𝐸∗∗, 𝐼∗∗, 𝑄∗∗) is given as  

Ω1 (
(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

𝜏𝛽
,
𝜇(𝛼+𝛿+𝜇)

𝛼𝛽
[

𝜏𝛽Π

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
1] ,

𝜇

𝛽
[

𝜏𝛽Π

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
− 1] ,

𝛼𝜇

𝛽(𝜌+𝜇)
[

𝜏𝛽Π

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
− 1])      

     (33) 

 

Basic Reproduction Number (𝑹𝟎) 
The basic reproduction number of an infectious disease is the 

average of secondary infections when one infected individual 

is introduced into a host population where everyone is 

susceptible (Diekmann et al., 1990, Diekmann et al., 2010). 

We use the next generation matrix approach to compute the 

basic reproduction number 𝑅0 . The basic reproduction 

number 𝑅0 is the spectral radius pf the product matrix 𝐹𝑉−1. 
That is, 

 

𝑅0 = 𝜎(𝐹𝑉
−1) 

where 𝜎 denotes the spectral radius. 

The associated non-negative matrix 𝐹, for the new infective 

terms and the non-singular M-matrix, 𝑉, for the remaining 

transfer terms at the DFE are respectively given by 

𝐹 = (
0 𝛽𝑆
0 0

) = (
0

𝛽Π

𝜇

0 0
)  

and 𝑉 = (
(𝜏 + 𝑘 + 𝜇) 0

−𝜏 (𝛼 + 𝛿 + 𝜇)
)  

𝑉−1 = (

1

(𝜏+𝑘+𝜇)
0

𝜏

(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

1

(𝛼+𝛿+𝜇)

)  

so that 

𝐹𝑉−1 = (
𝛽Π𝜏

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)

𝛽Π

𝜇(𝛼+𝛿+𝜇)

0 0
)  

It follows that the basic reproduction number, denoted by 𝑅0,  

given by 𝜎(𝐹𝑉−1) 
where 𝜎 denotes the spectral radius is 

𝑅0 =
𝛽Π𝜏

𝜇(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
     (34) 

 

 

Local Stability of Disease-Free Equilibrium (DFE) State 

We investigate the local stability of the disease-free equilibrium (DFE) state by evaluating the associated Jacobian of equations 

(9) – (12) at the DFE state. The Jacobian matrix 𝐽 for the system (9) – (12) evaluated at the disease-free equilibrium, Ω0 is 

given by 

 

𝐽(Ω0) =

(

 
 
 
 
−𝜇 0

−𝛽Π

𝜇
0

0 −(𝜏 + 𝑘 + 𝜇)
𝛽Π

𝜇
0

0 𝜏 −(𝛼 + 𝛿 + 𝜇) 0
0 0 𝛼 −(𝜌 + 𝜇))

 
 
 
 

 

 

Theorem 2: The DFEs of the model (9) – (12), given by Ω0, is locally asymptotically stable (LAS) if 𝑅0 < 1 and  Ω0 is 

unstable if 𝑅0 > 1. 

 

Proof: 

It suffices to show that all the eigenvalues of the characteristic equation of the Jacobian matrix 𝐽(Ω0) have negative real parts. 

The characteristic equation of the Jacobian matrix is given by 

(−𝜇 − 𝜆)(−(𝜌 + 𝜇) − 𝜆)[−(𝜏 + 𝑘 + 𝜇) − 𝜆][−(𝛼 + 𝛿 + 𝜇) − 𝜆] −
𝛽Π𝜏

𝜇
] = 0 

that is, 

(−𝜇 − 𝜆)(−(𝜌 + 𝜇) − 𝜆) [(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + (𝜏 + 𝑘 + 𝜇)𝜆 + (𝛼 + 𝛿 + 𝜇)𝜆 + 𝜆2 −
𝛽Π𝜏

𝜇
] = 0 

that is, 

(−𝜇 − 𝜆)(−(𝜌 + 𝜇) − 𝜆) [𝜆2 + [(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]𝜆 + (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) −
𝛽Π𝜏

𝜇
] = 0 

The eigenvalues of the characteristic equation are 

𝜆 = −𝜇,−(𝜌 + 𝜇) and the root of the polynomial 𝑞(𝜆) = 𝜆2 + 𝐴𝜆 + 𝐵    (35) 

where 

𝐴 = (𝜏 + 𝑘 + 𝜇) + (𝛼 + 𝛿 + 𝜇)                 (36) 

and 

𝐵 = (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) −
𝛽Π𝜏

𝜇
 

𝐵 = (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) [1 −
𝛽Π𝜏

𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
] 

 

𝐵 = (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)[1 − 𝑅0]        (37) 
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For 𝑅0 < 1 , we have 𝐴 > 0  and 𝐵 > 0 , and thus following Routh-Hurwitz stability criterion (Hurwitz, 1964) for the 

polynomial 𝑞(𝜆), the state Ω0 is locally asymptotically stable whenever 𝑅0 < 1. 

