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ABSTRACT 

The present article investigates combined effects of variable viscosity, viscous dissipation and thermal radiation 

on unsteady natural convection Couette flow through vertical porous channel. Non-linear Rosseland heat 

diffusion is deployed for the solution of the flow equations which as a consequence; together with the effects of 

variable viscosity, viscous dissipation and thermal radiation have resulted to high non-linear equations for the 

flow formation. Appropriate similarity variables are used to convert the partial differential equations associated 

with the fluid formation into dimensionless ordinary differential equations (ODEs) and the emerging ODEs are 

solved using Adomian decomposition method (ADM) and computer aided algebra package. Influences of the 

physical parameters involved in the problem are presented, discussed and conclusions are drawn. During the 

investigation; it was found that the fluid velocity and temperature were found to increase with increase in Eckert 

number, viscosity variation and thermal radiation.  

Keywords:  Natural convection; Thermal radiation; Variable viscosity; Viscous dissipation; Adomian 

decomposition method. 

INTRODUCTION 

Couette flow is a phenomenon in fluid flow which occurs due to 

the movement of bounding surface surrounding the fluid. This 

type of flow occurs in fluid machinery involving moving parts; 

especially in hydrodynamics lubrication where it has been used 

as a fundamental method for measurement of viscosity and also 

as a means of estimating drag force in many wall driven 

applications (Yasutomi (1984)). 

Natural convection flow is a phenomenon in fluid flow where 

the fluid motion is induced by density difference occurring 

between the fluid molecules. In this mechanism, the fluid 

molecules surrounding the heat source receives heat, becomes 

less dense and raised, the surrounding cooler fluid then moves 

to replace it. Natural convection flows occur in many 

technological and industrial applications such as in nuclear 

reactors, rapid cooling process, motion of fluid in computer 

equipment, radiators, storage devices, cooling of electronic 

equipments inside computers, furnaces etc.  

Study of fluid flows with variable viscosity through porous 

media has been investigated by researchers due to its numerous 

applications in sciences and engineering technology; 

particularly in the utilization of geothermal energy, high 

performance building insulation, crude oil extraction in 

petroleum industries, chemical catalytic reactor, underground 

disposal of nuclear waste materials and many others; refer to 

Ingham and Pop (1998) and Neild and Bejan (2013). The usual 

assumption of constant viscosity property of fluids evaluated at 

some reference temperature is not enough to depict a true 

situation in the flow characteristics in boundary layer flows. To 

accurately predict the flow and heat transfer rates; it is necessary 

to take into account temperature-dependent viscosity of fluid in 

boundary layer flows as increase in temperature leads to the 

increase in transport phenomena by reducing the fluid viscosity 

across the boundary layer.   In related studies; Gray et al. (1982) 

and Mehta and Sood (1992) submitted that when varying 

viscosity property of fluid is included the flow characteristics 

change substantially compared to the constant case. Other 

correlated studies can be seen in Lai and Kulacki (1990), Sahin 

(1999), Hossain et al. (2001),Salem (2007), Seddeek and 

Salama (2007) and Yusuf and Ajibade (2018b). 

 Viscous dissipation is a phenomenon where by useful energy of 

a system is converted into its internal energy and as a result this 

amounts to poor performance of the system. Several scholars 

have investigated to this effect and can be seen in Soundalgekar 

(1972), Isreal-Cookey et al. (2003), Alam et al. (2006) and 

Salem (2013); few to report among others. 

In engineering processes; when a system is at a state of work, 

some of its energy is emitted to the surrounding environment in 

the form of electromagnetic waves termed as “thermal 

radiation” and this result in poor performance of the system. For 

minimization of thermal radiation by systems, correlated studies 

were conducted to this effect and can be viewed in Ibanez et al. 

(2003), Makinde et al. (2007), Makinde (2008), Ajibade et al. 

(2011) and Makinde and Ogulu (2011) where the latter 
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researchers concluded that an increase in the positive value of 

viscosity variation parameter resulted into a decrease in the fluid 

velocity. Some researchers in the aforementioned studies 

discussed the effect of thermal radiation using linearized 

Rosseland heat diffusion and this was however criticized by 

Magyari and Pantokratoras (2011); arguing that it does not 

mirrors a correct mechanism in energy transfer in most 

boundary layer flows and they therefore suggested alternative 

approach using non-linear Rosseland heat diffusion. In 

recognition of this achievement; correlated studies can be 

viewed in Yabo et al. (2016), Jha et al. (2017), Yusuf and 

Ajibade (2018a, 2019). 

