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ABSTRACT

A new lifetime continuous probability distribution called the new Generalized Odd Fréchet-Odd-Exponential-
G Family of Distribution is developed using the principle of Alzaatreh. The developed distribution is flexible
for studying positive real-life datasets. The statistical properties related to this family are obtained. The
parameters of the family were estimated by using a technique of maximum likelihood. A NewGeneralized Odd
Fréchet-Odd-Exponential-Weibull model is introduced. This distribution was fitted with a set of lifetime data.
A Monte Carlo simulation is applied to test the consistency of the estimated parameters of this distribution in
terms of their bias and mean squared error with a comparison of M.L.E and the maximum product spacing
(MPS).The outcome of the Monte Carlo simulation shows that the M.L.E method is the best technique for
estimating the parameter of the New Generalized Odd Frechet-Odd-Exponential-Weibull distribution and the
New Generalized Odd Frechet-Odd-Exponential-Rayleigh distribution than the M.PS method. The outcomes
of the application on the data set produce a higher flexibility than some of the competing distributions. The
distributions serve as a viable alternative to other distributions available in the literature for modelling positive

data.

Keywords: New Generalized Odd Fréchet-G Family, Moments, Hazard functions, Maximum Likelihood,

Monte Carlo Simulations

INTRODUCTION

The novelty of developing a generalized form of probability
distribution drew the attention of academicians and devoted
statisticians to the flexibility possessions of the generalized
distributions. The Fréchet distribution, also viewed as the EV
distribution of type Il, was introduced by the Western
mathematician Maurice René (MR) Fréchet in the 1920s as a
maximum value distribution. Sadiq et al. (2023), provide a
detailed explanation of the GEV distribution and its extensive
implementations in various disciplines such as sea currents,
natural disasters, horse racing, heavy rainfall, supermarket
queues, and wind speeds, among others.Alizadeh et al.
(2017a),statistical models play a crucial role in describing and
forecasting countless real-world events. To model data in
different domains, several extended and comprehensive
distributions have remained broadly employed over the last
few decades. Recent advances in statistical literature have
focused on describing innovative families of distributions that
can outspread renowned distributions and, at the same time,
deliver prodigious flexibility in demonstrating observational
facts in practice. Therefore, different categories have been
proposed for breeding novel distributions by accumulating
one or more parameters. Some acknowledged families of
distribution were the NGOF-G by Sadiq et al. (2023), a
modified T-X family by Aslam et al. (2020), the Odd-Burr
generalized family by Alizadeh et al. (2017b), on generating
T-X family by Aljarrah et al. (2014), Logistic-X family by
Tahir et al. (2016), TGOGEG by Reyad.et al. (2019), General
Linear Model by Sadigq et al. (2020), the NOBPBX
distribution by Suleiman et al. (2023) and Odd Gompertz-G
family of distribution by Kajuru et al. (2023).

MATERIALS AND METHODS
Sadiq et al.(2023) defined a random variable Xas said to have
a New Generalized Odd Fréchet-G (NGOF-G) family of
distribution with scale parameter « and shapes parameter
B and y if its CDF (cumulative distribution
function)ispresented as (for all x, a, B,v,¢ > 0),
- B
FNGOF—G(X; a, ,3»'}’» f) = éexp {_ ((Z(ch]}(x; f) - 1)) }
@)

Similarly, according to Bourguignon et al. (2014); defined a
CDF of the odd exponential-G family of distributions are
given by:

. 1 _ 6R(x;§)
FOEG (‘xl 6' f) =1 exp{ 1-R(x;€)

}; vx;6,E§>0
(2)

New Generalized Odd Fréchet-Odd Exponential-G
(NGOF-OE-G) family

We “propose a new extension of the NGOF-G family
developed by Sadiq et al.(2023) using the Odd Exponential-
G family introduced by Bourguignon et al. (2014) as a
baseline generator. The hybridization of these two families is
expected to produce more flexible and robust distributions
that can accommodate a wide range of datasets. However,
using the direct substitution method, putting equation (2) into
equation (1), our proposed family namedthe New Generalized
Odd Fréchet-Odd Exponential-G (NGOF-OE-G) family is set
as (for all “x,,B,y,6,& > 07)”