 

 

Global Asymptotic Stability (GAS) of the Disease-Free Equilibrium (DFE) State 

To ensure that the tuberculosis infection eradication is independent of initial sizes of the population of the model, it is 

imperative to show that the DFE of the model (9) – (12), given Ω0 is globally asymptotically stable (GAS). This is done now. 

 

Theorem 3: The DFE of model (9) – (12) given by Ω0 is GAS whenever 𝑅0 ≤ 1. 
Proof: 

Consider the Lyapunov function 

𝐹 = 𝜏𝐸 + (𝜏 + 𝑘 + 𝜇)𝐼 
with Lyapunov derivative (where a prime represent differentiation w.r.t. 𝑡) 
𝐹′ = 𝜏[𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸] + [(𝜏 + 𝑘 + 𝜇)(𝜏𝐸 − (𝛼 + 𝛿 + 𝜇))] 
𝐹′ = 𝜏𝛽𝑆𝐼 − [(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]𝐼 
𝐹′ = [𝜏𝛽𝑆 − [(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]𝐼 

𝐹′ = (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) [
𝜏𝛽𝑆∗

(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
− 1] 𝐼 

𝐹′ = (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) [
𝜏𝛽Π

𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
− 1] 𝐼 

𝐹′ = (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)𝐼[𝑅0 − 1] ≤ 0          for 𝑅0 ≤ 1          (38) 

It follows from the Lassale invariance principle (Lasalle, 1976) that every solution to the equations (9) – (12) with initial 

condition in ℝ4, approaches Ω0 as 𝑡 → ∞ for 𝑅0 ≤ 1. 

 

Local Stability of Endemic Equilibrium (EE) State 

Substituting the expression of 𝑅0 in equation (29) into equation (32), the endemic equilibrium (EE) state can be expressed as  

Ω1 = (
(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)

𝜏𝛽
,
𝜇(𝛼 + 𝛿 + 𝜇)

𝛼𝛽
[𝑅0 − 1],

𝜇

𝛽
[𝑅0 − 1],

𝛼𝜇

𝛽(𝜌 + 𝜇)
[𝑅0 − 1])   (39) 

Theorem 3: The unique endemic equilibrium of the model (9) – (12) given by Ω1 is locally asymptotically stable (LAS) 

whenever 𝑅0 > 1. 

 

Proof:  

To investigate the local stability of the endemic equilibrium, the associated Jacobian matrix of the system (9) – (12) is evaluated 

at the endemic equilibrium state. Thus, the Jacobian matrix Ω1 is given by  

𝐽(Ω1) =

(

 
 
 
−(𝜇(𝑅0 − 1) + 𝜇) 0

−(𝛼 + 𝛿 + 𝜇)(𝜏 + 𝑘 + 𝜇)

𝜏
0

𝜇(𝑅0 − 1) −(𝜏 + 𝑘 + 𝜇)
(𝛼 + 𝛿 + 𝜇)(𝜏 + 𝑘 + 𝜇)

𝜏
0

0 𝜏 −(𝛼 + 𝛿 + 𝜇) 0

0 0 𝛼 −(𝜌 + 𝜇))

 
 
 

 

The characteristic equations of the Jacobian matrix 𝐽(Ω1) is given by 

[−(𝜌 + 𝜇) − 𝜆][−[𝜇(𝑅0 − 1) + 𝜇] − 𝜆][[(𝜏 + 𝑘 + 𝜇) + 𝜆][(𝛼 + 𝛿 + 𝜇) + 𝜆] − (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)] − 𝜇(𝑅0 − 1)(𝜏

