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ABSTRACT 

In this paper, we proposed a mathematical model for monkey pox disease dynamics. This model is divided 

into two sub-population which is a system of non-linear differential equations. It is made up of seven (7) 

compartments such as the Susceptible, the Infectious, the Treatment, the Recovery, the Susceptible, the 

Infectious, and the Recovery (SITR-SIR). The model is formulated with the aid of a schematic diagram using 

appropriate parameters. The model analysis was carried out to show the feasible region, the disease-free 

equilibrium points, the basic reproduction number, and the local stability of the model. The model was solved 

to show the effect of the parameters.  
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INTRODUCTION 

Monkey pox is a viral illness caused by the monkey pox virus, 

a specie of the genus Orthopoxvirus which includes camel 

pox, cowpox, vaccinia, and variola viruses. The virus is the 

foremost Orthopoxvirus affecting human populations since 

the extinction of smallpox, confirmed by the World Health 

Organization in 1980 (Andrea & Inger, 2013).   

Monkey pox is caused by a rodent virus, which occurs mostly 

in West and Central Africa close to tropical rainforests. It is 

caused by the monkey pox virus in the Poxviridae family, 

which belongs to the genus Orthopoxvirus, The identification 

of the monkey pox virus is based on biological characteristics 

and endonuclease patterns of viral DNA. In contrast to 

smallpox, the monkey pox virus can infect rabbit skin and can 

be transmitted serially by intra-cerebral inoculation of mice 

(Olumuyiwa et al, 2021) 

It was first reported in 1959 as an outbreak of a pox-like 

disease in monkeys kept at a research institute in Copenhagen, 

Denmark. The first human Monkey Pox case in medical 

history was recognized on the Ist of September 1970, when a 

nine-month-old child was admitted to the Basankusu Hospital 

in the Democratic Republic of Congo. Six cases of humans 

were described in Liberia, Nigeria, and Sierra Leone between 

October 1970 and May 1971.  

The first index case in Nigeria was recorded in 1971 and 

subsequently, 10 Monkey Pox cases were reported between 

1971 and 1978. (Emmanuel et al, 2020).  Monkey pox re-

emerged on 24th of September 2017 with a total of  88 cases 

confirmed in Bayelsa state. Between September 2017 to June 

19th  in the year 2022, the Nigeria Centre for Disease control 

(NCDC) recorded ta total of 674 suspected cases, a total 267 

confirmed cases, and a total of 9 death (NCDC, 2022). 

The primary mode of infection is when a person has been in 

contact with the infected animals or their body fluids (Silas & 

Ikechukwu, 2019). It can spread to anyone through close 

contact including direct contact with monkey pox rash, sores, 

or scabs. Contact with objects, fabrics (clothing, bedding, or 

towels), and surfaces that have been used by someone with 

monkeypox, when an infected person comes in contact with a 

human, animal, or material contaminated with the virus, the 

infection can gain entrance through eyes, nose, mouth, broken 

skin. Infections have been known to occur through the contact 

of infected animals such as rats, monkeys, and squirrels since 

such rodents are the main carriers for Monkey Pox Virus. It is 

therefore important for individuals to be careful not to eat 

uncooked meat to avoid ingesting an infected animal. 

The incubation period for monkey pox is usually 7 to 14 days 

but can also range between 5 to 21 days; it begins with 

swollen lymph nodes, Fever, Chills, Headache, Muscle aches, 

and Exhaustion. After the patient has developed fever and 

chills, within a few days, the patient usually begins to develop 

the usual rash that comes with the Monkey Pox Virus, the rash 

starts from the face and spreads to the rest of the body.  

The lesions progress through the body in the following stages 

- Macules, Papules, Vesicles, Pustules, and Scabs before 

falling off. The disease cycles last about 2 to 4 weeks for the 

many that survive it. As many as 1 in 10 infected patients die 

from this virus. 

To have a robust knowledge of the disease dynamics of 

monkey pox, various studies that involved mathematical 

models of infectious diseases are reviewed. The mathematical 

model gives a thorough analysis of the dynamics of the 

disease to assist the public health authorities makes proper 

decisions and policies. These studies are also powerful tools 

for predicting the future effect of a particular disease (Silesh, 

Henok, & Tadesse, 2023). Since the inception of monkeypox, 

only a few mathematical models have been proposed (Emeka 

et al, 2018). 

 (Somma et al, 2019) developed a mathematical model of 

monkey pox virus transmission dynamics with two interacting 

host populations, which are the humans and the rodent host. 

They incorporated the quarantine class and the public 

enlightenment campaign parameters into the human 

population as a means of controlling the spread of the disease. 

