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ABSTRACT 

Brucellosis is a multifaceted zoonotic infection with vital epidemiological, economic, and global health effect, 

principally for human and Livestock populations within developing nations. In this paper a dynamic model of 

livestock-to-human transmission of the disease is developed. Model investigation is carried out to obtain and 

establish the stability of the equilibrium points. The basic reproduction number ℜ0 is calculated and the 

conditions under which brucellosis can be cleared in the both populations are established. Then, optimal control 

approach to establish the required conditions for the optimality of the disease eradication or control are applied. 

Public health education for humans and vaccination for susceptible livestock and treatment for infected humans 

and livestock. Numerical simulations show the dynamics of disease transmission and the effect of the control 

strategies.  
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INTRODUCTION 

Brucellosis is a zoonotic sex infection known as 

Mediterranean relax heat, wave heat, or waveform heat 

(Corbel, 2006). It is distinguished by its broad host range, 

tough infectivity, and effort in drastic treatment following 

infection (Akhvlediani et al 2017). It also seriously affects the 

economy, society, and public health. As a result, it is included 

in the World Organization for Animal Health as one of the 

transmissible illnesses that must be reported. It is recognized 

as a second type of animal disease in China (Akhvlediani et 

al 2017). The disease refers to zoonoses caused by gram-

negative bacteria of the genus Brucella. The disease has a 

global distribution and affects both economically important 

domestic animals and a diverse spectrum of wild species 

(Godfroid et al 2011). Brucellaabortus, B. melitensis, and B. 

suis are the species with the greatest impact on domestic 

livestock productivity and human health (Godfroid et al 

2011), and while they preferentially infect cattle, small 

ruminants, and swine, respectively, cross-infections may be 

significant in mixed husbandry systems or at the livestock-

wildlife interface (Godfroid et al 2013). Despite being 

eradicated from cattle and small ruminants in a few developed 

countries, brucellosis remains widespread throughout most of 

the world (Moreno, 2014). 

The condition affects over 500,000 people each year 

(Shevtsova et al 2016). It is usually transferred in animals by 

either direct contact between a susceptible and an infectious 

animal or indirectly, i.e., when a susceptible animal ingests 

contaminated forages or excrement containing large amounts 

of bacteria, which is generally emitted by infected animals 

(Zhang, 2014). However, in humans, the majority of 

infections are caused by direct or indirect contact with 

infected animals or the eating of raw animal products such as 

unpasteurized milk or cheese (Al-Tawfiq, & AbuKhamsin 

2009). Because human-to-human transmission of the disease 

is extremely infrequent (Godfroid 2002), efficient control of 

brucellosis in animals can lead to the eventual management of 

human brucellosis. Some experts believe that by combining 

vaccination with test-and-slaughter programs, brucellosis in 

animals can be eradicated (Morris 2013). 

Miscarriage in cows and orchitis in bulls are the most visible 

symptoms of brucellosis. Furthermore, it frequently causes 

arthritis in the knee and wrist (Corbel 1997). Direct contact 

with infected animals and indirect infection with bacteria in 

the environment are the routes of transmission (Ainseba, 

Benosman, and Magal 2010). It can also be broken into three 

parts. The first method of transmission is by skin contact, such 

as direct contact with droppings, vaginal secretions, and 

vaginal delivery content of diseased animals. It may also be 

exposed indirectly to the environment and objects 

contaminated by sick animals. The second method infections 

enter the body is through the digestive tract, such as through 

contaminated food, water, or milk. The respiratory tract is the 

final pathway of transmission (Brouwer et al 2017). 

Many studies (Zinsstag et al, 2015, Zhou et al 2018, Hou et 

al, 2013, De Souza et al 2016, Ainseba, Benosman & Magal, 

2010 & Abatih et al 2015) explored the disease's causes, 

complications, and other aspects. The present work exposes 

the advances in comparison to the previous literature in both 

human and livestock, as well as the infection of the 

environment by diseased human and animals. We also 

consider livestock in general, rather than splitting them as 

previous models have. 

