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ABSTRACT 

In this study, we investigate the laminar boundary layer flow in two dimensions, steadiness, and 

incompressibility around a moving vertical flat plate in a uniform free stream of fluid with a convective surface 

boundary condition. The similarity transformation technique has been applied to convert the governing 

nonlinear partial differential equation into two nonlinear ordinary differential equations. By combining the 

finite difference method with the shooting technique, the problem is solved numerically. We present a tabular 

and graphical representation of the variation in dimensionless temperature and fluid-solid interface 

characteristics for various values of the Prandtl number. As a special case of the problem, a comparison 

between the current result and the previously published result demonstrates a good agreement.  
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INTRODUCTION 

Following the investigation of the laminar flow through a flat 

plate with the effect of viscosity by German scientist Prandtl 

(1904), boundary layer flow attracted attention. Because of the 

effects of kinetic energy and the disregard for viscous energy 

dissipation, when considering boundary layer flow in the 

presence of heat transfer, most velocity and velocities gradients 

are assumed to be appropriately small (Desale and Pradhan, 

2015). Prandtl, (1904) claimed that the frictional effects, known 

as boundary layers, are what caused the fluid to stick in a no-slip 

condition next to the surface of the solid body. The boundary 

layer solution is the outcome of research that was first conducted 

by Prandtl (1904) and Blasius's study from 1908, much as the 

boundary layer equation and boundary layer theory are related.  

In the year (2023), Omokhuale and Dange conducted research on 

the impact of heat absorption on the magnetohydrodynamic flow 

of jeffery fluid within an infinite vertical plate. Higher heat 

absorption and Jeffery parameter values were found to cause the 

momentum boundary layer to expand, whereas higher suction and 

chemical reaction parameter values caused the fluid's velocity to 

decrease. In a channel filled with porous medium, Makinde et al., 

(2005) described how heat transfer affects MHD oscillatory flow. 

In the explanation of Makinde et al., (2011) the authors discussed 

the effects of mass and heat transfer on a moving, isothermal 

vertical plate during chemical reactions. They assumed boundary 

layer flow with convection of heat transfer over a flat plate and 

the viscous dissipation effect. It is also important to consider that 

the velocity is extremely high. Viscosity dissipation fluid's mixed 

convection around a vertical plate was investigated by Makinde 

(2008). Taking into account the wall's thermal boundary 

condition and the direction of free stream flow, the author 

examined four distinct flow scenarios. 

The classical problem of hydrodynamic and thermal boundary 

layers over a flat plate in a uniform stream of fluid with a viscous 

dissipation effect and a variable plate temperature was covered 

by Desale and Pradhan (2015). According to the authors, for an 

inconstant temperature, the temperature distribution grows and 

decreases as the Eckert number (Ec) and Prandtl number (Pr) 

increase, respectively.  By taking the fluid's viscous dissipation 

into account, Pantokratos (2005) investigated the steady laminar 

boundary flow along a vertical, motionless heated plate. 

Nonetheless, Aziz (2009) proposed a similarity solution through 

a convective surface of a boundary condition for a laminar 

thermal boundary layer along a flat plate. As a result, a similarity 

variable (𝜂) can be used to convert the boundary equation to an 

ordinary differential equation. The authors assume that as the 

Prandtl number increases, the thermal boundary layer thickness 

decreases, leaving less energy for the back heat. They computed 

it numerically and arrived at their proposed result. The authors 

study the internal heat generation effect on thermal boundary 

layer with convective surface boundary condition using 4th order 

Runge-kutta method. Hussein and Hani (2018) established a new 

method for numerical solution for boundary layer theory of fluid 

flow past a flat plate using MATLAB. Basant et al., (2016) used 

Laplace transformation method to investigate the combine effect 

suction/injection on MHD free convection flow in vertical 

channel through thermal radiation. The effects of internal heat 

generation/absorption and viscous dissipation on combined heat 

and mass transfer MHD viscous fluid flow over a moving wedge 

in the presence of mass suction/injection with the convective 

boundary condition were investigated by Ahmad and Ahmed 

(2014). According to the authors, the results indicate that the 

parameters related to mass suction/injection, heat 

generation/dissipation, pressure, stretching/shrinking, magnetic, 

and Prandtl number have a significant impact on the flow field. 