They obtained the Disease Free Equilibrium (DFE), Endemic 

Equilibrium (EE) and as well computed the basic 

reproduction numbers for the analysis. The authors analyzed 

the Disease Free Equilibrium (DFE) for stability by using 

Jacobian matrix techniques and the Lyapunov function. They 

concluded that the local and global stability of the DFE are 

stable if R0r<1 and R0h <1 which implies that the disease will 

not persist in the population.  

(Bhunu & Mushayabasa, 2011) developed a mathematical 

model for the transmission dynamic of monkeypox. They 

used the Lyapunov approach to show the global stability of 

the non-human endemic equilibrium. By using the used the 

center manifold theory, they were able to show that the 

endemic equilibrium point in both the human and non-human 
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population of the model is locally asymptotically stable. The 

numerical simulations carried suggested that the immune 

status of the human tends to vary in the way humans recover 

following infection with the orthopoxvirus.    

(Sulaiman & Ibrahim, 2017) developed a mathematical model 

for the dynamics of the transmission of monkeypox virus 

infection with control strategies of combined vaccine and 

treatment interventions. Using standard approaches, they 

established two equilibria for the model namely: disease-free 

and endemic. The disease-free equilibrium was proven to be 

both locally and globally asymptotically stable. They used a 

next-generation matrix and the comparison theorem to 

compute the basic reproduction number and the linearization 

plus row-reduction method to prove the local stability. 

Numerical simulations carried out on the model revealed that 

the infectious individuals in the human and non-human 

primates’ populations will die out in the course of the 

proposed interventions. They also carried out the sensitivity 

analysis on the model parameters to show that the basic 

reproduction numbers of the model which served as a 

threshold for measuring new infections in the host populations 

decreased, while the control parameters of vaccination and 

treatment increased. 

(Emeka et al, 2018) developed a deterministic mathematical 

model for the transmission dynamics of the Monkey pox 

virus. Their model incorporates an imperfect vaccine 

compartment for the human sub-population. The equilibrium 

states of the model equation were derived and analyzed for 

stability. The system was shown to have one unique endemic 

equilibrium which is stable when R0v<1, this eradicated the 

possibility of backward bifurcation, which indicates that 

interventions capable of reducing the basic effective 

reproductive (R0v) less than unity will be adequate to contain 

the infection. Numerical simulation was carried out to 

underscore the role of weak, medium, and strong immune 

systems of the epidemiological states, as well as the effect of 

infection and vaccination rates on the prevalence and 

vulnerability respectively. 

(Olumuyiwa et al, 2021) developed and analyzed a 

deterministic mathematical model for the monkeypox virus. 

Both local and global asymptotic stability conditions for 

disease-free and endemic equilibria are determined. It was 

shown that the model went through backward bifurcation, 

where the locally stable disease-free equilibrium coexists with 

an endemic equilibrium. Furthermore, they determined 

conditions under which the disease-free equilibrium of the 

model was globally asymptotically stable. Finally, numerical 

simulations were carried out to demonstrate their findings. 

Their findings indicated that isolation of infected individuals 

in the human population helps to reduce the spread of the 

disease. 

 TeWinkel (2019) expanded an existing model to incorporate 

a situation where the contact rate is a function of time and not 

simply a constant and they add more than two populations to 

the model. They carried out the global and local asymptotic 

stability of the model’s equilibrium points. They proved that 

the global asymptotic stability of the endemic equilibrium has 

been previously incomplete. The results of their numerical 

simulations for the original model and the modified models 

were compared. In this study, we aimed at developing a new 

model to incorporate the treatment class for the monkey pox 

disease transmission dynamics in Nigeria using the available 

information from the NCDC dataset. 

 

MATERIALS AND METHODS 

Monkey Pox Model 

 The mathematical model of the Monkey Pox (MPX) disease 

dynamics is a system of non-linear differential equations. The 

model formulation is made up of two populations, the host 

population (Humans) and the non-human primates (Rodents) 

population. The Human population is subdivided into four (4) 

compartments, the Susceptible (𝑆ℎ), the Infectious (𝐼ℎ), the 

Treated ( 𝑇ℎ ), and the Recovery ( 𝑅ℎ ).  In our model 

formulations we assumed that, for Susceptible humans (𝑆ℎ), 

the population is increased by recruitment rate Λℎ . The 

susceptible individual becomes exposed to the monkeypox 

virus after getting into contact with an infected human or 

infected rodent at a rate. Our force of infection for the human 

population is given as   

λℎ = 𝑎
𝐼𝑟

𝑁𝑟
+ 𝑏

𝐼ℎ

𝑁ℎ
       (1) 