 

Model Development 

A model of brucellosis control develops using the 

deterministic compartmental modeling approach. The whole 

livestock population at any given time 𝑡, designated by𝑁𝑙 , is 

divided into four classes: susceptible livestock𝑆𝑙  , exposed 

livestock𝐸𝑙 , infected livestock 𝐼𝑙, and recovered livestock𝑅𝑙 . 
Hence, 

𝑁𝐿 = 𝑆𝑙 + 𝐸𝑙 + 𝐼𝑙 + 𝑅𝑙   (1)
 

Susceptible Livestock: At a consistent rate 𝛬𝑙 , susceptible 

livestock are recruited into the population (by births and 

livestock immigration). They decrease when susceptible 

livestock interact with infected animals or an infected 

environment at a rate 𝛽(𝐼𝑙 + 𝐵)  where 𝛽  the force of 

infection is present. Natural death will occur at a rate 𝜇for the 

livestock. And those animals that have recovered will return 

to the susceptible at a rate 𝛿𝑙 . As a result, 
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𝑑𝑆𝑙

𝑑𝑡
= 𝛬𝑙 + 𝛿𝑙𝑅𝑙 − (𝛽(𝐿𝑙 + 𝐵) + 𝜇)𝑆𝑙    (2) 

The exposed livestock: The population grows when 

susceptible livestock interact with diseased animals or the 

affected environment at a rate 𝛽(𝐼𝑙 + 𝐵). The population of 

exposed livestock is reduced as exposed livestock develops to 

become infected livestock (at a rate𝛽1) and via natural death 

(at a rate𝜇). Hence, yields 
𝑑𝐸𝑙

𝑑𝑡
= 𝛽(𝐼𝑙 + 𝐵)𝑆𝑙 − (𝛽1 + 𝜇)𝐸𝑙             (3) 

Infected livestock:  are engendered as a result of exposed 

livestock getting infected at a rate 𝛽1 . They perish due to both 

infection-related and natural mortality (at a rate 𝜇0 + 𝜇) as 

well as recovery after therapy at a rate (𝜏 + 𝛾).The rate of 

change in the population of unhealthy livestock is provided 

by 
𝑑𝐼𝑙

𝑑𝑡
= 𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇0 + 𝛾)𝐼𝑙  (4) 

Recovered livestock: The recovered livestock population is 

made up of infected livestock that recovered after treatment 

(at a rate𝛾) and diminishes at a rate due to natural mortality𝜇 

. As a result, the rate of change in population regained is given 

by: 
𝑑𝑅𝑙

𝑑𝑡
= 𝛾𝐼𝑙 − (𝛿𝑙 + 𝜇)𝑅𝑙      (5) 

The Brucella in the environment at a time𝑡, represented by 𝑁𝑏 

is specified by  

𝑁𝑏 = 𝐵             (6) 

The Brucella in the population is generated from both the 

exposed and the infected live stocks in the population at 

the𝑚(𝐸𝑙 + 𝐼𝑙), where 𝑚is the amount of brucella deposited in 

the environment. The brucella dies out naturally at a rate 

𝜇2Thus 
𝑑𝐵

𝑑𝑡
= 𝑚(𝐸𝑙 + 𝐼𝑙) − 𝜇2𝐵     (7) 

At any  time𝑎 < 0𝑎𝑛𝑑𝑏 > 0, the entire human population 

denoted by 𝑁𝑡is split into four sub groups consisting of the 

following classes: susceptible human𝑆ℎ, exposed human𝐸ℎ, 

infected human 𝐼ℎ and the recovered human𝑅ℎ. Hence, 

𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑅ℎ
   (8)

 

Susceptible humans: The susceptible humans are increased 

via recruitment (by birth and immigration), into the 

population at a constant rate 𝛬ℎ. They diminished once the 

susceptible human interacts with either infected livestock or 

infected environment at a rate 𝛽(𝐼𝑙 + 𝐵), where 𝛽 is the force 

of infection. The livestock will experience natural death at a 

rate𝜇 . And those humans that recovered will return to the 

susceptible at a rate 𝛿ℎ.Thus gives 

 
𝑑𝑆ℎ

𝑑𝑡
= 𝛬ℎ + 𝛿ℎ𝑅𝑙ℎ − (𝛽(𝐿ℎ + 𝐵) + 𝜇)𝑆ℎ       (9) 

The exposed humans: The population of the exposed 

increases once the susceptible human interacts with either 

infected livestock or infected environment at a rate𝛽(𝐼𝑙 + 𝐵). 
The population of exposed is decreased; when exposed human 

progresses to become infected human at a rate𝛽2and through 

natural death (at a rate𝜇1). Thus, yields 
𝑑𝐸ℎ

𝑑𝑡
= 𝛽(𝐼𝑙 + 𝐵)𝑆ℎ − (𝛽2 + 𝜇)𝐸𝑙    (10) 

Infected humans:  infected humans are generated due to 

exposed human becoming infected, this occurs at a rate𝛽2 . 

