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ABSTRACT 

Forecasting monthly rainfall is very important in Kogi state for better approach to flood management and also 

plays a pivotal role in agriculture which remains a significant factor in Nigeria’s economy.  Advanced time 

series univariate models such as Seasonal Autoregressive Integrated Moving Average (SARIMA) models are 

usually employed in modelling and forecasting rainfall in Nigeria due to their non-linear pattern and 

spatiotemporal variation. Few studies have attempted to investigate the influence of other climatic factors in 

modelling and prediction of rainfall pattern. This study examines the performance of a univariate seasonal 

ARIMA and seasonal ARIMA which uses monthly temperature and relative humidity as exogenous factors 

otherwise known as SARIMAX model in forecasting monthly average rainfall in Lokoja, the capital of Kogi 

state. The study uses monthly data on rainfall, temperature and relative humidity spanning from 2010 to 2022 

obtained from Nigeria Meteorological Agency NiMet, Lokoja station. The series were appropriately 

differenced to attain stationarity. The plots of autocorrelation function (ACF) and partial autocorrelation 

function (PACF) were used to select some tentative models whose parameters would be estimated. The most 

suitable SARIMA model  [SARIMA (1,0,0)  × (0,1,1)12] was chosen based on maximum Coefficient of 

Determination  R2 , and the minimum Akaike information criterion (AIC). However, SARIMAX model 

outperformed SARIMA model based on the criteria earlier highlighted. SARIMAX model was therefore 

recommended for modelling and forecasting monthly average rainfall in Kogi state.  
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INTRODUCTION 

Weather refers to the atmospheric conditions of a particular 

place at a specific time, which can vary on a daily, weekly, 

monthly, or yearly basis. Changes in key climate factors such 

as rainfall, temperature, and humidity can have serious 

impacts on human lives and crop yields. Excessive or 

insufficient amounts of these factors can lead to decreased 

crop yields. Most of the changes in climate pose serious 

challenges to the planet which usually result in flooding, 

drought, poor agricultural productivity, variation of ground 

and surface water (Oruonye, 2014). Climate change is a 

pressing global issue that has caused severe flooding and 

drought, resulting in loss of life and property. Researchers 

around the world are working to understand and mitigate the 

impacts of climate change, but more work is needed to 

address this urgent problem. Kogi state which is situated in 

North central Nigeria is regarded as a confluence state as it is 

sitting in the confluence of rivers. The state is among the 

states worst hit by the recent flooding disaster in the country.  

Several lives were lost in the state to the flood and hundreds 

of riverine communities including the state capital Lokoja 

were hugely affected by the flood water. Also, commuters 

who ply lokoja high way have been seriously affected by the 

flood. It is therefore highly imperative to critically examine 

rainfall situation in kogi state by developing an appropriate 

robust model capable of predicting the future pattern of 

rainfall in the state. This will enable policy makers to take 

proactive measures to curtail the devastating effects of excel 

rainfall. Weather forecasting is the application of scientific 

knowledge to predict future atmospheric conditions in a given 

area. Weather forecasters collect and analyze historical 

weather data to identify patterns and predict how these 

patterns will evolve in the future. They use mathematical 

models to make these predictions. The field of weather 

forecasting has evolved over time, incorporating a range of 

methods to predict future conditions, from simple ensemble 

probabilistic models to more complex approaches like the 

Autoregressive Integrated Moving Average (ARIMA) model. 

ARIMA models are widely used univariate time series models 

that decompose data into different components, such as 

seasonal variations, long-term trends, and residual errors. This 

allows forecasters to analyze the relationships between 

various variables and make more accurate predictions. 

Seasonal autoregressive integrated moving average model 

shortened as SARIMA models are usually employed when 

there is obvious seasonal component in the time series data.  

SARIMAX model is an extension of SARIMA model with 

exogenous variables when it is imperative to account for the 

influence of certain external variables.  

Previous researches have used univariate time series models 

to forecast weather patterns, including rainfall and 

temperature, by only considering past values of the variables 

being studied. These models were used by researchers such as 

Samuel and Adam (2020), Okorie et al. (2015), Mahsin et al. 

(2012), Seyid et al. (2011), Jibril et al. (2019), Emmanuel and 

Bakari (2015), Peng et al. (2018), and Wiredu et al. 

(2013).This study attempts to investigate the forecast 

performance of SARIMA model and SARIMAX model with 

temperature and humidity as exogenous variables which by 

intuition have influence on the response variable (rainfall). 

The performance of the models will be ascertained using 

different statistical measures such as AIC, BIC, R2 and so on. 

 

Data Description 

This study made use of secondary data on monthly average 

rainfall, temperature and relative humidity spanning from 

2010 to 2022 obtained from Nigeria Meteorological Agency 

NiMet, Lokoja station. The data were analyzed using Stata 

and E-views software. 