where 𝑎 is the product of the contact rate and probability of 

the human being infected per contact with an infectious 

rodent, and 𝑏  is the product of the contact rate and the 

probability of the human being infected with monkey pox 

virus after getting into contact with an infectious human per 

contact. After the incubation period, the infected individual 

(𝐼ℎ) either dies die naturally, or gets treated at a rate (𝛼), and 

the treated humans either die naturally or recover with 

permanent immunity after receiving treatment at ( 𝜉 )The 

Rodents population is subdivided into three (3) 

compartments, the Susceptible (𝑆𝑟), the Infectious (𝐼,𝑟), and 

the Recovery (𝑅𝑟). We assumed that rodent population are 

recruited into the susceptible population (𝑆𝑟) at a constant 

birth rate of Λ𝑟 and becomes exposed to the monkeypox virus 

after getting into contact with an infected rodent at a rate  λ𝑟. 
Therefore, the force of infection for the rodent is given as  

λ𝑟 =
𝑚𝐼𝑟

𝑁𝑟
          (2) 

 where 𝑚 is the product of contact rate and probability of the 

rodent getting infected per contact. The susceptible rodent 

moved to the infected population 𝐼𝑟 at a rate 𝑚. The infected 

rodents 𝐼𝑟 are capable of either; infecting other rodents when 

they come into contact, dying due to the disease at a rate, or 

recovering naturally with permanent immunity at a rate 𝜌  and 

moving into the recovery population 𝑅𝑟. 
 

Schematic Representation of the Model 

A schematic representation of our assumptions for the 

dynamics of the monkeypox virus to both the human and 

rodent population is shown below
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The Model Equations 

The mathematical equations for the model is derived from the 

schematic representation in figure 2 above, we have the 

following equations for the human and rodents compartments. 
𝑑𝑆ℎ

𝑑𝑡
  =   Λℎ  −  (𝜆ℎ    +     𝜇ℎ)𝑆ℎ        (3) 

𝑑𝐼ℎ

𝑑𝑡
  =   𝜆ℎ𝑆ℎ  −   (𝛼 + 𝑆ℎ + 𝜇ℎ)𝐼ℎ    (4) 

𝑑𝑇ℎ

𝑑𝑡
=   𝛼𝐼ℎ − (𝜉ℎ + 𝜇ℎ )          (5) 

𝑑𝑅ℎ

𝑑𝑡
  =   𝜉ℎ𝑇ℎ  −  𝜇ℎ𝑅ℎ           (6) 

 

 
𝑑𝑆𝑟

𝑑𝑡
  =    Λ𝑟 − (𝜆𝑟 + 𝜇𝑟  )𝑆𝑟        (7) 

𝑑𝐼𝑟

𝑑𝑡
=   𝜆𝑟𝑆𝑟  −   (𝜌 + 𝛿𝑟 +  𝜇𝑟)𝐼𝑟         (8) 

𝑑𝑅𝑟

𝑑𝑡
 =   𝜌𝐼𝑟   −   𝜇𝑟𝑅𝑟                (9) 

The initial conditions that are used are the cumulative values 

for the various classes, which are taken from the Nigeria 

Centre for Disease Control (NCDC, 2022).  The initial 

conditions and parameters are described in the table below. 

Table 1: Description of variables and parameters 

SYMBOL DESCRIPTION OF VARIABLES AND PARAMETERS SOURCES 

𝑆ℎ Individuals who are susceptible to the disease = 674 NCDC,2022 

𝐼ℎ Individuals per unit of time who are infected with the disease  = 267 NCDC,2022 

𝑅ℎ Individuals per unit of time who recovered from the disease = 258 NCDC,2022 

𝑇𝐻 Individuals per unit of time who are treated from the disease = 267 NCDC,2022 

𝑆𝑟 Rodents that are susceptible to the disease = 1000 Assumed  

𝐼𝑟 Rodents per unit of time that are infected with the disease = 400 Assumed  

𝑅𝑟 Rodents per unit of time that recovered from the disease = 400 Assumed 

Λℎ Recruitment Rate of Humans  = 0.02 Usman and Adamu, (2017)  

Λ𝑟 Recruitment Rate of Rodents = 0.1 Usman and Adamu, (2017) 

𝜇ℎ Death Rate of Humans  =  0.1 Usman and Adamu, (2017) 

𝜇𝑟 Death Rate of Rodent  =  0.3961 Estimated  

𝜆ℎ Infectious Rate of humans = 0.00058 Estimated  

𝜆𝑟 Infectious Rate of Rodents = 0.0006 Estimated  

𝛼 Treatment Rate = 0.001  

Estimated  

𝜉ℎ Recovery rate of humans  

= 0.9663 

Estimated  

𝜌 Recovery rate of rodent 

= 0.01 

Usman and Adamu, (2017) 