They decrease due to both death due to infection and natural 

death (at a rate𝜇10 + 𝜇1) and also decline to recovery after 

treatment at a rate(𝜏 + 𝛾).The rate of change of the population 

of infected human is given by  
𝑑𝐼𝑙

𝑑𝑡
= 𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇10 + 𝛾1)𝐼𝑙       (11)

 

 

Recovered humans: The population of recovered human are 

generated by infected human that recovered after treatment (at 

a rate𝛾1), and decreases due to natural death at rate𝜇. Thus, 

the rate of change of the population of recovered is given by

  

 

𝒅𝑹𝒉

𝒅𝒕
= 𝜸𝟏𝑰𝒉 − (𝜹𝒉 + 𝝁𝟏)𝑹𝒉       

 (12) 

The above description culminates into the following system 

of differential equations:  
𝑑𝑆𝑙
𝑑𝑡

= 𝛬𝑙 + 𝛿𝑙𝑅𝑙 − (𝛽(𝐼𝑙 + 𝐵) + 𝜇)𝑆𝑙 

𝑑𝐸𝑙
𝑑𝑡

= 𝛽(𝐼𝑙 + 𝐵)𝑆𝑙 − (𝛽1 + 𝜇)𝐸𝑙 

𝑑𝐼𝑙
𝑑𝑡

= 𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇0 + 𝛾)𝐼𝑙 

𝑑𝑅𝑙
𝑑𝑡

= 𝛾𝐼𝑙 − (𝛿𝑙 + 𝜇)𝑅𝑙 

𝑑𝐵

𝑑𝑡
= 𝑚(𝐸𝑙 + 𝐼𝑙) − 𝜇2𝐵           (13) 

𝑑𝑆ℎ
𝑑𝑡

= 𝛬ℎ + 𝛿ℎ𝑅𝑙ℎ − (𝛽(𝐼ℎ + 𝐵) + 𝜇)𝑆ℎ 

𝑑𝐸ℎ
𝑑𝑡

= 𝛽(𝐼𝑙 + 𝐵)𝑆ℎ − (𝛽2 + 𝜇)𝐸𝑙 

𝑑𝐼𝑙
𝑑𝑡

= 𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇10 + 𝛾1)𝐼𝑙 

𝒅𝑹𝒉
𝒅𝒕

= 𝜸𝟏𝑰𝒉 − (𝜹𝒉 + 𝝁𝟏)𝑹𝒉 

 

Tables 1 and 2 summarize the corresponding model variables 

and parameters. 

 

Basic properties of the Brucellosis model 

Positivity of Solutions 

We suppose that all of the model's parameters (13) are 

positive and that the initial conditions for (13) are   

𝑆𝑙0(0) > 0, 𝐸𝑙0(0) > 0, 𝐼𝑙0(0) > 0, 𝑅𝑙0 > 0,𝐵0(0) >
0, 𝑆ℎ0(0) > 0, 𝐸ℎ0(0) > 0, 𝐼ℎ0(0) > 0, 𝑅00(0) > 0       (14)  

Lemma 2.1 solutions of (13) and (14) satisfy  

𝑆𝑙0(0) > 0, 𝐸𝑙0(0) > 0, 𝐼𝑙0(0) > 0, 𝑅𝑙0 > 0,𝐵0(0)
> 0, 𝑆ℎ0(0) > 0, 𝐸ℎ0(0) > 0, 𝐼ℎ0(0)
> 0, 𝑅00(0) > 0𝑓𝑜𝑟𝑎𝑙𝑙𝑡 > 0 

Proof   

From the first equation of the model (13) we have  
𝑑𝑆𝑙
𝑑𝑡

= 𝛬𝑙 + 𝛿𝑙𝑅𝑙 − (𝛽(𝐿𝑙 + 𝐵) + 𝜇)𝑆𝑙 

Note that on 𝑡 ∈ [0,∞) we have 

𝑆𝑙0
, ≥ −(𝛽(𝐿𝑙 + 𝐵) + 𝜇)𝑆𝑙 

So that 𝑆𝑙(𝑡) ≥ 𝑆̃𝑙(𝑡)  where 𝑆̃𝑙  is the solution of 𝑆𝑙0
, ≥

−(𝛽(𝐿𝑙 + 𝐵) + 𝜇)𝑆𝑙 
Satisfying 𝑆̃𝑙(0) = 𝑆𝑙(0) > 0.  clearly 𝑆̃𝑙(𝑡) > 0  for all 𝑡 >
0. 
Following the same argument, it can be shown that , 𝐸𝑙(𝑡) >
0, 𝐼𝑙(0) > 0, 𝑅𝑙(0) > 0,𝐵(0) > 0, 𝐸ℎ(𝑡) > 0, 𝐼ℎ(0) >
0, 𝑅ℎ(0) > 0 for all𝑡 > 0. The proof complete   

 

Invariant regions  

The brucellosis model (13) will be analyzed in a biologically 

feasible region as follows.  