 

MATERIALS AND METHODS 

Autoregressive Integrated Moving Average (ARIMA) Model 
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A stochastic process 𝑋𝑡 is regarded as an ARIMA (p,d,q) if 

∆𝑑𝑋𝑡 = (1 − 𝐵)𝑑𝑋𝑡 is ARMA (p, q). The model is expressed 

in compact form as  

𝜃(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜗(𝐵)𝜀𝑡      (1) 

𝜀𝑡 is said to follow a white noise process. The lag operator is 

as defined below 

𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘              (2) 

We define the autoregressive (AR) and moving average (MA) 

as 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − .   .   .  𝜃𝑃𝐵𝑃     (3) 

𝜗(𝐵) = 1 − 𝜗1𝐵 − 𝜗2𝐵2 − .   .   .  𝜗𝑞𝐵𝑞    (4) 

𝜃(𝐵) ≠ 0 for |𝜃| < 1, the process  𝑋𝑡  attains stationarity if 

𝑑 = 0, hence the process reduces to ARMA (p,q) process. 

 

Seasonal Autoregressive Integrated Moving Average 

(SARIMA) Model 

SARIMA model is used when a time series exhibits a seasonal 

pattern. In this type of model, the periodic component of the 

series repeats itself at regular and constant interval. It is 

therefore an extension of ARIMA model. This model is often 

denoted as ARIMA (p,d,q)(P,D,Q)S which is expressed in lag 

form as given below 

𝜃(𝐵)𝜔(𝐵)𝑆(1 − 𝐵)𝑑(1 − 𝐵)𝐷𝑋𝑡 =  𝜗(𝐵)𝜓(𝐵)𝑆    (5) 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − .   .   .  𝜃𝑃𝐵𝑃    (6) 

𝜔(𝐵)𝑆 = 1 − 𝜔1𝐵𝑆 − 𝜔2𝐵2𝑆− .  .  . 𝜔𝑃𝐵𝑃𝑆    (7) 

𝜗(𝐵) = 1 − 𝜗1𝐵 − 𝜗2𝐵2 − .   .   .  𝜗𝑞𝐵𝑞    (8) 

𝜓(𝐵)𝑆 = 1 − 𝜓1𝐵𝑆 − 𝜓2𝐵2𝑆− .  .  . 𝜓𝑄𝐵𝑄𝑆    (9) 

𝑝, 𝑑  and 𝑞  denote the AR non-seasonal order, differencing 

and 𝑀𝐴  order respectively. 𝑃, 𝐷  and 𝑄  are 𝐴𝑅  seasonal 

order, differencing and 𝑀𝐴  seasonal order respectively. 

denotes time series data at period t (kogi state monthly 

average rainfall in mm) 

𝜀𝑡 denotes white noise error  at period t.  

𝐵 denotes backward shift operator 𝐵𝑘  𝑋𝑡 =  𝑋𝑡−𝑘 

𝑆 denotes the order of  seasonal ( 𝑠 = 12 monthly data) 

 

Sarimax Models 

The Seasonal Autoregressive Integrated Moving Average 

with exogenous factors (SARIMAX) Model. 

𝜃(𝐵)𝜔(𝐵)𝑆(1 − 𝐵)𝑑(1 − 𝐵)𝐷𝑋𝑡 =  𝜗(𝐵)𝜓(𝐵)𝑆𝜀𝑡 +
 ∑ 𝛽𝑖

𝑛
𝑖=1 𝑦𝑖𝑡             (    10) 

𝛽𝑖  is the coefficient of the exogenous variables 𝑦𝑖 . Other 

parameters are as previously defined. 

 

Model estimation 

Conditional least squares will be used to estimate the 

parameters of the model. The following information criterion 

with their respective statistics will be employed to select the 

parsimonious models. 

Akaike Information Criterion (AIC) = 𝑛𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
) + 2𝑘  (11) 

Corrected Akaike Information Criterion (AICc) = 𝐴𝐼𝐶 +
2(𝐾+1)(𝐾+2)

𝑛−𝑘−2
                   (12) 

Bayessian Information Criterion  

(BIC)= {(�̂�𝑒
2)} + 𝑘{ln (𝑛)}           (13) 

 RSS is the fitted model estimated residual, 𝑛 is the sample 

size of sample residual and 𝑘 is the total number of estimated 

parameters in the fitted model while �̂�𝑒
2  represents the error 

variance. 

