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ABSTRACT 

In this research paper, we introduced a novel generator derived from the continuous Gompertz distribution, 

known as the odd Gompertz-G distribution family. We conducted an in-depth analysis of the statistical 

characteristics of this family, including moments, moment-generating functions, quantile functions, survival 

functions, hazard functions, entropies, and order statistics. Within this family, we also derived a specific 

distribution called the odd Gompertz-Exponential distribution. To evaluate the reliability of the distribution's 

parameters, we employed Monte Carlo simulations. Furthermore, we assessed the applicability of this newly 

proposed distribution family by examining its performance on real-world data and the results demonstrate that 

the new model (OG-E) outperformed its comparators under consideration.  

 

Keywords: Gompertz distribution, odd Gompertz-G Family, exponential distribution, maximum likelihood, 

Simulation 

 

INTRODUCTION 

Recent studies revealed that the theory and application of 

probability distribution have received significant achievement 

with the introduction of new generalized families of 

distributions. Lifetime data can be represented through 

several statistical distributions, like Weibull, Gompertz, 

Frechet, exponential, Rayleigh, and others. However, this 

attracts the demand for more comprehensive kinds of these 

conventional distributions because, in numerous real-world 

scenarios, these conventional distributions do not sufficiently 

align with the data being modeled. Hence, there is a 

motivation to introduce asymmetry and adaptability into 

established probability distributions, especially in the case of 

the Gompertz distribution. 

Various extensions of these distributions were made by some 

authors, including the generalized Gompertz by El-Gohary et 

al., (2013), the beta Gompertz by Jafari et al., (2014), the odd 

generalized Exponential-Gompertz by El-Damcese et al., 

(2015), and the Power Gompertz distribution by Ieren et al., 

(2019). 

Several developed families of distributions have been 

thoroughly investigated in a number of fields, and it has been 

found that they produce improved adaptability. Examples 

include the development of the exponentiated-G (E-G) class 

by Gupta et al. in 1998, beta-G class by Eugene et al. (2002), 

Marshall-Olkin-G class in 1997, the gamma-G distributions 

by Zografos and Balakrishnan (2009), and the Kumaraswamy 

Weibull-G  by Cordeiro et al. in 2010. Alternative Gamma-G  

was proposed by Ristic and Balakrishnan in 2011, 

Kumaraswamy-G  by Cordeiro and Castro in 2011, 

Kumaraswamy beta generalized by Cordeiro et al. in 2012, 

Type II Half-Logistic Exponentiated-G by Bello et al., (2021) 

and transform-transformer by Alzaatreh et al, (2013). The aim 

of this paper is to develop and explore the Odd Gompertz-G 

(OG-G) family of distribution for analyzing lifetime data that 

can accommodate a wide array of behavior patterns such as 

increasing and decreasing failure rates, as well as cases where 

failure rates remain constant or exhibit a bathtub-shaped 

pattern in practical applications. 

 

MATERIAL AND METHOD 

The new family 

Consider the probability density function (pdf) and 

cumulative distribution function (cdf) of the Gompertz 

distribution as defined by lanert (2012) with  as scale 

parameter and  as shape parameter are respectively known 

as:  

𝐺(𝑡; 𝜃, 𝛾) = 1 − 𝑒
−

𝜃

𝛾
(𝑒𝛾𝑡−1)

; 0 < 𝑡 < ∞, 𝜃, 𝛾 > 0            (1) 

 

𝑔(𝑡; 𝜃, 𝛾) = 𝜃𝑒𝛾𝑡𝑒
−

𝜃

𝛾
(𝑒𝛾𝑡−1)

; 0 < 𝑡 < ∞, 𝜃, 𝛾 > 0           (2) 

The Cumulative distribution function𝐺(𝑡,Φ)  with survival 

function 𝐺(𝑡;Φ) = 1 − 𝐺(𝑡;Φ)  of the parent distribution 

depends on a parameter vector Φ  and assuming a random 

variable T relates to a system having a baseline G distribution.  