Olanrewaju (2012) investigates the likeness solution for natural 

convection from a moving vertical plate with internal heat 

generation and convective boundary condition. In this study, we 

examine the momentum laminar boundary layers of an 

incompressible fluid flow caused by a uniform free stream 

(Blasius flow) across a flat plate. The laminar boundary layer 

equation is a nonlinear third order ordinary deferential equation, 

so we use the Newton-Rapson method to solve it after first 

linearizing it using the Jacobian transformation. 

 

MATERIALS AND METHOD 

The Governing Equations 

We study the 2D laminar boundary layer fluid flow along a semi-

infinite (very thin) flat plate as shown in figure 1
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Figure 1:  Heat transfer via a convective boundary layer   

 

When a fluid flows over a motionless flat surface, such as the 

upper surface of the smooth flat plate as shown in figure 1 

there will be a shear stress τ0 between the surface of the plate 

and the fluid, acting to retard the fluid. At a section AB of the 

flow well upstream of the tip of the plate O, the velocity will 

be undisturbed and equal to U. The fluid in contact with the 

surface of the plate will be fixed, and at a cross-section such 

as CD, the velocity u of the adjacent fluid will increase 

gradually with the distance y away from the plate till it 

approaches the free stream velocity at the exterior of the 

boundary layer when y = δ, which is the limit of this boundary 

layer, in which the drag of the motionless boundary affects the 

velocity of the fluid. The value of δ will increase from zero at 

the leading-edge O, subsequently the drag force D applied on 

the fluid due to the shear stress τ0 will increase as x increases. 

Continuity equation focus on conservation of mass on a 

motion of fluid flow with the assumption made that flow is in 

steady condition which is not varying with the time. The 

incompressible form of continuity and momentum equations 

in the presence of viscous dissipation and heat generation or 

absorption can be written as (Ahmad and Ahmed, 2014); 

Incompressible Continuity Equation: 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0       (1) 

Momentum in x- direction: 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝑣(

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)      (2) 

Momentum in y- direction: 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝑣(

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)    (3) 

Where (x, y) are the Cartesian coordinates associated with the 

fluid velocities u, v and 𝓋 is the kinematics viscosity and 𝜌 is 

the fluid pressure. 

Under the boundary conditions 

At   𝑦 = 0        𝑢 = 0       𝑣 = 0       (4) 

At   𝑦 = ∞      𝑢 = 𝑈∞      
𝜕𝑢

𝜕𝑦
= 0      (5) 

Equation (1) with the boundary conditions of equation (4) and 

(5) are in non-linear partial differential equation for unknown 

velocity field U and V. 

Blasius reasoned that to solve them, the velocity profile 
𝑈

𝑈∞
   

should be similar for all values of x when plotted with non-

dimensional distance from the wall. The boundary layer 

thickness 𝛿. 

Thus the solution, 
𝑈

𝑈∞
= 𝑓(𝜂)        𝜂 =

𝑦

𝛿
          (6) 

Base on solution of stokes (fox et al. (2009)) Blasius reasoned 

that 

𝛿 = √
𝑉𝑥 

𝑈
    And   set   𝜂 =

𝑦

√𝑉𝑥

√𝑈

    

this implies.        𝜂 = 𝑦√
𝑈∞

𝑉𝑥
               (7) 

The stream function ψ were introduced, where 

U = 
𝜕𝜓

𝜕𝑦
                   V = −

𝜕𝜓

𝜕𝑥
          (8) 

Using continuity equation satisfies the continuity equation (1) 

now replacing for U and V into equation (2) reduce the 

equation to which ψ is the single dependent variable. The 

dimensionless stream function is defined as 𝑓(𝜂) =
𝜓

√𝑉𝑥𝑈∞
 

the dependent variable and as 𝜂 the independent variable in 

equation (8) with ψ defined by equation (7), and η defined by 

equation (7). Which can be evaluated each of the terms; 

From equation (1) 

U=
𝜕𝜓

𝜕𝑥
        V= 

𝜕𝜓

𝜕𝑦
       (9) 

Integrate both side of equation (1)   it yield, 

∫ 𝜕𝜓 = ∫ 𝑢𝜕𝑦           ∫ 𝑣𝜕𝑥 = ∫ 𝜕𝜓        (10) 

𝜓 = ∫ 𝑢𝜕𝑦                        But,   
𝑈

𝑈∞
= 𝑔(𝜂) = 𝑓𝐼  

∫ 𝑢
𝑦

0

𝑑𝑦

𝑑𝜂
 𝑑𝜂            (11) 