The total population sizes 𝑁𝑙(𝑡), 𝑁𝑏(𝐵)𝑎𝑛𝑑𝑁ℎ  can be 

determined by 

𝑁𝑙(𝑡) = 𝑆𝑙(𝑡) + 𝐸𝑙(𝑡) + 𝐼𝑙(𝑡) + 𝑅𝑙(𝑡)  
𝑁𝑏(𝑡) = 𝐵(𝑡)𝑎𝑛𝑑𝑁ℎ = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡)  or 

from the differential equations model 

 
𝑑𝑁𝑙(𝑡)

𝑑𝑡
=

𝑑𝑆𝑙(𝑡)

𝑑𝑡
+
𝑑𝐸𝑙(𝑡)

𝑑𝑡
+
𝑑𝐼𝑙(𝑡)

𝑑𝑡
+
𝑑𝑅𝑙(𝑡)

𝑑𝑡
 

= 𝛬𝑙 − 𝜇𝑁𝑙 − 𝜇0𝐼𝑙 ,     (15) 

  
𝑑𝑁𝑏(𝑡)

𝑑𝑡
=

𝑑𝐵(𝑡)

𝑑𝑡
 

= 𝑚(𝐸𝑙 + 𝐼𝑙) − 𝜇2𝐵   (16)

   

 

and  
𝑑𝑁ℎ

𝑑𝑡
=
𝑑𝑆ℎ(𝑡)

𝑑𝑡
+
𝑑𝐸ℎ(𝑡)

𝑑𝑡
+
𝑑𝐼ℎ(𝑡)

𝑑𝑡
+
𝑑𝑅ℎ(𝑡)

𝑑𝑡
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= 𝛬ℎ − 𝜇1𝑁ℎ − 𝜇10𝐼ℎ          (17) 

Assuming the disease does not kill, then(𝜇0 = 𝜇10 = 0), thus   
𝑑𝑁𝑙(𝑡)

𝑑𝑡
= 𝛬𝑙 − 𝜇𝑁𝑙 − 𝜇0𝐼𝑙 ≤ 𝛬𝑙 − 𝜇𝑁𝑙    (18)

 

 

Lemma 2.2. The model equation (13)has solutions which are 

contained in the feasible 

𝛺 = 𝛺𝑙 × 𝛺𝑏 × 𝛺ℎ 

Proof:  Let (𝑆𝑙 , 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝐵, 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ) ∈ 𝑅+
9  be any 

solution of the system with nonnegative initial conditions.  

Since 
𝑑𝑁𝑙(𝑡)

𝑑𝑡
≤ 𝛬𝑙 − 𝜇𝑁𝑙            (19) 

Hence, by the standard comparison theorem it can be shown 

that  

0 ≤ 𝑁𝑙 ≤
𝛬𝑙

𝜇
, so that 

𝛬𝑙 − 𝜇𝑁𝑙 ≥ 𝐾𝑒
−𝜇𝑡 where 𝐾is a constant      (20)

                                                            
 

Thus, all possible solutions of the Livestock population of the 

model equation (13)are in the region   

𝛺𝑙 = {(𝑆𝑙 , 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙) ∈ 𝑅+
4 : 𝑁𝑙 ≤

𝛬𝑙

𝜇
}        (21)

                             

 

Similarly, all possible solutions of the human population of 

the model equation (13)are in the region   

𝛺ℎ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅𝑙ℎ) ∈ 𝑅+
4 : 𝑁ℎ ≤

𝛬ℎ

𝜇1
}      (22) 

As well as all possible solutions of the Brucella population of 

the model equation (13)are in the region   

𝛺𝑏 = {(𝐵) ∈ 𝑅+
1 : 𝑁𝑏 ≤ 𝜇2𝐵}        (23) 

As a result, the feasible set for the model equation is given by  

𝛺 = (𝑆𝑙 , 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝐵, 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ)

∈ 𝑅+
9 : 𝑆𝑙 , 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝐵, 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ ≥ 0; 

𝑁𝑙 ≤
𝛬𝑙

𝜇
, 𝑁𝑏 ≤ 𝜇2𝐵,𝑁ℎ ≤

𝛬ℎ

𝜇1
      (24) 

Which is a positively invariant set under the model's flow.  As 

a result, the model equation (13) is both epidemiologically 

significant and mathematically well posed in the domain𝛺. In 

this domain, it is sufficient to consider the dynamics of the 

model's generated flow. Furthermore, the system follows the 

typical existence, uniqueness, and continuation of results. 