The present article extends the study of Yusuf and Ajibade 

(2018b) which neglected the effect of viscous dissipation while 

considering temperature-dependent viscosity in their flow 

formation. Here, our model incorporates the effect of viscous 

dissipation in order to capture more realistic behavior in the flow 

phenomenon. Similarly; the idea of Magyari and Pantokratoras 

(2011) for expanding radiative heat flux and that of Carey and 

Mollendorf (1978) for expressing dynamic fluid viscosity are 

assumed. 

 

MATHEMATICAL PROBLEM 

The physical problem under consideration consists of a vertical 

channel formed by two infinite parallel plates kept h distance 

apart with the channel filled with an optically thick 

incompressible viscous fluid in the presence of an incidence 

radiative heat flux of intensity rq  which is absorbed by the 

plates and transferred to the fluid as shown in figure 1 below. 

The fluid properties are all assumed to be constant except for its 

viscosity which is temperature-dependent. Since the fluid is 

optically thick, the radiative heat flux in the flow formation is 

expanded using non-linear Rosseland heat diffusion. At time 

0t , both the fluid and the plates are assumed to be at rest 

with constant temperature 0T  . At time 0t , the temperature 

of the plate kept at 0' y
 
rise to wT

 
while the other plate at  

hy '
 is fixed and maintained at temperature 0T . The stream 

wise coordinate is denoted by 𝑥 ′- axis taken along the channel 

in the vertically upward direction and that normal to it is denoted 

by 𝑦′. Fully developed flow is considered in this model meaning 

that the axial (𝑥 ′-direction) velocity depends only on the 

transverse co-ordinate 𝑦′. Furthermore; in the flow, the effect of 

viscous dissipation is taken into account while that of the 

radiative heat flux in the 𝑥 ′ direction is assumed to be negligible 

compared to that in the 𝑦′- direction. Since the plates are of 

infinite length, the velocity and temperature are functions of 𝑦′ 

and t only.

 

 

 

 

 

 

 

         Fig. 1 Schematic diagram of the problem  

 

 

 

 

 

 

 

Under these assumptions; the appropriate governing equations in dimensional form are:  
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Following Carey and Mollendorf (1978), the fluid dynamic viscosity (𝜇) is expressed in the form: 
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with the radiative heat flux  rq
 
following Sparrow and Cess (1978) as:   
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and the initial and boundary conditions for the velocity and temperature fields as:  
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METHOD OF SOLUTION: 

In order to transform the governing equations (1) and (2) together with the boundary conditions (5) and (6) into dimensionless 

form; the following similarity variables (Makinde et al. (2007)) are used: 
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Using equations (3) and (7) in equation (1), the following momentum equation is obtained: 
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Following Magyari and Pantokratoras (2011) and using equation (7); the term containing the radiative heat flux i.e. 
'y

qr




 is 

expanded as follow: 
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Substituting equation (7) and (9) into equation (2) and simplifying gives the following energy equation :  
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Using equation (7) in equation (5) and (6) is as follow: 
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Adomian decomposition solution of the problem: 

Equations (8) and (10) under the boundary conditions (11) and (12) are solved using ADM as follow: 

Denote by  

2 2
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Using equations (14); equation (9) and (10) can be written as: 
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 Operating 𝐿−1  to both sides of equation (15) and (16) we achieved: 
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But by ADM:   )0()0()()( '1 yffyfyLfL 
    (19) 

   )0()0()()( '1  yyyLL 
      (20) 

Using equations (11), (19) and (20) in equations (17) and (18) we have: 
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where BA, are to be determined based on equation (12). 

According to the standard ADM, )(yf and )(y can be expressed as: 

 0 0

( ) ( ), ( ) ( )n n

n n

f y f y y y 
 

 

          (23) 

Substituting equations (23) in equations (21) and (22), the following equations are realized: 
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Finally; the solution is given by the partial sum: 
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where S and Q
 
are truncation points for which the ADM solution converges.  

For details on ADM; refer to Adomian (1994). 

   

Convergence of the ADM solution and termination criterion of the problem: 

Convergence of Adomian decomposition solution has been assured to be rapidly in Adomian (1994) and Charrault (1990). 

Nevertheless; to verify the convergence of the ADM solution in the present problem; the method of ratio test is deployed. Using 

computer algebra package the following terms were obtained at 

71.0Pr,1.0,1.0,10,1.0,1.0,01.0,5.0  RGrcEcy     as: 

 000010.0,000596.0,0264688.0,520991.0 3210  
 

000055.0,001165.0,002539.0,030495.1 3210  ffff     (30)  

the following ratios are evaluated as: 
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Numerical values attained in equation (31) are seen to agree with the ratio test formula for convergence since    1lim
1





j

j

j f

f
,  

for 0j   (Robert [32])          (32) 

Hence the ADM solution of the present problem converges. For a meaningful solution, the series is truncated at a point such that 

the contribution of any additional term is negligible to the final solution. For this reason; a termination criterion is used such that 

the series is paused whenever ,i iu    where we have chosen 
5100.5  . Considering this assumption, the solution 

for u and   are thus truncated after the fourth terms. Due to huge size of the computed ADM solution, the final solution is not 

displayed here but is used for numerical computations for the purpose of discussing the result. 