Fygoroec(x; @, B,7,6,§)

= exp {_ (a(FD_EVG(x; 8- 1))ﬁ}

~enf-(a((-em - 222 -0 ] o
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The corresponding pdf of equation (3) is given by

fOca,B,y,6,6) = pyafsr(x (1 - R(x: )™ (1 —exp {—

SR(x;6) R 1) h
{52 (- ) )
~ B
e (o (1 - em - 22)” 1) y

where “r(x; &) and R(x; &) are the pdf and CDF of the baseline distribution and &is the parameter vector. However, a random
variable X with density function and distribution function in equations (3) and (4) is denoted by X~ NGOF — OF —

G (a,B,7,6,8)".

Special NGOF-OE-G distributions

Lifetime distributions are crucial in various fields including “survival analysis, biomedical science, engineering, and social
sciences”. Generally, “lifetime refers to the length of human life, the lifespan of a device before its failure, or the survival time
of a patient with a severe illness from diagnosis to death. In this article, we introduce two special NGOF-OE-G distributions
that may come in handy” for applications

sRG: ) |\
1-R(x; f)}>

The NGOF-OE-Weibull distribution
w
The NGOF-OE-Weibull distribution “is defined from equations (3) and (4) by taking R(x ; ) =1 —exp {— (i) } and

r(x; €)= wp=9x L exp {— (%)m} to be the Weibull distribution with positive parameters$, » and & = (w, ¢). The CDF
and pdf of the NGOF-OE-Weibull distribution are given by (for x > 0)"

Furam(i6.8..8,9,00 = x| (a (1= x5 (e ()"} - 1)) - ) } ®

fcoroew (6@, B,7,68, ¢, w) = Byafs (w¢—mxm-1 exp{ ( ) }) (e (%)wb

w{-
(1-emfoolen{G))-1)) T emfoo(em{(5) }—1>}1

((-emlolem (@) -1 ©
owof-(e((1-em - (e ((3)} - D)) -1) |

The NGOF-OE-Rayleigh distribution

The NGOF-OE-Rayleigh distribution “is defined from equations (3) and (4) by taking R(x ; &) = 1 — exp {— (%xz)}and
r(x; &) =c¢xexp {— (%xz)} to be the Rayleigh distribution with positive parameters ¢ and ¢ = ¢. The CDF and pdf of
the NGOF-OE-Rayleigh distribution are given by (for x > 0)”

Fngoroer(X; a0, 8,6, ) = exp{ — <a <<1 ~exp {_ %@%;)D})_y ) 1>>B i

o830 - - (3 (o (4

(ot ”})‘“ Nwcion

B_
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pdf of NGOF-OE-W

Figure 1:

Hazard function of NGOF-0E-W

Figures 2: HF Plot of the New Generalized Odd Fréchet-Odd Exponential-Weibull Distribution
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Figure 3: PDF Plot of New Generalized Odd Frechet-Odd-Exponential-Rayleigh Distribution
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Figure 4: Hazard Plot of New Generalized Odd Frechet-Odd-Exponential-Rayleigh Distribution

So, Figures 1 and 3 show the density function of the NGOF-
OE-Weibulland NGOF-OE-Rayleighmodels at different
parameter values. The figures display the shapes and
behaviour of the distribution, and how the parameters interact
with one another. For example, if the parameters have equal
values, the distribution is symmetrical. However, if the values
differ, the distribution becomes more positively skewed.

Additionally, the greater the difference between the parameter
values, the less pronounced the bell shape of the distribution.
Furthermore, Figures 2 and 4 show the hazard functions of the
NGOF-OE-Weibulland NGOF-OE-Rayleigh at various
parameter values. The graph displays the modified unimodal
and modal shapes of hazard rates at different parameter
values.
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Expansions

Let's take a closer look at the terms in the NGOF-OE-G family's CDF presented in equations (3). We can use standard
mathematical expansions such as the generalized binomial expansion for negative and positive powers, the power series
expansion, and more to break down each term.