+ 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)] = 0 

that is, 
[−(𝜌 + 𝜇) − 𝜆][−[𝜇(𝑅0 − 1) + 𝜇] − 𝜆][𝜆

2 + [(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]𝜆 + (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) − 𝑎𝑏] − 𝜇(𝑅0 − 1)(𝜏
+ 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)] = 0 

that is, 
[−(𝜌 + 𝜇) − 𝜆][𝜆3 + [(𝜇(𝑅0 − 1) + 𝜇) + (𝜏 + 𝑘 + 𝜇) + (𝛼 + 𝛿 + 𝜇)]𝜆

2 + [(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)(𝜇(𝑅0 − 1) + 𝜇)
+ 2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]𝜆 + (𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) − [𝜇(𝑅0 − 1) + 𝜇](𝜏 + 𝑘
+ 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)] = 0       (40) 

The eigenvalues of the characteristic equation (44) are  

𝜆 = −(𝜌 + 𝜇) and the root of the polynomial 𝑔(𝜆) = 𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 

where 

𝐴 = (𝜇(𝑅0 − 1) + 𝜇) + (𝜏 + 𝑘 + 𝜇) + (𝛼 + 𝛿 + 𝜇) 
𝐵 = (𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) 
𝐶 = (𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) − [𝜇(𝑅0 − 1) + 𝜇](𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇(𝑅0 − 1)(𝜏 + 𝑘

+ 𝜇)(𝛼 + 𝛿 + 𝜇) 
𝐶 = 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) − 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇(𝜏 + 𝑘

+ 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) 
𝐶 = 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) 

Following Routh-Hurwitz stability criterion (Hurwitz, 1964), all the roots of the polynomial 𝑔(𝜆) have negative real parts if 

𝐴 > 0,𝐵 > 0, 𝐶 > 0 and 𝐴𝐵 − 𝐶 > 0. 

Obviously, 

𝐴 = 𝜇(𝑅0 − 1) + 𝜇 + (𝜏 + 𝑘 + 𝜇) + (𝛼 + 𝛿 + 𝜇) > 0 if 𝑅0 > 1 

𝐵 = (𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) > 0 if 𝑅0 > 1 
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𝐶 = 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) > 0 if 𝑅0 > 1 

and  

𝐴𝐵 − 𝐶 = [(𝜇(𝑅0 − 1) + 𝜇) + (𝜏 + 𝑘 + 𝜇) + (𝛼 + 𝛿 + 𝜇)][(𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
+ 2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)] − 𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) 

= (𝜇(𝑅0 − 1) + 𝜇)(𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2(𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
+ (𝜇(𝑅0 − 1) + 𝜇)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2[(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]

2 − 𝜇(𝑅0
− 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) 

= 𝜇(𝑅0 − 1)
2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2𝜇2(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇

2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
+ 2𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
+ (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)𝜇(𝑅0 − 1) + 𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2[(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]

2

− (𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)𝜇(𝑅0 − 1) 
= 𝜇(𝑅0 − 1)

2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2𝜇2(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇
2(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)

+ 2𝜇(𝑅0 − 1)(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 2𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇) + 𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
+ 2[(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)]2 > 0 if 𝑅0 > 1               (41) 

 

Global Stability of Endemic Equilibrium (EE) State 

The global stability of the system (9) – (12) of the unique endemic equilibrium state Ω1 is now employed. 

 

Theorem 4: The endemic equilibrium of the model (9) – (12) is globally asymptotically stable (GAS) whenever 𝑅0 > 1. 

 

Proof: 

Since 𝑄 and 𝑅 do not feature in any of the other equations in equation (9) – (13), the equation for 
𝑑𝑄

𝑑𝑡
 and 

𝑑𝑅

𝑑𝑡
 can be removed 

from the analysis. The global stability of the endemic equilibrium of the model (9) – (13) will be based on the following 

equations: 

 
𝑑𝑆

𝑑𝑡
= Π − 𝛽𝑆𝐼 − 𝜇𝑆                           (42) 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸                 (43) 

𝑑𝐼

𝑑𝑡
= 𝜏E − (α + δ + μ)I                      (44) 

The endemic equilibrium satisfies the following relation 

Π = 𝛽𝑆∗𝐼∗ + 𝜇𝑆∗                                  (45) 
𝛽𝑆∗𝐼∗ = (𝜏 + 𝑘 + 𝜇)𝐸∗                       (46) 
𝜏E∗ = (α + δ + μ)I∗                             (47) 
Let us consider a possible non-linear Lyapunov function (non-linear function of this type have been used in Korobeinikov and 

Maini, 2004, Korobeinikov, 2006, Fall et al., 2007). 