Lemma 2.3 The region Ω = Ωl × Ωb × Ωh  is positively – 

invariant for the basic model (2.1) with non- negative initial 

conditions in ℜ+
9  

 

Analysis of Disease-Free Equilibrium (DFE) and Stability  

The model (13) has a DFE, which is derived by setting the 

right-hand side of the equations in (13) to zero, which is 

illustrated by 

𝛦0(𝑆𝑙
∗, 𝐸𝑙

∗, 𝐼𝑙
∗, 𝑅𝑙

∗, 𝐵∗, 𝑆ℎ
∗, 𝐸ℎ

∗, 𝐼ℎ
∗𝑅,ℎ

∗ ) = (
𝛬𝑙

𝜇
, 0,0,0,0,

𝛬𝑙

𝜇1
, 0,0,0)  

     (25)  

As utilized by (Mohammed, Yahya, and Farah (2015), the 

next-generation operator method can be used to determine the 

linear stability of brucellosis. The matrix F and V for the new 

infection terms and the remaining transfer terms, based on the 

model equation (13), are provided by 

00000

000

000

00000

000

:

11 















hh

ll

mmF





=
 

𝑉:=
|
|

𝛽1 + 𝜇 0 0 0 0
−𝛽1 𝜏 + 𝜇 + 𝜇0 + 𝛾 0 0 0
0 0 𝜇0 0 0
0 0 0 𝛽2 + 𝜇1 0
0 0 0 −𝛽2 𝜏 + 𝜇1 + 𝜇10 + 𝛾

|
|

 

The threshold epidemiological of brucellosis, denoted by 

ℛ0 = 𝜌(𝐹𝑉
−1), where 𝜌denotes the spectral radius, is given 

by 

  ℜ0 =
𝛽𝛬ℎ𝛽2

𝜇1(𝛽2+𝜇1)(𝜏+𝜇1+𝜇10+𝛾1)
     (26)

  

Theorem 1 The 𝐷𝐹𝐸 of model equation (13), given (26), is 

locally asymptotically stable (LAS) ifℛ0 < 1, 𝑎𝑛𝑑
 
unstable if 

ℛ0 > 1.
      

 
The threshold quantity ℛ0 is the threshold epidemiological of 

brucellosis. It is the expected average number of new 

infections produced by interaction with exposed and infected 

livestock and humans when introduced into a completely 

susceptible population.   

 

Model for Optimal Control of brucellosis  

In this section, the basic model (13) to include the possible 

interventions in order to reduce or limit the proliferation of 

exposed livestock or human and the sudden increase of the 

infected livestock and humans in a population was extended. 

The associated control model to derive optimal control with 

minimal cost was formulated. The control efforts 

𝑢1, 𝑢2𝑎𝑛𝑑𝑢3 represent public health education for the 

susceptible humans, treatment for both infected livestock and 

human, and vaccination for recruitment rate of the livestock 

in the population respectively. The model equation (13) 

becomes 
𝑑𝑆𝑙
𝑑𝑡

= 𝛬𝑙(1 − 𝑢3) + 𝛿𝑙𝑅𝑙 − (𝛽(𝐿𝑙 + 𝐵)(1 − 𝑢2) + 𝜇)𝑆𝑙 

𝑑𝐸𝑙
𝑑𝑡

= 𝛽(𝐼𝑙 + 𝐵)(1 − 𝑢2)𝑆𝑙 − (𝛽1 + 𝜇)𝐸𝑙 

𝑑𝐼𝑙
𝑑𝑡

= 𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇0 + 𝑢2 + 𝛾)𝐼𝑙 

𝑑𝑅𝑙
𝑑𝑡

= 𝛾𝐼𝑙 − (𝛿𝑙 + 𝜇)𝑅𝑙 

𝑑𝐵

𝑑𝑡
= 𝑚(𝐸𝑙 + 𝐼𝑙) − 𝜇2𝐵              (27) 