SR(x; ~
FNGOFOEG(X; a, '8’ V)6, f) sepyTl| e <<1 — {_ 1- f(;zxfzf)}) - 1)

= exp {— (a(R;EG(x; & — 1))B},

where Rpgg(x; &) = (1 —exp {_ 18—RR(Z;(;§§))})

B
_ a(l—Rggg(x;§)>
- . RY e (6:d)

, i
— Zoo (-1t a (1_R(1),55(XZ§)>
=0 RY £ (6:8)
" i i .
= 350 S @ (1= Rl (59) Robd (6:6)

il

[ e . J .
= 370 S at 57,1 (1) (R ©) Rz

i J

o ) s (1 iB(i—

oo 2t (T REEI P ) ©
Therefore, equation (9) reduces to,
Fnooroea (6 @ B,Y,6,8) = Xfj=0 St REET ™ (6 §) (10)
where S; ; = (_1_—)'”}5(1'5 (Lﬁ)

, o j

Differentiating equation (10) w.r.t. x we have the corresponding pdf as:
fuooroea (6 @, B,,8,8) = B0 S ViBG = Drope (e ORGE V7 (69 (12)
Further simplification of equation (10) is as,
Fygoroec (% a,B,v,8,8) = Xizo viiWi(x) (12)

where v, = X,_,S;; and Wi (x) = RIEI D (x; )

Differentiate equation (12) w.r.t. X we obtained the corresponding pdf as:

frncoroec (6@, B,7,6,8) = Xi—o viewi(x) (13)
where wy, (x) = krope(x; E)REz¢ (x; €)

Moments

The role of moments in application to statistics is clear, and “the most essential characteristics of a probability model can be
examined using moments. Evaluation in statistical inference is necessary, the most vital properties of the distributions were
derived using the moments”. The rth ordinary moment of a random variable X that follows the New Generalized Odd Frechet-
Odd Exponential-G (NGOF-OE-G) family by using equation (13) we have

# = EX)

= J x" fncoroec (6 a, B, v, 8,8)dx
0

0
o0
f xrz v Wy (x) dx
0 k=0
© 0

= v | x"wi(x) dx

2"l
= Yk=0 vkE[Zg] (14)
where E[Z}] = [ x"kroge (x; E)RERE (x; §) dx

Moment-Generating Function
Moment-generating functions “offer a clear and elegant framework for understanding and analyzing probability distributions
and random variables, making them an essential tool in many branches of statistics and applied mathematics”. The moment-
generating function of a random variable X that follows the New Generalized Odd Frechet-Odd Exponentiated-G (NGOF-OE-
G) family by using equation (13) we have,
M}I}IFOFOEG (t) — E(e tx)

= [, X" fucorose (% @, B, v, 6,§)dx

= f(:o x" Yoo Viewr (x) dx

=Yr-0 Vk fow x"wy (x) dx

= Xk=0 vkE[Z{] (15)
where E[et?k] = fowetxkrOEG (x; OREZE(x; &) dx
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Entropies

Entropy, “a term borrowed from thermodynamics, is a measure of how uncertainty or randomness of a physical system.
Entropy is a measure of the randomness or uncertainty of a random variable or a probability distribution that is used in statistics
and information theory. It provides a means of measuring how informational the outcomes of a random process are. It is used
in a variety of disciplines, including cryptography, machine learning, data analysis, and information theory”.

