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ABSTRACT 

Respiratory syncytial virus (RSV), also known as a human respiratory syncytial virus (hRSV) and human 

orthopneumovirus, is a common, transmittable virus that roots respiratory tract diseases. It is a negative-sense, 

single-stranded Ribonucleic acid (RNA) virus. It gets its name from syncytia, which are huge cells that form 

when infected cells merge. In this paper fractional order model of the respiratory syncytial virus (RSV) virus 

will be developed. The Caputo fractional derivative operator of the order 𝛼 ∈ (0,1]will be used to generate the 

model scheme of non-integer differential equations. To calculate an estimated solution of the system of 

nonlinear fractional differential equations, the Laplace-Adomian Decomposition Method was used. Infinite 

series was produced as solutions to fractional differential equations. The model's proposed series solution 

converges quickly to its precise value. The obtained results are compared to the standard case.  
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INTRODUCTION 

Respiratory syncytial virus (RSV), commonly known as 

respiratory syncytial virus, is a prevalent respiratory virus that 

causes mild, cold-like symptoms. RSV can be dangerous, 

especially in small children and the elderly, although most 

people recover within a week or two. RSV is the leading cause 

of bronchiolitis (inflammation of the tiny airways in the lung) 

and pneumonia (lung infection) in children under the age of 

one in the United States (CDC, 2022). RSV was first 

identified in 1956 when scientists isolated a virus from a 

group of sick chimps. The CCA (Chimpanzee Coryza Agent) 

virus was named (Morris, Blount Jr, & Savage, 1956). In 

1957, Robert M. Chanock found this virus in newborns with 

respiratory problems (Chanock & Roizman, 1957). 

According to investigations of human antibodies in neonates 

and children (Morris, Blount Jr, & Savage 1956), the infection 

was common during infancy. The virus is also known as the 

human orthopneumovirus or the human respiratory syncytial 

virus (hRSV) (Walsh, & Hall 2015). 

According to estimates, there were 1.4 million RSV-

associated acute lower respiratory infection hospitalizations 

among infants under 6 months of age and 6.6 million RSV 

LRTI episodes worldwide in 2019 (Li et al 2022). RSV 

hospitalizations made up 9.3% of all infant hospitalizations in 

the US between October 2015 and December 2019 and were 

the most frequent cause of infant hospitalizations outside of 

birth hospitalizations, according to a retrospective analysis of 

the National Inpatient Sample (NIS) (Suh et al 2022). Due to 

the low rate of RSV testing, the diagnosis of bronchiolitis may 

lead to an additional 3.7% of hospitalizations (Suh et al 2022).  

To better understand the dynamics of RSV, researchers have 

put forth several mathematical models. Others have evaluated 

the efficiency of control systems in thwarting RSV using 

mathematical models. Integer-order differential equations are 

used in these models. To the best of our knowledge, this is the 

first non-integer model for RSV.   

Using seasonal driving of incidence and transient intra- and 

inter-group partial immunity, (White et al 2005) developed a 

unique integer mathematical model for hRSV transmission. 

They concluded that the variations in these populations' 

dynamics could be explained solely by the differences in the 

two populations' seasonal and magnitude-based contact rates. 

Furthermore, (White et al 2007) established an integer model. 

They determined that it reduced infectiousness and transient 

immunity (which could be partial) and proposed a single 

model structure that captures four different host responses to 

infection and subsequent reinfection: partial susceptibility 

and changed infection duration. (Arenas, Moraño & Cortés, 

2008), on the other hand, developed a non-standard numerical 

framework for a SIRS seasonal integer epidemiological 

model for RSV transmission. This novel numerical method is 

used to approximate the answer with varying step sizes while 

maintaining the continuous model's positivity. This 

unconventional numerical method is used to approximate the 

solution using various step sizes while maintaining the 

positivity of the continuous model. They conducted 

simulations using data from Finland and the 

Gambia and compared their approach to a few well-known 

explicit methods. 

To induce the observed seasonality of RSV in the Philippines, 

(Paynter, et al 2014) estimated when ecological determinants 

of respiratory syncytial virus (RSV) transmissibility would 

need to act using an integer mathematical transmission model. 

According to their calculations, a seasonal high in 

transmissibility would need to occur between 49 and 67 days 

(or about 51 days) before the actual peak in RSV infections. 