So the odd T that a system will not work at particular time 
interval is given by ( ) ( )G t G t . The random variable T of the 

odds using Gompertz model is given by    

( )
( ) ( ( ) ( ))

( )

G t
p X x p X G t G t F

G t

 
 =  =  
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Replacing x in the Gompertz cdf by the odd ratio ( ) ( )G t G t , 

the cdf of the novel family, OG-G is as follows  
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The corresponding pdf to (3) is given by 

( )
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2
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     (4) 

where𝑔(𝑥,Φ) is the pdf of any parent distribution andΦis the 

parameter vector, therefore a random variable X with density 

function and distribution function in equations (3) and (4) is 

denoted by 𝑋~𝑂𝐺 − 𝐺(𝜃, 𝛾,Φ). 
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Validity Check of the OG-G family of distributions 

It is significant to ascertain whether the pdf of OG-G family of distributions as given in equation (4) establishes a valid 

probability density and this can be realized by ensuring that its integral over the domain of X equals to unity. i.e 

0

( ; , , ) 1OG Gf x dx 


−  =
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Supposed that 𝑦 =
𝜃

𝛾
(𝑒

𝛾
𝐺(𝑥;Φ)

1−𝐺(𝑥;Φ) − 1) and 𝑢 =
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Then 𝑑𝑥 =
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 and as 𝑥 → 0; 𝑦 → 0and as 𝑥 → ∞; 𝑦 → ∞ 

Now equation (5) can be written as 
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Hence, the pdf of the OG-G family of distributions be valid as required. 

 

Useful expansion  

In this section, we will explore a valuable expansion of the distribution functions for the OG-G family. 

Proposition: The expression that provides a linear representation of the OG-G family of distributions is as follows: 
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From the power series expansion 
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By binomial expansion, 
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By power series expansion,  
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Using generalize binomial theorem, 
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+ =  denotes the cdf of the Exponentiated-G 

distribution with power parameter (𝑘 + 𝑙) > 0 

By differentiating (13), the pdf of x can be given in the mixture form as;  
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Where ( ) 1

( ) ( ) ( ) ( ) ( ) k l

k lh x k l g x G x + −

+ = +  denotes the Exponentiated-G density function with power parameter ( )k l+ .  

 

Statistical properties of OG-G Family of distribution  

Moments of the OG-G Family 

The rth moment of a random variable X that follows the Odd Gompertz-G (OG-G) family is given as: 
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Moment-Generating Function of the OG-G Family 

The moment-generating function of a random variable X that follows the Odd Gompertz-G (OG-G) family is given as: 
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Quantile Function of OG-G Family 

The quantile function of the OG-G family is obtained by inverting the CDF in equation (3). Say 
1( ) ( )Q u F u−= of x be 

given via 

( )

( )

1

1
log 1 log 1

( )
1

1 log 1 log 1

u

x Q u G

u



 



 

−

  
− −  

  = =
    

+ − −    
     

         (17) 

Where, 
1G−

is the quantile function of any continuous parent distribution and u is considered as a uniform random variable 

on the interval (0, 1). 

 

Entropies of the OG-G Family  

Entropy is a measure of variation or uncertainty of a random variable X (Renyi 1961). The  entropy of the OG-G family is 

defined statistically as follow: 
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Where 0Z  and 1Z   

Order Statistics of the OG-G Family 

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the OG-G distribution and 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . 𝑋𝑛:𝑛denote the corresponding order 

statistics, then the ith order statistic is given as: 



ODD GOMPERTZ-G FAMILY OF…      Kajuru et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 351 - 358 354 

 1

:

!
( ) ( ; , , ) ( ; , , ) 1 ( ; , , )

( 1)( )!

n ii

i n

n
f x f x F x F x

i n i
     

−−=   − 
− −

 

1
1

: , ( ) , ( )

0 0 0 0 0

!
( ) ( 1) ( ) 1 ( )

( 1)!( )!

i j
i n i

j

i n k l k l k l k l
j

j k l k l

n
f x Z h x Z h x

i n i

+ −
−    −

+ +

= = = = =

   
= − −   

− −    
  

     (19) 