The entropy of any “random variable X is a measure of indecisiveness, variability, and details properties of the probable results
of the variable”. The entropy of the NGOF-OE-G family using equation (13) we have,

(@) = ———log < f £ vooross (6 6B 7,8,) dx)

= _109( f =0 mewr(x))® dx) (16)
where w > 0and @ # 1
The nth entropy is defined by

—log (1 - f £ vorons (% @ B.Y,8,8) dx)

= ilog( 1- f;o(Z‘,f:O vwy (X))@ dx) (17)
where w > 0and w # 1

1
Inth(w) = —

Order Statistics
Briefly stated order statistics are “a set of values obtained by placing the observations from a sample in either ascending or
descending order. They are important in many statistical analyses, assisting in describing the distribution, drawing conclusions,
and examining the extreme values of a dataset. It offers information about the distribution and properties of the data”.
Suppose X;, X5, X3, ... , X, is a random sample from the NGOF-OE-G distribution and X; . ,, represent the ith order
statistic, then, using equations (12) and (13) we have
n!

fiin(a,B,v,6,) = m[ﬁvcomm(’c'a B,v,8,9)]

[FNGOFOEG(x a,B,v, 8,1 1~ Fygorore (6 a, 8,7, 8, 1"

m[zk o VWi ] [Xizo veWie )11 — Xizg veWi (0] (18)

Estimation of Parameters

For estimating the parameters of a statistical model, “maximum likelihood estimation (MLE) is a frequently used technique in
statistics. MLE aims to identify the model parameter values that maximize the likelihood function, which assesses how well
the model accounts for the observed data. Numerous statistical and scientific disciplines, such as econometrics, biostatistics,
machine learning, and others, use MLE extensively”.

Suppose that x;, x,, x3, ... , x,, are the observed values from the proposed NGOF-OE-G family with parameters a, 8,y,
and &. Suppose that @ = [a, B, 7,6,&]T is the [m x 1] vector of the parameter. The log-likelihood function & using
equation (4) is expressed by

b = @) = nlogh) + nlog®) + nflogle@) +nlog®+ ) loglrtx )]

i=1

n | n SR(x; &)
—2 Z log[1—R(x; O] - (v +1) Z log [1 - exp {‘ T(xf)}]
n R(x: 5) n SR (x; f) -
L[] oo Lol )
_ B
st (o(1- e - 2229)” 1) ®
Taking “the partial derivative of equation (19) w.r.t. the parameters (a; B; y; 8; &) are respectively given” as:
n(@) B " SR V)Y p
ao:lb =%~ Li-a ((1 —oxp {_ 1—RR(x;§)}) - 1) "
(@) _n , —exp{ - RO DT
G5 —ptrles@+ LZI log ((1 exP{ 1-R(x; f)}) 1>
¥ <a ((1-exp {— %}) "~ 1)) (1~ exp {- %}) - 1) ey
9 (P) n y L
5 =y b+1) Zl log[R(x; &)] — Zl log [1 T exp {_ T(x{)}]

~(B-1) Z (1-ewf- %Dy in(1- ex_;::/ (- %})
i1 ((1—exp{—%}) _1)

FUDMA Journal of Sciences (FJS) Vol. 7 No. 6, December, 2023, pp 41 - 51 46



NEW GENERALIZED ODD FRECHET... Sadiq et al., FJS
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The MLEs of the parameters (a; B; v;8;¢), says (@&; f; 7;6;&)are the simultaneous solution of equations (20), (21), (22),

L B(D) _ 06 _ . 0a(®) 9l (®) ac,,
(23) and (24) when equated to zero, i.e. o =0 5 =0; p =0, —;—=0;

and non-linear and can only be solved using a numerical iterative method.

@,) . These equations are intractable

Hazard Function

The hazard function, and cumulative hazard function random variable is X which follows the NGOF-OE-G family are
respectively given as,

are respectively given as,

B SR (y+1)
hngoroec (X, B,v,8,8) = ﬁya’ﬁ(Yr(x; f)(l - R(x; 'f)) ’ (1 - exp{ %})
B-1

_ 8RO V(SR \\T
PUT-rxO PUT-r®O
B
SR )"
exps — a<<1—exp{——1_R(x;€)}) —1)

-1

(1 —exp {— <a ((1 —exp {_ 16—RR(Zc;§§))})_y B 1))3}> (25)
Quantile Function

The “quantile function of the NGOF-OE-G family is obtained by inverting the CDF in equation (3). Supposed the variable U
is uniformly distributed on (0,1)”, then

1

Y
log| 1— %
a+(-logw)P

x=®w) =R1? I (26)

v
log| 1— % =
a+(-logw)P

where R~1 is the quantile function of the baseline distribution R(x; ). And 0 < u < 1.