Where,     
𝑑𝑦

𝑑𝜂
= √

𝑉𝑥

𝑈∞
        (12) 

Substituting equation (12) in equation (11) 

𝜓 = ∫ 𝑈∞𝑓(𝜂)√
𝑉𝑥

𝑈∞
𝑑η 

𝜓 =     √𝑉𝑥∞∫ 𝑓(𝜂)𝑑𝜂           by simplified  𝑈∞ 

𝜓 =√𝑉𝑥𝑈∞ 𝑓(𝜂) + 𝐶(𝑥)      (13) 

Where     𝑓(𝜂) = ∫ 𝐹(𝜂)𝑑𝜂                              and 

𝑐(𝑥) = 0, if the stream function at the solid surface is set to be 

zero (0). 

Now from equation (8) 

U = 
𝜕𝜓

𝜕𝑥
=

𝜕𝜓

𝜕η

𝜕η

𝜕𝑥
= 𝑈∞𝑓𝐼(η) 

and  V = −
𝜕𝜓

𝜕𝑥
= −[ √𝑉𝑥𝑈∞ 

𝜕𝑓

𝜕𝑥
+  

1

2
 √

𝑉𝑈∞

𝑥
𝑓 ]    (14) 

= −[√𝑉𝑥𝑈∞(−
1

2
η 

1

𝑥
 ) +  

1

2
 √

𝑉𝑈∞

𝑥
𝑓 ]     (15) 

=  
1

2
 √

𝑉𝑈∞

𝑥
 [η𝑓𝐼(𝜂) − 𝑓(𝜂)] 

= − 
1

2
 √

𝑉𝑈∞

𝑥
 𝑓(𝜂) +

1

2

𝑈∞

𝑥
𝑦𝑓𝐼(𝜂)       (16) 

By differentiating the velocity u components with respect to 

x and y, the result can be shown as 
𝜕𝑢

𝜕𝑥
= −

𝑈∞

2𝑥
𝜂𝑓𝐼𝐼(𝜂)       (17) 
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𝜕𝑢 

𝜕𝑦
= 𝑈

∞√
𝑈∞
𝑉𝑥

𝑓𝐼𝐼(𝜂)
       (18) 

 𝜕2𝑢

𝜕𝑦2 =
𝑈∞

2

𝑣𝑥
𝑓𝐼𝐼𝐼(𝜂)        (19) 

Substituting this equation (19) in equation (2) above, this 

yield 

2𝑓𝐼𝐼𝐼(𝜂) + 𝑓(𝜂)𝑓𝐼𝐼(𝜂) = 0       (20) 

𝑓𝐼𝐼𝐼(𝜂) +
1

2
𝑓(𝜂)𝑓𝐼𝐼(𝜂) = 0       (21) 

𝑓𝐼𝐼𝐼 +
1

2
𝑓𝑓𝐼𝐼 = 0        (22) 

This equation (22) is known as Blasius Equation (or the 

laminar boundary layer equation). The Blasius is basically 

obtained from the governing equation of the fluid flow 

(Navier Stokes equation) through similarity transformation to 

third order nonlinear ordinary differential equation (ODE) as 

shown above. 

And the boundary condition 

At 𝑦 = 0       𝑢 = 𝑣 = 0 

At 𝜂 = 0              𝑓𝐼(𝜂) = 0                 𝑓(𝜂) = 0 . 

Similarly at 𝑦 → ∞       𝜂 = ∞           𝑓𝐼(𝜂) = 1    (23) 

The primes refer differentiation with to respect  𝜂. 

For the temperature equation of the plate 

The boundary equation for temperature 

𝑈
𝜕𝑇

𝜕𝑥
+ 𝑉

𝜕𝑇

𝜕𝑦
=∝

𝜕2𝑇

𝜕𝑦2 + 𝑄𝜃       (24) 

The boundary conditions  

At         𝑦 = 0            𝑇 = 𝑇𝑤 

 𝑦 → 0           𝑇 = 𝑇∞ 

 𝑥 → 0           𝑇 = 𝑇∞ 

To defined the temperature 𝜃 

i.e    if         𝜃 =
𝑇−𝑇𝑤

𝑇∞−𝑇𝑤
   ,          at      𝑦 = 0 ,      𝜃  = 0 ,     and     

𝑦 →  ∞          𝜃 = 1 

Writing equation (24) in terms of 𝜃 

We have,     𝑈
𝜕𝜃

𝜕𝑥
+ 𝑉

𝜕𝜃

𝜕𝑦
=∝

𝜕2𝜃

𝜕𝑦2 + 𝑄𝜃.  

if   𝑃𝑟 = 1    𝑎𝑛𝑑   ∝= 𝜗  

     𝜃 =
𝑢

𝑈∞ 
(𝑥, 𝑦),    which is exactly identical to momentum 

equation. 