 

Survival and Hazard Rate Function of the OG-G Family 

The survival function and hazard function are respectively given as: 
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Estimation of Parameters of the OG-G Family  

Suppose that 𝑥1,  𝑥2, 𝑥3,   . . .  , 𝑥𝑛 are the observed values from the proposed OG-G family with parameters ,  . Suppose 

that Φ  =   [𝜃,  𝛾]𝑇 is the [𝑚  ×  1] vector of the parameter. The log-likelihood function Φis expressed by 
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Taking the partial derivative of equation (22) w.r.t the parameters (𝜃,  𝛾,Φ) are respectively given as 
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    (25) 

The MLEs of the parameters(𝜃,  𝛾,Φ), says (𝜃, 𝛾, Φ̂)are the simultaneous solution of equations (23), (24), and (25) equating 

them to zero, i.e 
∂(Ω)

∂𝜃
= 0;  

∂(Ω)

∂𝛾
= 0;

∂(Ω)

∂Φ
= 0. These equations are intractable and can only be solved using a numerical 

iterative method. 

 

Sub-Model of the OG-G Family  

By substituting an Exponential distribution into the OG-G family, a new distribution is formed. The cdf and pdf of Exponential 

distribution which serves as the baseline distribution with parameter  is given as; 

𝐾(𝑥; 𝜎) = 1 − 𝑒−𝜎𝑥          (26) 

𝑘(𝑥; 𝜎) = 𝜎𝑒−𝜎𝑥𝑥 > 0, 𝜎 > 0         (27) 

Inducing equation (26) and (27) into equation (3) and (4), the cdf and pdf of the Odd Gompertz- Exponential (OG-E) 

distribution is given as;  
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More so, the following are the survival, hazard and the quantile functions of the OG-E distribution respectively.  
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Graph of the Special Sub-Model of the OG-G Family  

The plot of the probability density function, hazard function, survival function and cumulative distribution function of the Odd 

Gompertz- Exponential (OG-E) distribution is given as;  

 
Figure 1: pdf of the Odd Gompertz-Exponential Distribution  

 

 
Figure 2: hazard function of the Odd Gompertz-Exponential Distribution  

 

 
Figure 3: Survival function of the Odd Gompertz-Exponential Distribution  
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Figure 4: cdf of the Odd Gompertz-Exponential Distribution 

 

Monte Carlo Simulation and Application  

Monte Carlo Simulation  

The well-known class of computational algorithms known as 

"Monte Carlo simulation" is applied to a replicated random 

sample in order to produce numerical results so as to address 

the problem of risk in modeling lifetime data. 

Simulation Study 

To appraise the consistency of the OG-ED model, simulation 

training was conceded out using Monte Carlo Simulation 

method. This study aimed to calculate mean, bias, and root 

mean square error of the estimated model parameters obtained 

through maximum likelihood estimation. Simulated data was 

generated using the quantile function described in equation 

(18), and this process was repeated 1,000 times for various 

sample sizes: n = 50, 100, 250, 500, and 1,000. The 

parameters were held constant at a specific value for each of 

these simulation runs.

 

Table 1: Average Values of the MLEs, Biases and RMSEs of the OG-ED 

for θ = 0.75, γ = 4,λ = 0.7  

Sample size Parameter Estimates Bias RMSE 

50 𝜃 

𝛾 

𝜆 

0.7682  

4.1509  

0.7031 

0.0182  

0.1509  

0.0031 

0.2862  

0.5723  

0.0726 

     

100 𝜃 

𝛾 

𝜆 

0.7657  

4.1385  

0.6950 

0.0157  

 0.1385  

-0.0050 

0.2100  

0.4704  

0.0586 

     

250 𝜃 

𝛾 

𝜆 

0.7601  

4.1251  

0.6916 

0.0101   

0.1251  

-0.0084 

0.1366  

0.3752  

0.0467 

     

500 𝜃 

𝛾 

𝜆 

0.7632  

4.1122  

0.6897 

0.0132  

 0.1122  

-0.0103 

0.0959  

0.3114  

0.0391 

     

1000 𝜃 

𝛾 

𝜆 

0.7609  

4.0726  

0.6928 

0.0109   

0.0726  

-0.0072 

0.0710  

0.2476  

0.0312 

 

Table 1 above indicates that biases and RMSEs tend to 

approach zero as the sample size rises. This trend suggests 

that the estimates become more accurate and reliable, 

converging towards the initial (true) values, it demonstrates 

that the estimates are both efficient and consistent as the 

sample size grows. 