They concluded that the timing of the seasonal patterns of 

rainfall and nutritional status were both consistent with the 

projected seasonal pattern of transmissibility and that these 

were both likely causes of the seasonality of RSV in this 

environment. A model to replicate the biennial seasonal 

epidemic curves of RSV identifications in metropolitan 

Western Australia has been effectively created (Moore et al 

2014). The model's quality of data acquired from linked 

individual-level total population-based data sources is one of 

its strongest points. They concluded that not all RSV-positive 

detections result in hospitalizations, so it's crucial to avoid 

limiting data sources to the clinically severe end of the 

spectrum. 

To understand the mechanisms underlying RSV infection 

kinetics in the lung, (Wethington et al 2019) combined 

mathematical modeling using ordinary differential equations 

(ODEs) with measurements of RSV infection kinetics in 
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primary well-differentiated human bronchial epithelial 

cultures in vitro as well as in immunocompetent and 

immunosuppressed cotton rats. In cotton rats, their combined 

technique assessed the role of the adaptive immune response 

in preventing RSV infection, which may help assess potential 

RSV vaccine candidates. In 2022, (Sungchasit, Tang & 

Pongsumpun 2022), Built, a model for the spread of the 

respiratory syncytial virus (RSV) in a constant population of 

humans is taken into account. This model assumes that there 

are super-spreading infected individuals (who infect 

numerous people in a single encounter). The epidemiological 

data for the illnesses brought on by this virus have shown 

instances where some people are super-spreaders of the virus. 

The numerical simulations demonstrate how disease 

dynamics alter as values for the parameters in the 

𝑆𝐸𝐼𝑟𝐼𝑠𝑅model is changed.  

Adomian invented the Laplace Adomain decomposition 

Method (LADM) in 1980, which combines the Adomain 

decomposition method and the Laplace transform. The 

approach works effectively for solving several types of 

differential equations. To investigate the numerical solution 

of the corruption model, we employ fractional calculus and 

LADM. In the model, the Caputo derivative is regarded as a 

differential operator. This effort will make use of various 

well-known concepts and conclusions from the literature 

(Farman et al 2018 &Yakubu, Abdullah & Abdullahi 2021). 

 

Preliminaries  

This unit emphases on about fundamental non-integer 

calculus definitions and results. For more details see (Farman 

et al 2018, Yakubu, Abdullah & Abdullahi 2021, Hassan & 

El‐Tawil  (2011), Haq et al 2018, Gökdoǧan, Yildirim  & 

Merdan (2011) & Biazar, 2006) 

𝐼0+
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝑠)
1

0

𝛼−1
𝑓(𝑠)𝑑𝑠,  

Definition 1. The Riemann-Liouville fractional integral of 

order 𝛼 ∈ (0,1)of a function 𝑓 ∈ 𝐿1([0, 𝑇],ℜ) is defined as  

Definition 2. The Caputo fractional order derivative of an 

interval function is defined as 

𝑐𝐷0+
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝑠)
1

0

𝑛−𝛼−1
𝑓(𝑛)(𝑠)𝑑𝑠,  (1) 

When 𝑛 = |𝑥| + 1𝑎𝑛𝑑|𝑥|  signifies the integer part of 𝑥 . 

More specifically,0 < 𝑥 < 1, the Caputo derivative changes 

to 

 
𝑐𝐷0+

𝛼 𝑓(𝑡) =
1

𝛤(𝛼)
∫

𝑓(𝑠)

(1−𝑠)

1

0
𝑑𝑠.    (2) 

Lemma 1. The following is accurate for fractional differential 

equations. 𝐼𝛼( 𝑐𝐷𝛼ℎ)(𝑡) = ℎ(𝑡) + ∑
ℎ
𝑖(0)

𝑖!

𝑛−1
𝑖=0 𝑡𝑖.  

𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑥 > 0, 𝑖 = 0,1,2, . . . , 𝑛 − 1,𝑤ℎ𝑒𝑛 𝑛
= |𝑥| + 1𝑎𝑛𝑑|𝑥|𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠the integer part of  x 
Definition 2.3. We note that the Laplace transform of Caputo 

derivative formulation as: 

ℓ{ 𝑐𝐷𝛼𝑦(𝑡)} = 𝑠𝛼ℎ(𝑠)

−∑𝑠𝛼−𝑖−1𝑦(𝑘)(0), 𝑛 − 1 < 𝛼 < 𝑛, 𝑛

𝑛−1

𝑘=0

∈ 𝑁. 
𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑥 > 0, 𝑖 = 0,1,2, . . . , 𝑛 − 1,𝑤ℎ𝑒𝑛 𝑛
= |𝑥| + 1𝑎𝑛𝑑|𝑥|𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠the integer part of  x 

 

The model formulation  

Based on the integer mathematical model developed by (Gökdoǧan, Yildirim & Merdan 2011), the (susceptible-exposed–

infected–recovered) model where the infected humans is split in two classes the normal infection and the super spreader 

infected class. However, we adapt the model of (Gökdoǧan, Yildirim & Merdan 2011) convert to non-integer mathematical 

model and also make some adjustments which include the recruitment (birth and immigration) rate of the susceptible humans 

instead of the birth rate of the human population since the disease-affected both children and older adults and both migrate.  

We also included the infectivity death rate of the infected class since there are human deaths resulting from the infectivity 

(Savic et al 2023). Thus yield 

𝐷𝛼1𝑆(𝑡) = 𝛬 − 𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − 𝜇𝑆(𝑡) 

𝐷𝛼2𝐸(𝑡) = 𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − (
1

𝜂
)𝜌𝐸(𝑡) − (

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡) 

𝐷𝛼3𝐼𝑟(𝑡) = (
1

𝜂
) 𝜌𝐸(𝑡) − 𝑟1𝐼𝑟(𝑡) − (𝜇 + 𝜇0)𝐼𝑟(𝑡)       (3) 

𝐷𝛼4𝐼𝑠(𝑡) = (
1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝑟2𝐼𝑠(𝑡) − (𝜇 + 𝜇0)𝐼𝑠(𝑡) 

𝐷𝛼5𝑅(𝑡) = 𝑟1𝐼𝑟(𝑡) + 𝑟2𝐼𝑠 − 𝜇𝑅(𝑡) 
 

Tables 1 and 2 summarize the corresponding model variables and parameters.  

Wherever all other parameters are positive and the stated initial conditions are given below  

{
 
 

 
 
𝑆(0) = 𝑁1
𝐸(0) = 𝑁2
𝐼𝑟(0) = 𝑁3
𝐼𝑠(0) = 𝑁4
𝑅(0) = 𝑁5,

                 (4) 

 

Stability Investigation and Equilibria 

Disease-free equilibrium (DFE) 

The model (3) has a DFE, which may be determined by setting the right-hand sides of the equations in (3) to zero, as shown 

by 

{
 
 

 
 
𝐷𝛼1𝑆(𝑡) = 0
𝐷𝛼2𝐸(𝑡) = 0

𝐷𝛼3𝐼𝑟(𝑡) = 0

𝐷𝛼4𝐼𝑠(𝑡) = 0

𝐷𝛼5𝑅(𝑡) = 0

                (5) 
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𝐸0 = (𝑆
∗, 𝐸∗, 𝐼𝑟

∗𝐼𝑠
∗, 𝑅∗) = (

𝛬

𝜇
, 0,0,0,0)    (6) 

 

The Laplace–Adomian Decomposition Method 

This section describes the numerical method for our model (3) using the initial circumstances provided. Using the Caputo 

fractional derivative system, which entails applying the Laplace transform to both sides of the equation (3), we obtain:    

𝐿{𝐷𝛼1𝑆(𝑡)} = 𝐿{𝛬 − 𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − 𝜇𝑆(𝑡)} 

𝐿{𝐷𝛼2𝐸(𝑡)} = 𝐿 {𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − (
1

𝜂
)𝜌𝐸(𝑡) − (

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡)} 

𝐿{𝐷𝛼3𝐼𝑟(𝑡)} = 𝐿 {(
1

𝜂
)𝜌𝐸(𝑡) − 𝑟1𝐼𝑟(𝑡) − (𝜇 + 𝜇0)𝐼𝑟(𝑡)} 

𝐿{𝐷𝛼3𝐼𝑠(𝑡)} = 𝐿 {(
1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝑟2𝐼𝑠(𝑡) − (𝜇 + 𝜇0)𝐼𝑠(𝑡)}     (7) 