So the solution for 𝜃(𝑥, 𝑦) =
𝑢

𝑈∞ 
(𝑥, 𝑦) for a flat plate  

if  𝜃 =  𝜃(𝜂) which is similarity variable  
𝑢

𝑈∞ 
= 𝑔(𝜂),    i.e      

𝜂 =
𝑦

𝛿
= 𝑦√

𝑈∞

𝜗𝑥
                     (25)  

We know U and V already. 

To find  
𝜕𝜃

𝜕𝑥
    using similarity transformation techniques 

 
𝜕𝜃

𝜕𝑥
=  

𝑑𝜃

𝑑 𝜂
 
𝑑 𝜂

𝑑 𝑥
=  𝑦√

𝑈∞

𝜗𝑥
 
−1

2𝑥
 

𝑑𝜃

𝑑 𝜂
       (26) 

But    𝑦√
𝑈∞

𝜗𝑥
=  𝜂 ,  so we get   

𝑑𝜃

𝑑 𝜂
 
𝑑 𝜂

𝑑 𝑥
=

−𝜂

2𝑥
 

𝑑𝜃

𝑑 𝜂
 

𝜕𝜃

𝜕𝑦
= 

𝑑𝜃

𝑑 𝜂
 
𝑑 𝜂

𝑑 𝑦
= √

𝑈∞

𝜗𝑥
 

𝑑𝜃

𝑑 𝜂
       (27) 

If we square equation (27) above, we get  

 
𝜕2 𝜃

𝜕𝑦2 =
𝑈∞

𝜗𝑥

𝑑2 𝜃

𝑑𝜂2          (28 

 But U and V are similarity expression, substituting equation 

(26), (27) and (28) in equation (24).    

We obtained the heat equation  

  
𝜕2 𝜃

𝜕 𝜂2
+

1

2
𝑃𝑟 

𝑑𝜃

𝑑 𝜂
 + 𝑄𝜃        (29) 

With the boundary condition  

  𝜂 = 0          𝜃  = 0,     𝜂 →  ∞          𝜃 = 1  

𝜂 →  ∞   Means two things either 𝑦 →  ∞    𝑜𝑟  𝑥 = 0   from 

equation (20) above, in both cases 𝜂 must be 1. 

 

Numerical Solution 

Equation (22) with the boundary condition 𝑓(0) = 𝑓𝐼(0) =
0  , 𝑓𝐼(∞) = 1  are solved numerically by finite difference 

method. Since the boundary condition are at infinity and we 

are considering a thin boundary layer being induced over 

finite flat plate, we therefore let our infinity, ∞ = 3. using 

step size ℎ = 1.0, we divide the interval into equally four 

spaced mesh points. to determine the value of the function f’s 

for the internal mesh point only, we therefore use the 

shooting-technique 

 

RESULTS AND DISCUSSION 

The proposed problem was solved by using finite difference 

method and the results obtained were computed numerical.  

These results are shown in table 1 and  2 which are also 

represented in figure 1, 2, 3 and discuss accordingly.

 

Table 1: Summary of the result obtained from finite difference method. 

𝜼 𝑭𝟏 𝑭𝟐 

0 0.5 1.0 

1 0.4388762882 1.75894663 

2 2.07555438 2.821153758 

3 0.544036709 3.326031669 

4 0.534112418 0.371468641 

5 0.0242025 0.501314024 

6 0.828440589 1.21332267 

7 0.702454183 0.112038316 

8 0.848466483 1.048633418 

 

Since the boundary condition of the blasius equation are at 

infinity and we are considering a thin boundary layer being 

induced over finite flat plate, we  let our infinity, ∞ = 3. 
using step size ℎ = 1.0, we divide the interval into equally 

four spaced mesh points. Consequently, we proceed by 

replacing their derivative by central difference then we notice 

that  𝑓−1 and  𝑓4  from the central difference are outside the 

domain. These mesh points are called the fictions node or 

ghost node, we replace the derivative for Blasius equation by 

central difference to obtained equation (30) as follows; 
𝑓𝑛+2−2𝑓𝑛+1+2𝑓𝑛−1−𝑓𝑛−2

2ℎ3    =   
−1

2
(

𝑓𝑛+1−2𝑓𝑛+𝑓𝑛−1

ℎ2 )𝑓𝑛 (30) 