 

𝑉 = (𝑆 − 𝑆∗ ln 𝑆) + (𝐸 − 𝐸∗ ln 𝐸) + (𝐼 − 𝐼∗ ln 𝐼) 
It derivatives along the trajectories of (9) – (11) is 

𝑉′ = (1 −
𝑆∗

𝑆
) 𝑆′ + (1 −

𝐸∗

𝐸
)𝐸′ + (1 −

𝐼∗

𝐼
) 𝐼′ 

It follows from equation (42) – (44) that 

𝑉′ = Π − 𝛽𝑆𝐼 − 𝜇𝑆 −
𝑆∗

𝑆
[Π − 𝛽𝑆𝐼 − 𝜇𝑆] + 𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸 −

𝐸∗

𝐸
[𝛽𝑆𝐼 − (𝜏 + 𝑘 + 𝜇)𝐸] + 𝜏𝐸 − (𝛼 + 𝛿 + 𝜇)𝐼 −

𝐼∗

𝐼
[𝜏𝐸

− (𝛼 + 𝛿 + 𝜇)𝐼] 
By using the endemic relations in the system (45) – (47) 

𝑉′ = 𝛽𝑆∗𝐼∗ + 𝜇𝑆∗ − 𝛽𝑆𝐼 − 𝜇𝑆 −
𝑆∗

𝑆
[𝛽𝑆∗𝐼∗ + 𝜇𝑆∗ − 𝛽𝑆𝐼 − 𝜇𝑆] + (𝜏 + 𝑘 + 𝜇)𝐸∗ − (𝜏 + 𝑘 + 𝜇)𝐸

−
𝐸∗

𝐸
[(𝜏 + 𝑘 + 𝜇)𝐸∗ − (𝜏 + 𝑘 + 𝜇)𝐸] + (𝛼 + 𝛿 + 𝜇)𝐼∗ − (𝛼 + 𝛿 + 𝜇)𝐼 −

𝐼∗

𝐼
[(𝛼 + 𝛿 + 𝜇)𝐼∗

− (𝛼 + 𝛿 + 𝜇)𝐼] 
By using the endemic relations in the system (45) – (47)  

𝑉′ = 𝛽𝑆∗𝐼∗ + 𝛽𝑆𝐼 −
𝛽𝐼∗(𝑆∗)2

𝑆
+ 𝛽𝑆∗𝐼∗ + 𝜇𝑆∗ − 𝜇𝑆 −

𝜇(𝑆∗)2

𝑆
+ 𝜇𝑆∗ + 𝑘𝐸∗ [1 −

𝐸

𝐸∗
−
𝐸∗

𝐸
− 1] + 𝜏𝐸∗ [1 −

𝐸

𝐸∗
−
𝐸∗

𝐸
− 1]

+ 𝜇𝐸∗ [1 −
𝐸

𝐸∗
−
𝐸∗

𝐸
− 1] + 𝛼𝐼∗ [1 −

𝐼

𝐼∗
−
𝐼∗

𝐼
− 1] + 𝛿𝐼∗ [1 −

𝐼

𝐼∗
−
𝐼∗

𝐼
− 1] + 𝜇𝐼∗ [1 −

𝐼

𝐼∗
−
𝐼∗

𝐼
− 1] 

𝑉′ = 𝛽𝑆∗𝐼∗ [1 −
𝑆𝐼

𝑆∗𝐼∗
−
𝑆∗

𝑆
+
𝐼

𝐼∗
] + 𝜇𝑆∗ [1 −

𝑆

𝑆∗
−
𝑆∗

𝑆
+ 1] + 𝑘𝐸∗ [2 −

𝐸

𝐸∗
−
𝐸∗

𝐸
] + 𝜏𝐸∗ [2 −

𝐸

𝐸∗
−
𝐸∗

𝐸
] + 𝜇𝐸∗ [2 −

𝐸

𝐸∗
−
𝐸∗

𝐸
]

+ 𝛼𝐼∗ [2 −
𝐼

𝐼∗
−
𝐼∗

𝐼
] + 𝛿𝐼∗ [2 −

𝐼

𝐼∗
−
𝐼∗

𝐼
] + 𝜇𝐼∗ [2 −

𝐼

𝐼∗
−
𝐼∗

𝐼
] 

𝑉′ = 𝛽𝑆∗𝐼∗ [1 −
𝑆𝐼

𝑆∗𝐼∗
−
𝑆∗

𝑆
+
𝐼

𝐼∗
] + 𝜇𝑆∗ [2 −

𝑆

𝑆∗
−
𝑆∗

𝑆
] + (𝜏 + 𝑘 + 𝜇)𝐸∗ [2 −

𝐸

𝐸∗
−
𝐸∗

𝐸
] + (𝛼 + 𝛿 + 𝜇)𝐼∗ [2 −

𝐼

𝐼∗
−
𝐼∗

𝐼
] 

using the comparison between the arithmetic and geometric means (Fall et al, 2007). 