RESULTS AND DISCUSSION M.L.E and M.P.S Techniques for the NGOF-OE-Weibull
Simulation Study Distribution
The vast class of computational algorithms known as "Monte  To evaluate the consistency of the new family’s parameters,
Carlo simulations" uses replicated random sampling to “the simulation study was pilotedusing the Monte Carlo
produce numerical results. The basic idea is to employ Simulation technique by computing the bias, variance and
randomness to address problems that could be theoretically mean square error of the estimated parameters from the
deterministic. maximum likelihood estimates and the maximum product
spacing estimate”. The Simulated data is generated using the
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quantile function in equation (26) and the likelihood function
in equation (19) for different sample sizes n = 20, and 50with
replicate 200 times each. For the NOGF-OE-Weibull
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distribution  parameter  values

(11, 1.0, 2.5, 1.0,2.0, 3.0).

are (a,B,v,6,¢,w) =

Table 1: Results of the simulated data from the NGOF-OE-Weibull Distribution.

Sample Parameters M.L.E. Techniques M.P.S. Techniques

Sizes (Actual
Values) Estimates  Bias RMSE Estimates  Bias RMSE
a (11) 10.5149 -0.4851 0.7028 11.1391 0.1391 0.3981
B (1.0) 0.1809 -0.8191 0.8199 0.1681 -0.8319 0.8327

20 y (2.5) 2.7102 0.2102 0.5764 3.6658 1.1658 1.3041
6 (1.0) 1.4722 0.4722 0.6784 1.0813 0.0813 0.5060
¢ (2.0) 2.7378 0.7378 0.8290 1.4186 -0.581 0.7164
w (3.0) 3.7965 0.7965 1.0644 3.4093 0.4093 0.6585
a (11) 10.6819 -0.3181 0.5800 11.1677 0.1677 0.3894
B (1.0) 0.1771 -0.8229 0.8238 0.2010 -0.7990 0.8004

50 y (2.5) 2.5992 0.0992 0.4439 3.9635 1.4635 1.5934
4 (1.0) 1.6763 0.6763 0.8367 1.2994 0.2994 0.6296
¢ (2.0) 2.6243 0.6243 0.7132 1.3182 -0.6818 0.7990
w (3.0) 3.5471 0.5471 0.8318 3.0721 0.0721 0.4148

Table 1 presents the results obtained from the Monte Carlo
Simulation study. The results indicated that the bias and root
mean square error decrease toward zero with an increase in
sample size. However, the actual value of the parameters and
the estimated values are almost equal at different sample sizes
and iterative levels for the M.L.E technique. This proves the
consistency of the MLE parameter estimates. For the M.P.S
technique, the actual value of the parameters and the
estimated values are almost not equal at different sample sizes
and iterative levels. This proves the least consistency of the
M.P.S parameter estimates. The result also means that the
M.L.E technique is the best technique for estimating the
parameter of New Generalized Odd Frechet-Odd
Exponential-Weibull distribution than the M.PS technique.

M.L.E and M.P.S Techniques for the NGOF-OE-Rayleigh
Distribution

To evaluate the consistency of the new family’s parameters,
“the simulation study was piloted using the Monte Carlo
Simulation technique by computing the bias, variance and
mean square error of the estimated parameters from the
maximum likelihood estimates and the maximum product
spacing estimate”. The Simulated data is generated using the
quantile function in equation (26) and the likelihood function
in equation (19) for different sample sizes n = 50, 100, 250,
500 and 1000 with replicate 200 times each. For the NOGF-
OE-Rayleigh  distribution ~ parameter  values  are
(a,B,7,6,¢) = (1.0, 1.0, 2.5,1.0,2.0).