 

Unit Root Test 

The test of unit root is done to know whether the original 

series is stationary or not augmented Dickey Fuller (ADP) and 

the Phillip Perron test of unit root with their respective  

statistics are as given 

𝑋𝑡 = 𝛼0 + 𝜌1𝑋𝑡 − 1 + ∑ 𝛽𝑗∇𝑋𝑡 − 1 + 𝜀𝑡
𝜌−1
𝑗=2     (14) 

  𝑍𝑝 = 𝑛(�̂�𝑛 − 1) −
1

2

𝑛2�̂�2

𝑠𝑛
2 (�̂�𝑛

2 − 𝛾0,𝑛)   (15) 

 

Identification of the model 

The sample plot of ACF and PACF will be used to determine 

the order of the model at both seasonal and non seasonal part. 

That is (p,d,q) and (P, D,Q) 

 

RESULTS AND DISCUSSION 

In this study, the approach and technique of Box Jenkins 

(1976) was used to compare the performance of SARIMA and 

SARIMAX model in analyzing and forecasting monthly 

average volume of rainfall in Lokoja, the kogi state capital 

using monthly data on Rainfall, Temperature and relative 

humidity spanning from January 2010 to December, 2022.

 

 
Figure 1: Time Series Plot of Monthly Average Rainfall in Lokoja. 
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Figure 2: Time series plot of monthly average temperature in Lokoja 

 

 
Figure 3: Time series plot of monthly average Relative Humidity in Lokoja 

 

It can be seen in figures 1, the average monthly rainfall does not exhibit trend pattern, but there was evidence of periodic rise 

and fall. Also figure 2 and 3 display the time plot of original monthly temperature and relative humidity respectively. 

 

Table 1: Dickey Fuller test for unit root of Rainfall  series 

Test satistic 𝟏% critical value 𝟏% critical value 𝟓  critical value 𝟏𝟎% critical value 

𝒁(𝒕) -7.501 -3.492 -2.886 -2.576 

Approximate  p-value for Z(t) = 0.0000 

 

Table 2: Phillip Perron test for unit root of Rainfall  series 

Test satistic 𝟏% critical value 𝟏% critical value 𝟓  critical value 𝟏𝟎% critical value 

𝒁(𝒓𝒉𝒐) -85.812 -19.983 -13.810 -11.073 

𝒁(𝒕) -7.572 -3.492 -2.886 -2.576 

Approximate  p-value for Z(t) = 0.0000 

 

As revealed by Dickey Fuller unit root test and Phillip Perron test in Table 1 and Table 2 above, the original rainfall series is 

stationary as the null hypothesis that the series has a unit root is rejected. 
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Figure 4: ACF of original rainfall data 

 

 
Figure 5: PACF of original rainfall data. 

 

The plot of ACF and PACF of figure 4 and 5 above show a sinusoidal wave pattern which indicates a seasonal pattern. The 

series was however seasonally differenced and the plot of the differenced series confirms stationarity of the differenced series. 

 
Figure 6: Time plot of the seasonally differenced Rainfall series 
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Figure 7: ACF of seasonally differenced rainfall series 

 

 
Figure 8: PACF of the differenced rainfall series 

 

Having ascertained that the rainfall series is stationary after 

taking the first seasonal difference, the ACF of the differenced 

series can be used to determine the tentative order of non-

seasonal and seasonal order of moving average process 

MA(q) and SMA(Q). PACF is used to determine the non-

seasonal and seasonal order of autoregressive process AR(p) 

and SAR (P). A close inspection of Figure 7 shows a 

significant spike at lag 1 and lag 3 implying that the order of 

non seasonal MA components could be up to 3. Also, a 

significant spike at lag 12 implies SMA(1)  is suspected. In 

Figure 8, a significant spike at lag  1 and significant spikes at 

lag 12, lag 24, and lag 36 means that AR(1) while seasonal 

AR process could be up to 3 implying SAR(3) could be 

enough to appropriately describe the process. Based on the 

above suspected order of both seasonal and non-seasonal AR 

and MA, the following combination of autoregressive and 

moving average process were examined for parameter 

estimation. SARIMA (1,0,0)(0,1,1), SARIMA (0,0,1)(1,1,1), 

SARIMA (1,0,0)(1,1,1), SARIMA (1,0,0)(2,1,1), 

SARIMA(1,0,2)(0,1,1), SARIMA (1,0,2)(3,1,1), SARIMA 

(1,0,3)(3,1,1). Among the models examined, the models 

whose parameters are all significant are represented in the 

table below 

 

Table 3: Model estimation results  

Models AIC  R2 

SARIMA(1,0,0)(0,1,1)12 24.229 81.86  

SARIMA(1,0,0)(1,1,1)12 24.236 81.77   

SARIMA(1,0,0)(2,1,1)12 24.256 81.72 

 

The best fitted model based on the models with the highest R2  

and the one with the  least of AIC is SARIMA(1,0,0)(0,1,1)12 

Having selected the best fitted SARIMA model, we 

incorporate the exogenous variables of Temperature and 

Relative humidity to form SARIMAX model and estimate its 

parameters. The performance of the SARIMAX model in 

terms of the criteria used earlier.
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Table 4: Estimation of SARIMAX model 

Models AIC  R2 

SARIMA(1,0,0)(0,1,1)12 24.229 81.86  

SARIMAX(1,0,0)(0,1,1)12 24.216                    81.92 

 

Table 5: Estimation of parameters of SARIMA(1,0,0)(0,1,1)12 

Dependent Variable: D(MEANRAINFALL,12)  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 06/11/23   Time: 09:43   

Sample: 2011M01 2022M12   

Included observations: 144   

Convergence achieved after 19 iterations  

Coefficient covariance computed using outer product of gradients 

Variable Coefficient Std. Error t-Statistic Prob.   