𝐿{𝐷𝛼4𝑅(𝑡)} = 𝐿{𝑟1𝐼𝑟(𝑡) + 𝑟2𝐼𝑠 − 𝜇𝑅(𝑡)}  
This implies that 

𝑆𝛼1𝐿{𝐷𝛼1𝑆(𝑡)} = 𝐿{𝛬 − 𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − 𝜇𝑆(𝑡)} 

𝑆𝛼2𝐿{𝐷𝛼2𝐸(𝑡)} = 𝐿 {𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − (
1

𝜂
) 𝜌𝐸(𝑡) − (

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡)} 

𝑆𝛼3𝐿{𝐷𝛼3𝐼𝑟(𝑡)} = 𝐿 {(
1

𝜂
)𝜌𝐸(𝑡) − 𝑟1𝐼𝑟(𝑡) − (𝜇 + 𝜇0)𝐼𝑟(𝑡)}     (8) 

𝑆𝛼4𝐿{𝐷𝛼3𝐼𝑠(𝑡)} = 𝐿 {(
1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝑟2𝐼𝑠(𝑡) − (𝜇 + 𝜇0)𝐼𝑠(𝑡)} 

𝑆𝛼5𝐿{𝐷𝛼4𝑅(𝑡)} = 𝐿{𝑟1𝐼𝑟(𝑡) + 𝑟2𝐼𝑠 − 𝜇𝑅(𝑡)} 
We have the system (8) applying the initial conditions and the inverse Laplace transform. 𝑆(𝑡) = 𝑆(0) = 𝐿−1{𝛬 −

𝛽𝑆(𝑡𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − 𝜇𝑆(𝑡)} 

𝐸(𝑡) = 𝐸(0) = 𝐿−1 {𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − (
1

𝜂
)𝜌𝐸(𝑡) − (

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡)} 

𝐼𝑟(𝑡) = 𝐼𝑟(0) = 𝐿
−1 {(

1

𝜂
)𝜌𝐸(𝑡) − 𝑟1𝐼𝑟(𝑡) − (𝜇 + 𝜇0)𝐼𝑟(𝑡)}     (9) 

𝐼𝑠(𝑡) = 𝐼𝑠(0) = 𝐿
−1 {(

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝑟2𝐼𝑠(𝑡) − (𝜇 + 𝜇0)𝐼𝑠(𝑡)} 

𝑅(𝑡) = 𝑅(𝑡) = 𝐿−1{𝑟1𝐼𝑟(𝑡) + 𝑟2𝐼𝑠 − 𝜇𝑅(𝑡)}  
Using the values of the initial condition in (9), we get 

𝑆(𝑡) = 𝑁1 = 𝐿
−1{𝛬 − 𝛽𝑆(𝑡𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − 𝜇𝑆(𝑡)} 

𝐸(𝑡) = 𝑁2 = 𝐿
−1 {𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − (

1

𝜂
)𝜌𝐸(𝑡) − (

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡)} 

𝐼𝑟(𝑡) = 𝑁3 = 𝐿
−1 {(

1

𝜂
) 𝜌𝐸(𝑡) − 𝑟1𝐼𝑟(𝑡) − (𝜇 + 𝜇0)𝐼𝑟(𝑡)}      (10) 

𝐼𝑠(𝑡) = 𝑁4 = 𝐿
−1 {(

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝑟2𝐼𝑠(𝑡) − (𝜇 + 𝜇0)𝐼𝑠(𝑡)} 

𝑅(𝑡) = 𝑁5 = 𝐿
−1{𝑟1𝐼𝑟(𝑡) + 𝑟2𝐼𝑠 − 𝜇𝑅(𝑡)}  

Adopt that the results, 𝑆(𝑡), 𝐸(𝑡), 𝐼𝑟(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡) in the form of an infinite series, are given by 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )











=



=



=



=



=

=

=

=

=

=

0

0

0

0

0

n

n

n

nss

n

nrr

n

n

n

n

tRtR

tItI

tItI

tEtE

tStS

          (11) 

While the nonlinear term involved in the model are 𝑆(𝑡)𝐸(𝑡), 𝑆(𝑡)𝐼𝑟(𝑡), 𝑆(𝑡)𝐼𝑠(𝑡)and are decomposed as follows   