Meanwhile we are supposed to determine the value of the 

function f’s for the internal mesh point only, we therefore use 

the shooting-technique using the boundary condition we 

obtained equation the following equations 

𝐹1(𝑓1𝑓2) = 𝑓1 + 2𝑓2 − 𝑓1𝑓2 + 2𝑓2
1

− 1.396842 = 0           

(31) 

𝐹2(𝑓1𝑓2) = 2𝑓1 + 2.396842𝑓2 − 2𝑓2
2

+ 𝑓1𝑓2 −

0.793684 = 0         (32) 

This system of equations (31) and (32) were solved by  

iterative method  (Newton-Rapson), the result of the iteration 

were summarize and tabulated as shown table 1
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Table 2: Comparison of the result obtained with the results reported by other authors. 

𝛈 Present method Parand etal., 

(2009) 

Rafael, (2010) Ghorbani, (2015) Sakiadis, (1961) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.84866 0.16557 0.16557 0.18498 0.78620 

2 1.04863 0.65003 0.65003 0.69365 1.21855 

3 1.39682 1.39683 1.39689 1.44689 1.43273 

 

 

Figure 2:  The effect of heat along a flat plate at 𝜂 = 1.0  𝑎𝑛𝑑 
𝑈

𝑈∞
= 0.84846 

 

Figure 3:  Effect of heat flow along a flat plate at 𝜂 = 2.0  𝑎𝑛𝑑 
𝑈

𝑈∞
= 1.0486  
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Figure 4: Effect of heat flow along a flat plate for a uniform temperature at 𝜂 = 3.0    𝑎𝑛𝑑  
𝑈

𝑈∞
= 1.39684 

 

The results shown in figure (2) show some agreements, but 

when compared, they differ somewhat for a number of 

reasons. Each measurement began with the calibration of 

velocity first. This could be the reason for a small variation in 

the measurement. The finite difference method with shooting 

techniques yields the numerical solution of the ordinary 

differential equation (22) with the boundary conditions 

𝑓(0) = 𝑓𝐼(0) = 0  , 𝑓𝐼(∞) = 1. Although it is not feasible 

to solve the boundary value problem for even very large finite 

intervals, it cannot be solved on infinite ones. 𝜂∞ = 3  is the 

finite point at which we apply the infinite boundary condition 

in this work. There is now only one nonlinear equation, which 

is the system of two nonlinear ordinary differential equations 

with boundary conditions. The velocity profile and stream 

function have been presented in order to provide a clear 

understanding of the physical problem. To make the 

embedded parameter values realistic, they were assigned a 

numerical value. Rafael, (2010) stresses the importance of the 

stream function values ((𝜂) 𝑓𝑟𝑜𝑚 1 𝑡𝑜 3), as well as the heat. 

Within Table 2, a comparison was conducted using a few 

fixed parameters, and Rafael, (2010) a unique instance of 

ours—shows perfect agreement. We continued in Figure 3, 

where we increased the parameter's value to look into the 

effect following the initial observation and then increased the 

value to look into as before. It is evident that whereas an 

increase in velocity causes the fluid flow behavior to change, 

the rate at which heat is induced into the plate causes the 

stream function at the wall plate to increase. It's interesting to 

see that the stream function at the wall plate increases as the 

velocity included in the flow model increases.  

 

CONCLUSION 

We have examined a well-known Blasius boundary layer 

equation in this work by considering the two-dimensional 

laminar viscous incompressible flow over a flat plate. The 

finite difference method was used to handle the boundary 

layer equation (Blasius) numerical solution. This equation is 

laborious because of the boundary condition that exists at 

infinity. We take into account the boundary condition at 𝜂 =
3  instead of using infinity for an easy approximation of the 

solution because we are working with a very thin boundary 

layer. Since the solution at F(1) is exact and the result was 

marginally accurate when compared to Sakiadis's (1961) 

result, we let our 𝑓(3) = 1.396842  in accordance with 

Rafael, (2010) be our boundary condition and  the nonlinear 

differential equation has been solved using the finite 

difference method. We have almost precisely obtained the 

result for 𝜂 ≤ 3  because we used a Taylor series method 

around = 0. 
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