 

 

Nusselt number and skin friction on the channel plates: 

Since the fluid viscosity considered in this extension has variable status, the skin frictions on the plates is evaluated following 

Kay (2017) using:  
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 while the Nusselt numbers are is calculated via: 
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ydy
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Nu


       and       
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       (34) 

 

RESULTS AND DISCUSSION: 

Using computer algebra software package (Mathematica) the truncated solution of equation (29) is simulated and the results are 

presented on Figures 2- 12 and Tables I - III.  For the purpose of discussion, the ambient Prandtl numbers are taken as 0.16, 0.44, 

0.71 and 4 which correspond to mixture of noble gases, electrolyte solution, air and E-12 refrigerant respectively. Similarly, other 

values of Prandtl numbers, Eckert number, temperature difference parameter, suction parameter and viscosity variation parameter 

are chosen arbitrarily from 0 to 3 while that of Grashof numbers are taken as 10, 12, 14 which correspond to the cooling of the 

plates by free convection. Furthermore; the values of thermal radiation (R) are carefully chosen in the range 5.00  R  for 

which the ADM solution of equation (29) converges.  

       
The effect of different values of Pr on the fluid velocity is depicted in Figure 2 above. This figure illustrates that the fluid velocity 

in the channel decreases with increase in Pr. This behavior is as a result of the decrease in thermal diffusion of the fluid. 
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Figure 3 reveals the effect of changing thermal radiation on the fluid velocity where it is exposed that the velocity decreases with 

increase in thermal radiation. This culture is the consequence of the decrease in thermal diffusion of the working fluid.   

     

     

  
Figure 4 demonstrates that an increase in fluid suction results to the decrease in the fluid velocity within the channel. This trend is 

due to the decrease in kinematic viscosity of the fluid.  

                                 
Fig. 5: velocity profiles for different values of Ec 

                 (Pr=0.71, R=0.1, ϕ =0.1, λ=0.1, Gr=5.0, c=0.1,…….Ec = 0.1, - - - - -Ec = 0.5, .-.-.-.-.Ec = 0.9) 

 

The effect of fluctuating Ec on the fluid velocity is pictured in figure 5. The figure shows that with increase in Ec; the velocity also 

increases with increase in Ec. This response is the consequential effect of the decrease in  0TTw  .  
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 Figure 6 depicts the response of varying fluid viscosity on the velocity and the figure shows that the fluid velocity increases with 

decrease in viscosity (increasing value of  ).  

 

 

    

   

  

The effect of rising value of Gr is naked in figure 7 where the fluid velocity is observed to increase with growing Gr. This fashion 

is as result of the increase in buoyancy force of the fluid. 
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The response of different values of R is reflected in Figure 8. From this figure it is viewed that with increase in R the fluid 

temperature also increases. This behavior is the resultant effect of the decrease in thermal diffusion of the working fluid. 

   

         

    
Figure 9 shows the effect of different Pr on the fluid temperature within the channel where the temperature is seen to decrease 

with increase in Pr. This behavior is due to the decrease in thermal diffusion of the working fluid.  
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Figure 10 illustrates the effects of fluid suction on the fluid temperature in the channel. The figure shows that fluid temperature 

decreases with increase in suction. This development is as a result of the decrease in the kinematic viscosity of the fluid. 

   
  

The effect of fluctuating temperature difference (𝜙) is displayed in figure 11 where the fluid temperature is observed to increase 

with increase in 𝜙. This culture is inclined to the increase in the ambient temperature of the fluid.    
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Effect of Ec on the fluid temperature is exposed in figure 12 where the fluid temperature is seen to increase with increase in Ec. 

This fashion is inclined to the decrease in temperature difference between the ambient and wall temperature. 
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Table I: Skin frictions on the channel plates  

 

 

 

 

 

  

 

R= 0.1,  = 0.21, Pr = 0.71,  

Gr = 10,  c = 0.001, Ec=0.001
 

                  
 

 

R= 0.2,  = 0.21, Pr = 0.71,  

Gr = 10,  c = 0.001,Ec=0.001  

                   
                        

 

 

R= 0.1,  = 0.5, Pr = 0.71,  

Gr = 10,  c = 0.001, Ec=0.001 
                  

 