𝑑𝑆ℎ
𝑑𝑡

= 𝛬ℎ(1 − 𝑢1) + 𝛿ℎ𝑅𝑙ℎ − (𝛽(𝐿ℎ + 𝐵)(1 − 𝑢2) + 𝜇)𝑆ℎ 

𝑑𝐸ℎ
𝑑𝑡

= 𝛽(𝐼𝑙 + 𝐵)(1 − 𝑢2)𝑆ℎ − (𝛽2 + 𝜇)𝐸𝑙 

𝑑𝐼𝑙
𝑑𝑡

= 𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇10 + 𝑢2 + 𝛾1)𝐼𝑙  

𝒅𝑹𝒉

𝒅𝒕
= 𝜸𝟏𝑰𝒉 − (𝜹𝒉 + 𝝁𝟏)𝑹𝒉   

The factor of 1 − 𝑢1(𝑡)  is a control function representing 

public health education aimed at reducing infectivity in 

humans. The factor of 1 − 𝑢2(𝑡)  is a control function 

representing treatment aimed at reducing infectivity in both 

human and livestock. The factor of 1 − 𝑢3(𝑡)  is a control 

function representing vaccination aimed at reducing 

infectivity in livestock and the environment. Investigating the 

optimal control efforts that would be needed to control 

brucellosis in the society, an optimal control problem with the 

objective (cost) functional is given by 

𝐽(𝑢) = ∫ (𝐴1𝐸𝑙 + 𝐴2𝐼𝑙 + 𝐴3𝐸ℎ + 𝐴4𝐼ℎ + 𝐵1𝑢1
2 + 𝐵2𝑢2

2 +
𝑇

0

𝐵3𝑢3
2)𝑑𝑡       (28) 

Where 𝑇 the final time and the coefficients 

𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3  are positive weights to balance the 

factors. The aim is to minimize the number of both exposed 

and infected livestock and humans, while minimizing the cost 

of controls𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) . Thus, we seek an optimal 

control 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗  such that  

  𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢2
∗) = 𝑚𝑖𝑛

𝑢1,𝑢2,𝑢3
{𝐽(𝑢1, 𝑢2, 𝑢3)|𝑢1, 𝑢2, 𝑢3 ∈𝑢}   

Where the control set is defined as  



DYNAMICS AND CONTROL OF BRUC…      Abdullahi et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 1, February, 2023, pp 311 - 318 314 

𝑈 = {(𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗)|𝑢𝑖(𝑡)𝑖𝑠𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, 𝑖 =

1,2,3,0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇]}.   (29) 

Subject to the system (8) and appropriate initial conditions. 

The basic framework of this problem is to characterize the 

optimal control.  

 

Existence of Control Problem 

The term 𝐴1𝐸𝑙 , 𝐴3𝐼𝑙 , 𝐴3𝐸ℎ, 𝐴4𝐼ℎ  are the cost of infection 

while 𝐵1𝑢1
2, 𝐵2𝑢2

2𝑎𝑛𝑑𝐵3𝑢1
2  are the costs of public health 

education, treatment and vaccination respectively. The 

necessary conditions that an optimal control must satisfy 

come from the Pontryagin’s Maximum Principle [20]. The 

principle converts (27-28) into a problem of minimizing point 

wise a Hamiltonian𝐻, with respect to𝑢.  

𝐻 = 𝐴1𝐸𝑙 + 𝐴2𝐼𝑙 + 𝐴3𝐸ℎ + 𝐴4𝐼ℎ + 𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝐵3𝑢3
2

+ 𝜆1(𝛬𝑙(1 − 𝑢3) + 𝛿𝑙𝑅𝑙
− (𝛽(𝐿𝑙 + 𝐵)(1 − 𝑢2) + 𝜇)𝑆) 

+𝜆2(𝛽(𝐼𝑙 + 𝐵)(1 − 𝑢2)𝑆𝑙 − (𝛽1 + 𝜇)𝐸𝑙)
+ 𝜆3(𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇0 + 𝑢2 + 𝛾)𝐼𝑙) 

+𝜆4(𝛾𝐼𝑙 − (𝛿𝑙 + 𝜇)𝑅𝑙) + 𝜆5(𝑚(𝐸𝑙 + 𝐼𝑙) − 𝜇2𝐵) 
+𝜆6(𝛬ℎ(1 − 𝑢1) + 𝛿ℎ𝑅𝑙ℎ − (𝛽(𝐿ℎ + 𝐵)(1 − 𝑢2) + 𝜇)𝑆ℎ) 
+𝜆7(𝛽(𝐼𝑙 + 𝐵)(1 − 𝑢2)𝑆ℎ − (𝛽2 + 𝜇)𝐸𝑙) 
+𝜆8(𝛽1𝐸𝑙 − (𝜏 + 𝜇 + 𝜇10 + 𝑢2 + 𝛾1)𝐼𝑙) + 𝜆9(𝛾1𝐼ℎ − (𝛿ℎ +
𝜇1)𝑅ℎ) (30) 

Where 𝜆𝑖 = 0, 𝑓𝑜𝑟𝑖 = 1,2, . . . ,9are adjoint variables or co-

state variables.   