Table 2: Results of the simulated data from the NGOF-OE- Rayleigh Distribution.

Sample Parameters M.L.E. Techniques M.P.S. Techniques

Sizes (Actual
Values) Estimates Bias RMSE Estimates Bias RMSE
a (1.0) 0.9792 -0.0208 0.0308 0.9998 -0.0002 0.0232
B (1.0) 1.0424 0.0424 0.1448 0.9769 -0.0231 0.1189

50 y (2.5) 2.5605 0.0605 0.1390 2.5468 0.0468 0.1383
6 (1.0) 1.0051 0.0051 0.0531 1.0264 0.0264 0.0863
¢ (2.0) 1.9927 -0.0073 0.0658 1.9984 -0.0016 0.0869
a (1.0) 0.9906 -0.0094 0.0144 1.0004 0.0004 0.0113
B (1.0) 1.0169 0.0169 0.0747 0.9839 -0.0161 0.0689

100 y (2.5) 2.5527 0.0527 0.1120 2.5475 0.0475 0.1128
6 (1.0) 1.0039 0.0039 0.0296 1.0130 0.0130 0.0409
¢ (2.0) 1.9987 -0.0013 0.0420 2.0068 0.0068 0.0452
Q
a (1.0) 0.9964 -0.0036 0.0054 1.0000 0.0000 0.0040
B (1.0) 1.0027 0.0027 0.0396 0.9854 -0.0146 0.0416

250 y (2.5) 2.5412 0.0412 0.0860 2.5414 0.0414 0.0815
6 (1.0) 1.0041 0.0041 0.0171 1.0069 0.0069 0.0193
¢ (2.0) 2.0008 0.0008 0.0236 2.0076 0.0076 0.0253
a (1.0) 0.9984 -0.0016 0.0027 1.0001 0.0001 0.0021
B (1.0) 1.0004 0.0004 0.0229 0.9897 -0.0103 0.0294

500 y (2.5) 2.5283 0.0283 0.0640 2.5293 0.0293 0.0586
6 (1.0) 1.0039 0.0039 0.0128 1.0049 0.0049 0.0118
¢ (2.0) 2.0009 0.0009 0.0175 2.0050 0.0050 0.0165
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A
a (1.0) 0.9994 -0.0006 0.0012 1.0001 0.0001 0.0010
B (1.0) 0.9983 -0.0017 0.0158 0.9924 -0.0076 0.0191
1000 y (2.5) 2.5247 0.0247 0.0523 2.5221 0.0221 0.0480
6 (1.0) 1.0035 0.0035 0.0104 1.0037 0.0037 0.0084
¢ (2.0) 2.0019 0.0019 0.0131 2.0042 0.0042 0.0116
Table 2 presents the results obtained from the Monte Carlo  Applications

Simulation study. The results indicated that the bias and root
mean square error decrease toward zero with an increase in
sample size. However, the actual value of the parameters and
the estimated values are almost equal at different sample sizes
and iterative levels for the M.L.E technique. This proves the
consistency of the MLE parameter estimates. For the M.PS
technique, the actual value of the parameters and the
estimated values are almost not equal at different sample sizes
and iterative levels. This proves the least consistency of the
M.P.S parameter estimates. The result also means that the
M.L.E technique is the best technique for estimating the
parameter of New Generalized 0Odd Frechet-Odd-
Exponential-Rayleigh distribution than the M.PS technique.

Here we used some existing real-life data sets to assess the
flexibility of our developed family using Weibull distribution
as a baseline.

Dataset 1

The data set was originally reported by Sadiq et al. (2023)
which represents “the Maximum Annual Flood Discharges of
North Saskatchewan in units of 1000 cubic feet per second, of
the North Saskatchewan River at Edmonton, for 47 years”.
The data are:“19.885, 20.940, 21.820, 23.700, 24.888, 25.460,
25.760, 26.720, 27.500, 28.100, 28.600, 30.200, 30.380,
31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100,
39.020, 39.200, 40.000, 40.400, 40.400, 42.250, 44.020,
44,730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700,
58.800, 61.200, 61.740, 65.440, 65.597, 66.000, 74.100,
75.800, 84.100, 106.600, 109.700, 121.970, 121.970,
185.560.