 

Applications 

Here, we exhibit the potentiality of the Odd Gompertz- 

Exponential Distribution (OG-ED) using a real data set from 

a previous studies, see Arslan et al. (2019). The maximum 

likelihood estimates, as well as goodness-of-fit measures, 

were computed via R software and compared with Weibull 

Exponential (WE), Gompertz Exponential (GE), 

Kumaraswammy Exponential (KE), Exponentiated Weibull-

Exponential (EW-E) and Exponential (E) distribution. 

We employ the Akaike Information Criterion (AIC), which 

has the following mathematical expression in order to identify 

which of the competing models is the best:  
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AIC = −2𝐿 + 2𝐾.  Where L stands for log-likelihood 

function, k is the number of model parameters. 

The data set used for the analysis is obtained from the work 

of Arslan et al. (2019) and it represents the time to failure 

(10^3/h) of turbocharger of one engine as seen below: 

1.6, 3.5, 4.8, 5.4, 6.0, 6.5, 7.0, 7.3, 7.7, 8.0, 8.4, 2.0, 3.9, 5.0, 

5.6, 6.1, 6.5, 7.1, 7.3, 7.8, 8.1, 8.4, 2.6, 4.5, 5.1, 5.8, 6.3, 6.7, 

7.3, 7.7, 7.9, 8.3, 8.5, 3.0, 4.6, 5.3, 6.0, 8.7, 8.8, 9.0.  

 

Table 2: Parameters Estimates and Goodness of fit Measures for the above Data set. 

Model                                    Parameter Estimates and Goodness of Fit 

      ̂                  ̂         ̂                 ̂                                     LL                 AIC 

WE 0.0114 0.9065 0.6930 -  80.0063 166.0126 

GE 0.0156 1.3257 0.4716 -  79.9550 165.9101 

E 0.1599 - - -  113.3193 228.6385 

OGE 0.0279 0.4380 0.0349 -  78.9991 163.9983 

KE 5.7438 7.4707 0.1757 -  86.9518 177.1954 

EWE 0.8325 0.0081 1.0174 0.6471  79.9895 167.9791 

 

 
Figure 5: Histogram Plots of the Distribution of time to failure of turbocharger of one engine Data. 

 

Table 2 displays the outcomes of the maximum likelihood 

estimation regarding the parameters of the new distribution 

and five other reference distributions. When assessing the 

goodness of fit, it was observed that the proposed distribution 

exhibited the lowest AIC value, with GE coming in a close 

second. A visual examination of the fit, as depicted in Figure 

5, further validates that the proposed distribution 

outperformed its comparator distributions. Consequently, 

among the various distributions under consideration, the 

proposed distribution is deemed the most suitable for 

modeling the failure time of turbocharger of one engine 

dataset.  

 

CONCLUSION 

We define the odd Gompertz-G as a new family of continuous 

distribution. Some statistical characteristics of the new 

family, like the explicit quantile function, moments, moment-

generating functions, survival function, hazard function, 

entropies, and distribution of order statistics, are investigated. 

Additionally, specific sub-model within this novel family was 

deliberated. The technique of maximum likelihood is 

employed to estimate the parameters of the model. Simulation 

training was conducted in order to assess the effectiveness of 

the offered distribution. To showcase the significance and 

adaptability of the sub-model, a real-life dataset is used in 

analyzing and comparing the well-known competing models. 

The results demonstrate that the new model (OG-E) 

outperformed the existing ones under consideration, 

suggesting its utility as a new distribution for modeling data 

in a wide range of applications. 
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