Theorem 2 Given an optimal control 𝑢∗  and solutions 
(𝑆𝑙

∗, 𝐸𝑙
∗, 𝐼𝑙

∗, 𝑅𝑙
∗, 𝐵, 𝑆ℎ

∗ , 𝐸ℎ
∗ , 𝐼ℎ

∗ , 𝑅ℎ
∗)   of the corresponding state 

system (27) that minimizes 𝐽(𝑢1, 𝑢2, 𝑢3) over𝑈. Then there 

exists adjoint variables 𝜆𝑖 = 0, 𝑓𝑜𝑟𝑖 = 1,2, . . . ,9satisfying  

−𝜆1 = ((𝛽𝐼𝑙 + 𝛽𝐵)𝑢3 − 𝛽𝐼𝑙 − 𝛽𝐵 − 𝜇)𝑆𝑙 − 𝛬𝑙 + 𝛬𝑙𝑢3
− 𝛿𝑅𝑙 

−𝜆2 = (−1 + 𝑢3)(𝛽𝐼𝑙 + 𝛽𝐵)𝑆𝑙 + (𝛽1 + 𝜇)𝐸𝑙 
−𝜆3 = −𝛽1𝐸𝑙 + (𝑢2 + 𝜏 + 𝜇 + 𝜇0 + 𝛾)𝐼𝑙 
−𝜆4 = −𝛾𝐼𝑙 + (𝛿 + 𝜇)𝑅𝑙 

−𝜆5 = −𝑚(𝐸𝑙 + 𝐼𝑙) + 𝜇2𝐵 
−𝜆6 = 𝛬ℎ(−1 + 𝑢1) − 𝛿ℎ𝑅ℎ

+ (𝛽𝐼𝑙(1 − 𝑢2) + 𝛽𝐵(1 − 𝑢2) + 𝜇1)𝑆ℎ 
−𝜆7 = (−1 + 𝑢2)(𝛽𝐼𝑙 + 𝛽𝐵)𝑆ℎ + (𝛽1 + 𝜇)𝐸ℎ 
−𝜆8 = −𝛽2𝐸𝑙 + (𝑢2 + 𝜏 + 𝜇 + 𝜇10 + 𝛾1)𝐼ℎ 
−𝜆9 = −𝛾1𝐼ℎ + (𝛿ℎ + 𝜇1)𝑅ℎ          (31) 
 𝑎𝑛𝑑𝑤𝑖𝑡ℎ𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝜆𝑖 = 0, 𝑓𝑜𝑟𝑖 = 1,2, . . . ,9         (32) 
𝑎𝑛𝑑𝑡ℎ𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑢∗𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑡ℎ𝑒𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 

{
 
 

 
 𝑢1

∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,
𝜆6𝛬ℎ

2𝐵1
)}

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

−(𝜆6−𝜆7)(𝛽𝐼𝑙+𝛽𝐵)𝑆ℎ+𝜆8𝐼ℎ+𝜆3𝐼𝑙

2𝐵2
)}

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

−(𝜆1−𝜆2)(𝛽𝐼𝑙+𝛽𝐵)𝑆𝑙+𝜆1𝛬𝑙

2𝐵3
)}

    (33)
 

Proof The governing equations of the adjoints variables are 

obtained by differentiation of the Hamiltonian function, 

evaluated at the optimal control. And with transversality 

conditions 

𝜆𝑖 = 0, 𝑓𝑜𝑟𝑖 = 1,2, . . . ,9 

On the interior of the control set, where 0 < 𝑢 < 1, we have

                                                                       

 

Hence, it is obtained [20]  

{
 
 

 
 𝑢1

∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,
𝜆6𝛬ℎ

2𝐵1
)}

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

−(𝜆6−𝜆7)(𝛽𝐼𝑙+𝛽𝐵)𝑆ℎ+𝜆8𝐼ℎ+𝜆3𝐼𝑙

2𝐵2
)}

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

−(𝜆1−𝜆2)(𝛽𝐼𝑙+𝛽𝐵)𝑆𝑙+𝜆1𝛬𝑙

2𝐵3
)}

  (33) 

 

Numerical Simulations 

 In this section, the numerical simulations are presented to 

illustrate the analytical results. Next, we examine numerically 

the effect of the optimal control strategies on the spread of 

brucellosis in a population. 