     

AR(1) -0.901914 0.035968 -25.07532 0.0000 

MA(12) -0.093492 0.089047 -5.039918 0.0395 

SIGMASQ 1.85E+09 2.55E+08 7.234548 0.0000 

R-squared 0.818601     Mean dependent var 453.1653 

Adjusted R-squared 0.816028     S.D. dependent var 101276.8 

S.E. of regression 43439.60     Akaike info criterion 24.22875 

Sum squared resid 2.66E+11     Schwarz criterion 24.29063 

Log likelihood -1741.470     Hannan-Quinn criter. 24.25390 

Durbin-Watson stat 3.497855    

     

 

Table 6: Estimation of parameters of SARIMAX(1,0,0)(0,1,1)12 

Dependent Variable: D(MEANRAINFALL,12)  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 06/11/23   Time: 10:01   

Sample: 2011M01 2022M12   

Included observations: 144   

Convergence achieved after 10 iterations  

Coefficient covariance computed using outer product of gradients 

Variable Coefficient Std. Error t-Statistic Prob.   

     

TEMPERATURE -3.799859 248.3049 -0.015303 0.0478 

RELATIVE_HUMIDITY 2.143548 118.1027 0.018150 0.0355 

AR(1) -0.901913 0.035992 -25.05888 0.0000 

MA(12) -0.093514 0.089177 -1.048630 0.0296 

SIGMASQ 1.85E+09 2.58E+08 7.158702 0.0000 

R-squared 0.819202     Mean dependent var 453.1653 

Adjusted R-squared 0.813382     S.D. dependent var 101276.8 

S.E. of regression 43750.90     Akaike info criterion 24.21642 

Sum squared resid 2.66E+11     Schwarz criterion 24.35965 

Log likelihood -1741.470     Hannan-Quinn criter. 24.29843 

Durbin-Watson stat 3.497834    
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Figure 9: Graph of residual, actual and fitted model  
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Figure 10: graph of the standardized residuals of the fitted SARIMAX model 

 

SARIMAX model equation for forecasting monthly mean average rainfall 

The selected model: SARIMAX(1,0,0)(0,1,1)12  is expressed as follows: 

𝜃(𝐵)(1 − 𝐵)𝐷𝑋𝑡 =  𝜗(𝐵)𝜓(𝐵)𝑆𝜀𝑡 + ∑ 𝛽𝑖
2
𝑖=1 𝑦𝑖𝑡         (16) 

𝑋𝑡 = 𝜃𝑋𝑡−1 + 𝑋𝑡−1 + 𝜃𝑋𝑡−12 + 𝜀𝑡−1 − 𝜓𝜀𝑡−12 + 𝛽1𝑦1𝑡 + 𝛽2𝑦2𝑡         (17) 

�̂�𝑡 = −0.90193𝑋𝑡−1 + 𝑋𝑡−1 − 0.90193𝑋𝑡−12 + 𝜀𝑡−1 + 0.0093514𝜓𝜀𝑡−12 − 3.799859𝑦1𝑡 + 2.143548 𝑦2𝑡      (18) 

 

CONCLUSION 

The original monthly data on rainfall were confirmed to be 

stationary by Dickey Fuller unit root test and Phillip Perron 

unit root test. The plot of ACF and PACF reveal a seasonal 

pattern in the series which was eliminated by conducting one 

seasonal differencing. The plot of ACF and PACF were used 

to select the order of the suspected tentative models. Using the 

Box and Jenkin methodology, the R2 and AIC of models with 

significant parameters were estimated. The model with the 

least of AIC and highest of R2  ( SARIMA(1,0,0)(0,1,1)12 )was 

selected as the best fitted SARIMA model. The Exogenous 

factors (average monthly temperature and relative humidity) 

were included and the resulting SARIMAX model was 

estimated. The AIC of the estimated SARIMAX model was 

smaller and hence adjudged to have performed better than 

SARIMA model. The goodness of fit of the selected model 

was confirmed by the standardized residual plot which shows 

that the residuals are white noise meaning there were 
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uncorrelated. Hence, SARIMAX model with the model 

equation given in (18) can be used for forecasting monthly 

average rainfall in Lokoja. 
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