𝑆(𝑡)𝐼𝑟(𝑡) = ∑𝐵𝑛

∞

𝑛=0

 

𝑆(𝑡)𝐼𝑠(𝑡) = ∑ 𝐶𝑛
∞
𝑛=0                    (12) 

where 𝐵𝑛𝑎𝑛𝑑𝐶𝑛are the Adomian polynomials defined as  

  𝐵𝑛 =
1

𝛤(𝑛+1)

𝑑𝑛

𝑑𝑡𝑛
[∑ 𝜆𝑘𝑆𝑘 ∑ 𝜆𝑘𝐼𝑟𝑘

∞
𝑘=0

∞
𝑘=0 ]|𝜆 = 0 

𝐶𝑛 =
1

𝛤(𝑛+1)

𝑑𝑛

𝑑𝑡𝑛
[∑ 𝜆𝑘𝑆𝑘 ∑ 𝜆𝑘𝐼𝑠𝑘

∞
𝑘=0

∞
𝑘=0 ]|𝜆 = 0       (13) 

The first three polynomials are given by 

𝐵0 = 𝑆0(𝑡)𝐼𝑟0(𝑡), 

𝐵1 = 𝑆0(𝑡)𝐼𝑟1(𝑡) + 𝑆1(𝑡)𝐼𝑟(𝑡) 
𝐵2 = 2𝑆0(𝑡)𝐼𝑟2(𝑡) + 2𝑆1(𝑡)𝐼𝑟1(𝑡) + 2𝑆2(𝑡)𝐼𝑠0(𝑡)          
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𝐶0 = 𝑆0(𝑡)𝐼𝑠0(𝑡), 

𝐶1 = 𝑆0(𝑡)𝐼𝑠1(𝑡) + 𝑆1(𝑡)𝐼𝑠(𝑡) 
𝐶2 = 2𝑆0(𝑡)𝐼𝑠2(𝑡) + 2𝑆1(𝑡)𝐼𝑠1(𝑡) + 2𝑆2(𝑡)𝐼𝑠0(𝑡)              (14) 

Using (11), (13) in model (9), yields 

𝐿 {∑𝑆(𝑡)

∞

𝑛=0

} =
𝑆0
𝑠
+ [

1

𝑠𝛼
𝐿{𝛬 − 𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − 𝜇𝑆(𝑡)}] 

𝐿 {∑𝐸(𝑡)

∞

𝑛=0

} =
𝐸0
𝑠
+ [

1

𝑠𝛼
𝐿 {𝛽𝑆(𝑡)(𝐼𝑟(𝑡) + 𝐼𝑠(𝑡)) − (

1

𝜂
)𝜌𝐸(𝑡) − (

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡)}] 

𝐿{∑ 𝐼𝑟(𝑡)
∞
𝑛=0 } =

𝐼𝑟0
𝑠
+ [

1

𝑠𝛼
𝐿 {(

1

𝜂
)𝜌𝐸(𝑡) − 𝑟1𝐼𝑟(𝑡) − (𝜇 + 𝜇0)𝐼𝑟(𝑡)}]     (15) 

𝐿 {∑ 𝐼𝑠(𝑡)

∞

𝑛=0

} =
𝐼𝑠0
𝑠
+ [

1

𝑠𝛼
𝐿 {(

1

𝜂
) (1 − 𝜌)𝐸(𝑡) − 𝑟2𝐼𝑠(𝑡) − (𝜇 + 𝜇0)𝐼𝑠(𝑡)}] 

𝐿{∑ 𝑅(𝑡)∞
𝑛=0 } =

𝑅0

𝑠
+ [

1

𝑠𝛼
𝐿{𝑟1𝐼𝑟(𝑡) + 𝑟2𝐼𝑠 − 𝜇𝑅(𝑡)}]  

Iterative algorithms are produced by synchronizing both sides of (15).   