Strategy A: Optimal use of public health education. 

Strategy B: Optimal use of treatment.  

Strategy C: Optimal use of vaccination.  

 

Table 1: Description of variables for brucellosis model 

Parameter Description 

𝑆𝑙 Susceptible livestock 

𝐸𝑙 Exposed livestock 

lI  Infected livestock 

𝑅𝑙 Removed livestock 

𝐵 Brucella  

𝑆𝑙 Susceptible human 

𝐸𝑙 Exposed human 

lI  Infected human 

𝑅𝑙 Recovered  human 

 

Table 2: Description of parameters for brucellosis model 

Par. Description Value Source  

𝛬𝑙 Recruitment rate of  livestock 0.811 14 

l  Loss of immunity after recovery livestock 0 14 

𝛽 Force of infection 0.00025 15 

𝜇 Natural death of livestock 0.6 15 

𝛽1 Rate of progression from exposed to infected livestock 1 16 

𝜏 Rate of treatment Setting Assumed 

𝜇0 Death  due to infection of livestock  Setting Assumed 

𝛾 Recovery of livestock 0.4 16 

𝑚 Quantity of brucella generated 15 16 

𝜇2 Decay of brucella from the environment  3.6 16 

𝛬ℎ Recruitment rate of  human 0.018 14 

𝛿ℎ Loss of immunity after recovery human 0.8 14 
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𝜇1 Natural death of human 0.003 14 

𝛽2 Rate of progression from exposed to infected human 0.6 16 

𝛾1 Recovery of human 0.4 16 

𝜇10 Death  due to infection of human 0.09 Assumed 

 

Optimal application of public health education (𝒖𝟏) 
The utilization of public health education (𝑢1) is employed to 

optimize the objective functional 𝐽 in this control method, 

while the control treatment(𝑢2) and vaccine(𝑢3) are set to 

zero. Figure 1 indicates a considerable difference in the 𝑆ℎand 

𝑅ℎ  with optimal control strategy against 𝑆ℎ and 𝑅ℎ  without 

control. Figure 1(a) shows that the susceptible humans reduce 

as a result of control techniques versus the increase in the 

uncontrolled situation. Figure 1(b) depicts a similar situation 

in the instance of a recovered individual.

 

 

 
Figure 1: Simulations of the brucellosis model demonstrate the influence of 

optimal public health education on brucellosis spread in humans. 

 

Optimal application of treatment (𝒖𝟐) 
The optimal use of treatment (𝒖𝟐)is employed to optimize the 

objective functional 𝐽  in this control method, whereas the 

controls of public health education (𝒖𝟏)and vaccination(𝒖𝟑) 
are set to zero. Figure 2 indicates an important distinction in 

the 𝐸𝑙 , 𝐸ℎ, 𝐼𝑙𝑎𝑛𝑑𝐼ℎ optimal control technique over without 

control. Figure 2 shows how management techniques reduce 

the number of exposed and infected animals and humans 

while increasing in unmanaged conditions.
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Figure 2: Simulations of the brucellosis model demonstrate the impact of 

optimal treatment utilization on the spread of brucellosis in humans and 

livestock. 

 

Optimal application vaccination (𝒖𝟑) 
Vaccination (𝑢3)  is employed to optimize the objective 

functional 𝐽 in this control approach, whereas public health 

education (𝒖𝟏)and treatment (𝒖𝟐)are set to zero. Figure 3 

indicates a considerable difference in the 𝑆𝑙 ⥂⥂ 𝑎𝑛𝑑 ⥂⥂

𝑅𝑙optimal control method over those without control. Figure 

3 shows that as a result of control techniques against the 

growth in uncontrolled cases of livestock, the susceptible and 

recovered cattle decrease.
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Figure 3: Simulations of the brucellosis model demonstrate the impact of 

appropriate vaccine use on the spread of brucellosis in livestock.    

 

CONCLUSION  

A deterministic mathematical model for brucellosis control 

was develops in this study. The model investigated how 

humans, livestock, and brucella deposited in the environment 

interacted. Furthermore, it is demonstrated that the model is 

locally asymptotically stable when ℜ0 < 1 and unstable 

whenℜ0 > 1. The numerical simulation results revealed that 

the optimum disease control strategies were a combination of 

the three control strategies. Using all of the controls, on the 

other hand, will incur additional costs. This is 

because strategy B has a major impact on brucellosis control. 

It can thus be argued that the employment of treatment 

(strategy B) is the most cost-effective option for controlling 

brucellosis. 
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