        0       1     0      1       0         1  

0.1 1.76195 1.39429 2.10482 2.03810 1.84734 1.55302 

0.3 1.12987 1.75274 1.95056 3.41679 1.66813 2.95671 

0.5 0.90462 108.491 0.91455 9.25520 1.61992 13.3163 

0.7    0.59220 1021.6 0.811272 70.1430 0.808395 109.023 

 

Table I shows the effects of varying parameters on the skin friction between the working fluid and the channel plates. For some 

fixed parameters and with rising value of 𝜆;  the skin friction o the heated plate ( 0 ) is viewed to increase while it decreases on 

the cold plate ( 1 ) with decrease in the fluid viscosity. Similarly; with small increase in thermal radiation (R), 0  is observed to 

increase while 1  is viewed to decreases and later the ski friction on the cold plate increases with more increase in 𝜆. Furthermore; 

with minor increase in  , both 0  and 1  decreases and later 1  increases with further increase in 𝜆.  

 

 Table II: Nusselt number on the channel plates 

 

 

 

 

Pr 

 

R= 0.1,  = 0.21, Pr = 0.71,  

Gr = 10,  c = 0.001, Ec=0.001
 

                  
 

 

R= 0.3,  = 0.21, Pr = 0.71,  

Gr = 10,  c = 0.001,Ec=0.001  

                   
                        

 

 

R= 0.3,  = 0.5, Pr = 0.71,  

Gr = 10,  c = 0.001, Ec=0.001 
                  

 

        0Nu       1Nu     0Nu      1Nu      0Nu         1Nu  

0.016 0.883228 1.06150 0.80407 1.44585 0.90969 1.22324 

0.44 0.916847 1.04006 0.808645 1.14450 1.14147 1.19370 

0.71 0.954122 1.01027 0.96361 1.12088 1.34863 1.19572 

1   3.49130 89.0980 3.45396 56.1545 5.10622 90.5081 

2   2.13701 885.438 3.70684 577.975 7.16244 764.202 

 

  

Numerical values of Nusselt numbers on the plates are tabulated and displayed on Table II. It is viewed from the table that with 

fixed parameters and with increase in Pr 0Nu is seen to increase while 1Nu  is noticed to decrease.  Similarly, with increase in 

R; 0Nu  is watched to decreases while 1Nu  is grasped to increase with ascending Pr and later both decreases with more increase 

in Pr. Furthermore; with slight increase in    increases, 0Nu  is grasped to increase while 1Nu  decreases and later both  0Nu

and  1Nu   are viewed to increase with further increase in Pr. 
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CONCLUSION 

Combined effects of variable viscosity, viscous dissipation and 

thermal radiation on unsteady natural convection Couette flow 

through a vertical porous channel has been investigated using 

non-linear Rosseland heat diffusion and Adomian 

decomposition method. Using computer algebra package 

(Maple), equation (29) was coded and simulated with results 

presented on graphs and tables and were discussed. The major 

deductions from this investigation are: 

i. Velocity of the fluid was established to increase 

with in decrease in viscosity of the fluid.  

ii. Both the fluid’s temperature and velocity were 

istituted to increase with increase in thermal 

radiation. 

iii. Increase in Eckert number was found to increase 

the temperature and velocity of the fluid within 

the channel. 
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Nomenclature and Greek symbols: 

Symbols  Interpretation                             Unit 

𝑦′  dimensional length  𝑚 

𝑦  dimensionless length   

𝑡  time   𝑠  

g           gravitational acceleration 𝑚𝑠−2 

k           thermal conductivity 𝑊/𝑚𝐾  

   absorption coefficient   

 T         dimensional  temperature of the fluid 𝐾 

𝑇𝑤 wall temperature   𝐾 

T  ambient fluid temperature   𝐾 

0V  velocity of suction   𝑚𝑠−1 

𝑢 dimensional velocity   

𝑣 kinematic viscosity of the fluid 𝑚2𝑠−1 

𝛼 thermal diffusivity of the fluid  

   

𝛽            volumetric expansion coefficient 𝐾−1 

  Stefan Boltzman constatnt  𝐽𝐾−1  

𝜇 variable viscosity   𝑘𝑔𝑚−1𝑠−1

  

𝑞𝑟  radiative heat flux  𝑊𝑚−2 

θ  dimensionless temperature   

𝑈0 reference velocity   𝑚𝑠−1 

   viscosity variation parameter  𝐾−1 

  temperature difference parameter K 

𝑅 radiation parameter 

             set of real numbers   

𝐺𝑟 Grashof number 

Pr Prandtl number   

0  ambient fluid viscosity  𝑘𝑔𝑚−1𝑠−1 

c suction parameter 

Ec Eckert number 

0Nu  Nusselt number on the heated plate  

1Nu  Nusselt number on the cold plate  

0  Skin friction on the heated plate  

1  Skin friction on the cold plate  

  skin friction  
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