 

Differential Transform Method  

The system (3) has a subsequent recurrence relation with respect to time 𝑡. 
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 (16) 

 

The inverse differential transform 𝑆(𝑘)is defined as When 𝑡0 is set to zero, the given function 𝑦(𝑥) is denoted by a finite 

series, and the above equation can be written as𝑆(𝑡) = ∑ 𝑆(𝑘)𝑡𝑖2
𝑘=0  

The function is derived by solving the above equation (16) for𝑆(𝑘 + 1), 𝐸(𝑘 + 1), 𝐼𝑟(𝑘 + 1), 𝐼𝑠(𝑘 + 1), 𝑎𝑛𝑑𝑅(𝑘 + 1) up 

order 2 and  𝑆(𝑘), 𝐸(𝑘), 𝐼𝑟(𝑘), 𝐼𝑠(𝑘)𝑎𝑛𝑑𝑅(𝑘)respectively.  

{
 
 

 
 
𝑆(𝑡) = ∑ 𝑆(𝑘)𝑡𝑘2

𝑘=0

𝐸(𝑡) = ∑ 𝐸(𝑘)𝑡𝑘2
𝑘=0

𝐼𝑟(𝑡) = ∑ 𝐼𝑟(𝑘)𝑡
𝑘2

𝑘=0

𝐼𝑠(𝑡) = ∑ 𝐼𝑠(𝑘)𝑡
𝑘2

𝑘=0

𝑅(𝑡) = ∑ 𝑅(𝑘)𝑡𝑘2
𝑘=0

                 (17) 

 

Numerical Results 

The plots below depict the population of each compartment at various levels of   𝛼𝑖(𝑖 = 1,2,3,4) 
 

Table 1: State variables in the RSV model described 

Parameter Description  Values 

𝑆 Susceptible humans 600 

𝐸 Exposed  humans to RSV 250 

𝐼𝑟 Infected humans to RSV 100 

𝐼𝑟 Infected humans to RSV 100 

𝑅 Recovered humans to RSV 50 
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Table 2: Parameters in the RSV model is described.  

Par. Description Est. Value References 

𝛬 The recruitment rate of  humans 0.21 Gökdoǧan, Yildirim & 

Merdan (2011) 

𝛽 Force of infection 0.1-0.19 Gökdoǧan, Yildirim & 

Merdan (2011) 

𝜇 Natural death of humans 0.21 Gökdoǧan, Yildirim & 

Merdan (2011) 

𝜇0 Death due to infectivity  0.05 Assumed  

𝜂 Incubation rate of virus in human 0.1-0.19 Gökdoǧan, Yildirim & 

Merdan (2011) 

𝜌 Probability of regulated infected human 0.01-0.0009 Gökdoǧan, Yildirim & 

Merdan (2011) 
(1 − 𝜌) Probability of super spreading infected human 0.01-0.9 Gökdoǧan, Yildirim & 

Merdan (2011) 

𝑟1 Recovery of regular infected humans 0.01-0.9 Gökdoǧan, Yildirim & 

Merdan (2011) 

𝑟2 Recovery of super spreading infected humans  Gökdoǧan, Yildirim & 

Merdan (2011) 

 

The Plots of the LADM of the RSV Model 

 

 
Figure 1: Demonstrates the behavior of the susceptible humans  

 
 

Figure 2: Demonstrates the behavior of the exposed humans 

 

 
Figure 3: Demonstrates the behavior of the infected humans 

with regular spread 

 
 

Figure 4: Demonstrates the behavior of the infected humans 

with regular spread 
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Figure 5 Demonstrates the behavior of the recoverd humans. 

 

The Plots of the LADM VS DTM of the RSV Model 

 

 
Figure 6: Plots exhibiting LADM and DTM dynamics of the 

susceptible humans  

 
Figure 7: Plots exhibiting LADM and DTM dynamics of the 

exposed humans 

 
Figure 8 Plots exhibiting LADM and DTM dynamics of the 

regular infected humans 

 

 
Figure 9 Plots exhibiting LADM and DTM dynamics of the 

super spread infected humans 
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Figure 10: Plots exhibiting LADM and DTM dynamics of the recovered humans 

 

CONCLUSION  

This work developed a fractional order model of the 

respiratory syncytial virus, or RSV. The Caputo fractional 

derivative operator of the order was used to build the model 

scheme of non-integer differential equations.  The Laplace-

Adomian Decomposition Method was used to discover an 

estimated solution to the system of nonlinear fractional 

differential equations. It was discovered that the solutions to 

fractional differential equations are infinite series. Figures 1–

10 demonstrate how the model's proposed series solution soon 

converges to its precise value. The acquired results are 

applicable to the typical instance. 
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