Table 3: Parameters Estimates and Goodness of Fit Measures for Dataset 1

Model Parameter Estimates and Goodness of Fit

@ B 4 5 @ 2 LL AIC
NGOFOEW 10.980 0.1577 0.4999 0.0244 1.5605 0.2944 215.175 442.129
GOFW 1.3e15 1.4e-01 - - 5.3e-02 1.3e-01 414.8936 835.78
OFW 2.6391 - - - 0.06794 0.64733 285.7757 583.551
WD - - - - 0.00074 1.7724 225.7065 459.413

Table 3 provides the parameter estimates and goodness of fit
measures for the New Generalized Odd Frechet-Weibull
distribution with other competing models using the maximum
annual flood discharges dataset. Akaike's Information
Criterion (AIC), Bayesian Information Criterion (BIC) and
Hannan-Quinn Information Criterion (HQIC) are the

performance metrics. A distribution with the lowest
information or performance metrics is regarded as the best in
terms of goodness of fit. The new generalized odd Frechet-
Odd Exponential Weibull distribution is the best model that
outperforms other competitors based on the data set.

OFW
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Figure 5: Histogram Plots of the Distribution of Maximum Annual Flood Discharges Data
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Dataset 2

We used the data set that was analyzed by Fulment et al.
(2023) which represents “the survival times (in years) of a
group of patients given chemotherapy treatment”. The data
are: “0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260,

Sadig et al.,

FJS

0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529,
0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219,
1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343,
2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003,
4.033”

Table 4: Parameters Estimates and Goodness of Fit Measures for the Dataset 2

Model Parameter Estimates and Goodness of Fit

@ B 7 F ¢ AIC Rank
NGOFOER 0.9583 0.8819 0.1619 0.0971 0.3415 123.252 1
GOFR - 8.3235 0.0287 - 0.0033 28149.8 4
OFR - 1.345 - - 0.5213 197.412 3
RD - - - - 0.6025 163.83 2

Table 4 provides the parameter estimates and goodness of fit
measures for the New Generalized Odd Frechet-Odd
Exponential-Rayleigh distribution with other competing
models using the survival times (in years) of a group of
patients given a chemotherapy treatment dataset. Akaike's
Information Criterion (AIC), Bayesian Information Criterion

—

el e——

Density
04
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(BIC) and Hannan-Quinn Information Criterion (HQIC) are
the performance metrics. A distribution with the lowest
information or performance metrics is regarded as the best in
terms of goodness of fit. The New Generalized Odd Frechet-
Odd Exponentiatial-Rayleigh distribution is the best model
that outperforms other competitors based on the data set.
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OFR

RD

0.0
i

Data

Figure 6: Histogram Plots of the Distribution of the survival time data of patients who

received chemotherapy treatment

CONCLUSION

In this research paper, we introduce the NGOF-OE-G family
of distributions and explore its statistical properties, including
the survival function, hazard function, cumulative hazard
function, moments, moment-generating function, entropies,
order statistics, and MLE. We also plot the pdf and the hazard
rate function to observe the shapes and behaviour of the
models at different parameter values. To test the consistency
of the MLE and MPS of the parameters, we conduct
simulation studies. We then apply the NGOF-OE-W
distribution to the survival time data of patients who received

chemotherapy treatment and the NGOF-OE-R distribution to
the data representing Maximum Annual Flood Discharges
employing Rayleigh and Weibull as the baseline distribution,
respectively. Our analysis shows that the NGOF-OE-W is the
"best fit" model for the group of patients given chemotherapy
treatment and the NGOF-OE-R is the "best fit" model for the
maximum annual flood discharge data.
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