(That is, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 ≥ 𝑛√𝑎1, 𝑎2, … , 𝑎𝑛
𝑛  for 𝑎𝑖 ≥ 0, 𝑖 = 1,2,… , 𝑛). 

Then, 
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1 −
𝑆𝐼

𝑆∗𝐼∗
−
𝑆∗

𝑆
+
𝐼

𝐼∗
≤ 0 

2 −
𝑆

𝑆∗
−
𝑆∗

𝑆
≤ 0 

2 −
𝐸

𝐸∗
−
𝐸∗

𝐸
≤ 0 

2 −
𝐼

𝐼∗
−
𝐼∗

𝐼
≤ 0 

so that, 

𝑉′ ≤ 0 

Thus, it follows by Lyapunov functions 𝑉  and Laselle invariance principle (Lasalle, 1976) that all solution with initial 

condition in Ω\Ω0 will converge to Ω. 

 

Sensitivity Analysis of 𝑹𝟎 

We carried out sensitivity analysis on the basis of the model parameter (Table 1) by the normalized forward sensitivity indices 

(Chitnis et al., 2006; Wu et al., 2013) using the following formula 

ΛQ
𝑅0 =

𝜕𝑅0

𝜕𝑄
(
𝑄

𝑅0
)     (48) 

where 𝑄 denotes the model parameter. 

The sensitivity index of 𝑅0 with respect to each parameter is given in Table 2. 

 

Table 3: Sensitivity indices of 𝑹𝟎 

Parameter Description  Sensitivity Indices 

𝛽 Infection transmission rate 1 

𝜏 Progression rate from exposed class to infectious class 0.8886 

Π Recruitment rate 1 

𝑘 Tuberculosis testing and therapy rate −0.6120 

𝜇 Natural death rate −0.7891 

𝛼 Isolation rate −0.5638 

𝛿 Disease-induced death rate 0.0526 

 

It is shown from Table 3, that the threshold 𝑅0 is sensitive 

proportionally to the changes in the parameter values of 

𝛽, Π, and 𝜏. It implies that an increase (or decrease) in the 

value of each of the parameter in this case will lead to increase 

(or decrease) in 𝑅0 of the model (9) – (12). On the contrary, 

the threshold 𝑅0 , is sensitive inversely proportional to the 

variation the values of 𝜇, 𝑘, 𝛼, and 𝛿 . In other words, an 

increase (or decrease) in the value of each of the parameter in 

this case leads to a corresponding decrease (or increase) in 𝑅0. 

 

 

 

Numerical Simulations 

Numerical simulations for the model (9) – (12) are carried out 

using the parameters in Table 3 unless otherwise stated to 

illustrate some of the analytical results established in this 

study. The numerical simulations were conducted using the 

Runge-Kutta fourth order method (RK4) embedded in 

MATLAB.  

 

Baseline Parameter Values 

We show a baseline table for the parameters used in this 

model. The sources are also stated.

Table 3: Baseline parameter values for equations (9) – (12). 

Parameters              Baseline value                                   Reference 

     𝜋                         0.984                                        Omale et al., (2019) 

     𝛽                         0.5853                                      Dauda et al., (2020) 

     𝜏                          0.048                                       WHO (2020) 

    𝜌                          0.1                                            Assumed 

    𝜇                          0.02041                                   Egonmwan & Okuonghue (2009) 

    𝛿                          0.0028                                     Omale et al., (2019) 

    𝛼                          0.030                                       Assumed 

    𝑘                           0.1                                          Assumed 

 

The numerical results are shown in Figure 2 – Figure 8. 
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Figure 2: Graph of Susceptible, Exposed and Infected individual with no control (𝛼 =
0; 𝑘 = 0;  𝜌 = 0). 

 

 
Figure 3: Graph of Exposed individuals with no control (𝛼 = 0; 𝑘 = 0;  𝜌 =
0)  varying the infection transmission (𝛽 = 0.0053;  𝛽 = 0.053;  𝛽 =
0.5853). 
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Figure 4: Graph of infectious individual with respect to time with no control 

(𝛼 = 0; 𝑘 = 0;  𝜌 = 0) varying the infection transmission (𝛽 = 0.0053;  𝛽 =
0.053;  𝛽 = 0.5853). 

 

 
Figure 5: Effect of early detection and therapy (𝑘1 = 0.015; 𝑘2 =  0.15; 𝑘3 = 0.45))  of 

Exposed individuals without isolation (𝛼 = 0;  𝜌 = 0). 
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Figure 6: Effect of isolation and treatment (𝛼1 = 0.030, 𝜌 = 0.1; 𝛼2 = 0.1, 𝜌 =
0.1; 𝛼3 = 0.5, 𝜌 = 0.1)without early detection and therapy of infected individuals 
(𝑘 = 0). 

 

 
Figure 7: Effect of early detection and isolation of infected individuals with respect 

to time.(𝑘 = 0.45;  𝜌 = 0.1; 𝛼1 = 0.030;  𝛼2 = 0.1; 𝛼3 = 0.5).  
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Figure 8: Graph of infected human with no control 𝑘 =  𝛼 =  𝜌 = 0) and with 

control (𝑘 = 0.1;  𝛼 = 0.5;  𝜌 = 0.1). 
 

Discussion of Results 

In this study we extended and analyzed a mathematical model 

for the transmission dynamics of tuberculosis infection by 

incorporating two types of intervention strategies based on 

early detection and therapy and isolation of infected 

individuals.  

 

The analytical result of the model shows that the solution of 

the model is bounded, positively and attracting with respect 

to the system equations (9) – (12) where the usual existence, 

uniqueness, continuation results hold. The theoretical analysis 

showed that in closed region the model is epidemiological 

meaningful and mathematical well posed 

 

The basic reproduction number, 𝑅0 is an important threshold 

parameter used to determine the threshold between disease 

eradication and outbreak and thus 𝑅0 was shown to be crucial 

to the stability analysis of the model. We computed the basic 

reproduction number, 𝑅0  using the next generation method 

and is given by 

𝑅0 =
𝛽𝜋𝜏

𝜇(𝜏 + 𝑘 + 𝜇)(𝛼 + 𝛿 + 𝜇)
 

The basic reproduction number, 𝑅0 is given by the product of 

the infection transmission rate of the susceptible individuals 

by infectious individuals near the disease-free equilibrium 

states (DFEs) 
𝛽𝜋

𝜇
, the rate of exposed individuals that moves 

to the infectious class 𝜏, the average duration of the exposed 

class and the infectious class 
1

(𝜏+𝑘+𝜇)(𝛼+𝛿+𝜇)
 .  

The result from the stability analysis of the disease-free 

equilibrium (DFE) state is shown to be locally and globally 

asymptotically stable if the basic reproduction number is less 

than unity, as shown in Theorem 2 and Theorem 4 

respectively. The epidemiological implication of Theorem 2 

and Theorem 3 is that the small influx of tuberculosis 

infection cases will not generate a tuberculosis outbreak if the 

basic reproduction number, 𝑅0 of the model (9) – (12) is less 

than unity. Results found in Theorem 4 and Theorem 5 shows 

that the endemic equilibrium (EE) state is locally as well as 

globally asymptotically stable if the basic reproduction 

number is greater than unity (𝑅0 > 1). The implication is that, 

tuberculosis infection will persist in the population if the 

initial sizes of the population of the model are in the basin of 

attraction of the endemic equilibrium states (EEs). 

The sensitivity analysis of 𝑅0  with respect to the model 

parameters was carried out using the normalized forward 

sensitivity indices. The results of the sensitivity index of 𝑅0 

is given in Table 3 and it shows that the more sensitive 

parameter is the infection transmission rate 𝛽. It is followed 

by the recruitment rate Π and progression rate from exposed 

class to infectious class 𝜏. The parameter 𝛽 as positive index 

1 as shown in Table 3 reveals that by decreasing or increasing 

infection transmission parameter will decrease or increase the 

basic reproduction number, 𝑅0 . Thus, preventive effort 

should be geared towards decreasing the infection 

transmission to ensure tuberculosis disease elimination. The 

parameters with the negative sensitivity indices, 

−0.0936; −2.2356;−0.0315; −0.0029  that correspond to 

tuberculosis testing and therapy 𝑘 , natural death rate 𝜇 , 

isolation rate 𝛼 and disease-induced death rate 𝛿, respectively 

(as shown in Table 3) have influence of reducing the disease 

burden in the population as their values increases.  

The numerical results are based on the numerical simulations 

presented in Figure 2 to Figure 8. The simulations in 

Figure 2 shows the dynamical behavior of the population of 

susceptible, exposed, and infectious individuals for fixed 

value of infection rate ( 𝛽 =  0.01328)  with no control 

measure ( 𝑘 =  0;  α =  0) . It shows prevalence of 

tuberculosis infection in the population. Thus, with no control 

measures put in place tuberculosis infection will persist in the 

population. 

Figure 3 and Figure 4 shows increasing prevalence of 

tuberculosis with increasing infection transmission rates (𝛽 =
0.0053;  0.053;  0.5853)in the absence of any intervention 

(𝑘 =  0;  α =  0) . With the basic reproduction number, 𝑅0 >
1 in each case, shows convergence of the solution profile to 

the endemic equilibrium (EE) state. This is consistent with 

Theorem 4 and Theorem 5 respectively. The implication of 
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this result is that, for an effective preventive strategy, effort 

should be geared at reducing the infection transmission rate. 

Figure 5 shows effect of early detection and therapy (𝑘1 =
0.015; 𝑘2 =  0.15; 𝑘3 = 0.45)) of  

exposed individuals without isolation (𝛼 = 0;  𝜌 = 0).  The 

figure shows a significant decrease of tuberculosis infection 

with increasing testing and therapy of latent individuals in a 

population.   

Figure 6 shows effect of isolation and treatment (𝛼1 = 0.030,
𝜌 = 0.1; 𝛼2 = 0.1, 𝜌 = 0.1; 𝛼3 = 0.5, 𝜌 = 0.1) without 

early detection and therapy of infected individuals (𝑘 = 0). 
The figure revealed a decreasing number of infected 

individuals by increasing isolation and treatment of infected 

individuals. 

Figure 7 depicts the impact of combining early detection of 

latent individuals and isolation of infected individuals. It 

shows a decreasing tuberculosis disease in the population with 

effective combination of the two control measures. It further 

reveals a rapid convergence of the solution profile to the 

disease-free equilibrium (DFE) with the basic reproduction 

number 𝑅0 < 1 (that is 𝑅0 = 0.0325, 0.0303, 0.0218). Thus, 

we can deduce that a combination of early detection and 

therapy of latent individuals, with effective isolation and 

treatment of infected individuals, tuberculosis disease can be 

eliminated from the population. 

Figure 8 shows the difference between applying different 

intervention strategy with no control on tuberculosis disease 

transmission. Without any control measure, the tuberculosis 

infection will persist within the community. It further shows 

that the infection will die out with a combination of early 

detection and effective isolation and treatment of infected 

individuals in the population. 

 

CONCLUSION 

A deterministic model of tuberculosis disease was presented. 

This model extended the model by Dauda et al. (2020) by 

incorporating testing and therapy in the latent population, 

isolation and treatment in the infectious class. The analysis of 

the model shows that there exists a unique solution that is 

bounded and positively invariant. The disease-free 

equilibrium (DFE) state and the endemic equilibrium (EE) 

state of the model was obtained and the basic reproduction 

number 𝑅0, which is a threshold in the study of tuberculosis 

infection both to predict its outbreak and for assessing its 

control strategies was computed using the next generation 

matrix operator. Analytical results shows that the DFEs is 

locally as well as globally asymptotically stable whenever  

𝑅0 < 1 and further stability analysis shows that the EEs is 

locally as well as globally asymptotically stable if  𝑅0 > 1. 

Sensitivity analysis of 𝑅0  with respect to the model 

parameters was carried out and the results shows that the more 

sensitive parameter is the infection transmission rate 𝛽. It is 

followed by the recruitment rate Π and progression rate from 

exposed class to infectious class 𝜏 . The parameter 𝛽  as 

positive index 1  as shown in Table 3 reveals that by 

decreasing or increasing infection transmission parameter will 

directly decrease or increase the basic reproduction number, 

𝑅0. Numerical results shows that tuberculosis infection will 

persist in a population if control measures are put in place. 

Further numerical results shows that the infection will die out 

with a combination of early detection and effective isolation 

and treatment of infected individuals in the population.  
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