𝑎 Contact rate of human to rodent = 0.00252 Usman and Adamu, (2017) 
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𝑏 Contact rate of human to human = 0.000063 Usman and Adamu, (2017) 

𝑤 Contact rate of human to human = 0.000063 Usman and Adamu, (2017 

 

Analysis of the Model: 

Feasible Region: 

Let the region 𝜑 = {(𝑆ℎ, 𝐼ℎ, 𝑇ℎ, 𝑅ℎ, 𝑆𝑟 , 𝐼𝑟  , 𝑅𝑟) ∈  ℝ+
7 } be the 

solution of the problem for the model equation (3-9) with the 

initial conditions in the biological feasible region   𝜔 =
𝜔ℎ × 𝜔𝑟, Then, for Human population, 𝜔ℎ = 𝑆ℎ, 𝐼ℎ, 𝑇ℎ, 𝑅ℎ ∈

 ℝ+
4 : 𝑁ℎ(𝑡) ≤  

Λℎ

𝜇ℎ
 , and, for Rodent 

population,  𝜔𝑟 = 𝑆𝑟 , 𝐼𝑟  , 𝑅𝑟 ∈  ℝ+
4 : 𝑁𝑟(𝑡) ≤  

Λ𝑟

𝜇𝑟
. Therefore, 

𝜔 is a non-negative invariant region. 

 

Proof:  

For the human population, 𝑁ℎ =  𝑆ℎ + 𝐼ℎ + 𝑇ℎ + 𝑅ℎ        
     (10) 

Then, the rate of change of equation (10) is given by  
𝑑𝑁ℎ

𝑑𝑡
=
𝑑𝑆ℎ

𝑑𝑡
+ 

𝑑𝐼ℎ

𝑑𝑡
+ 

𝑑𝑇ℎ

𝑑𝑡
+ 

𝑑𝑅ℎ

𝑑𝑡
 ≥ 0       (11) 

or 

𝑁ℎ
′ = 𝑆ℎ

′ + 𝐼ℎ
′ + 𝑇ℎ

′ + 𝑅ℎ
′ 

Substituting equation (3-7) into equation (10), we obtain  

𝑁ℎ
′ = Λℎ  − (𝜆ℎ + 𝜇ℎ)𝑆ℎ + 𝜆ℎ𝑆ℎ − (𝛼 + 𝛿ℎ + 𝜇ℎ)𝐼ℎ +

 𝛼𝐼ℎ − (𝜉ℎ + 𝜇ℎ )𝑇ℎ +   𝜉ℎ𝑇ℎ − 𝜇ℎ𝑅ℎ ≥ 0       (12) 

𝑁ℎ
′ = Λℎ  − 𝜇ℎ𝑆ℎ − 𝑆ℎ𝐼ℎ − 𝜇ℎ𝐼ℎ − 𝜇ℎ𝑇ℎ − 𝜇ℎ𝑅ℎ ≥

0                            
𝑁ℎ

′ = Λℎ  − 𝜇ℎ(𝑆ℎ + 𝐼ℎ + 𝑇ℎ + 𝑅ℎ) − 𝑆ℎ𝐼ℎ ≥ 0   

𝑁ℎ
′ = Λℎ  − 𝜇ℎ𝑁ℎ − 𝑆ℎ𝐼ℎ ≤ Λℎ − −𝜇ℎ𝑁ℎ ≥ 0  

𝑁ℎ
′ = Λℎ  − 𝜇ℎ𝑁ℎ ≥ 0  

𝑁ℎ
′ = 𝑁ℎ ≤ 

Λℎ

𝜇ℎ
       (13)   

We set the initial time at 𝑡 = 0, we have  

𝑁ℎ(0) ≥ 0      
Clearly 𝑆ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝑇ℎ(0) ≥ 0 and 𝑅ℎ(0) ≥ 0 are 

the non-negative initial condition  

Similarly for the Rodents population we have  𝑁𝑟 = 𝑆𝑟 +
𝐼𝑟 +  𝑅𝑟                (14) 

Then, the rate of change of equation (14) is given by  

 
𝑑𝑁𝑟

𝑑𝑡
=
𝑑𝑆𝑟

𝑑𝑡
+
𝑑𝐼𝑟

𝑑𝑡
+
𝑑𝑅𝑟

𝑑𝑡
≥ 0     (15) 

or 

𝑁𝑟
′ = 𝑆𝑟

′ + 𝐼𝑟
′ + 𝑅𝑟

′ 

Also, by substituting equations (7-9) into equation (15), we 

obtain  

 Λ𝑟 − (𝜆𝑟 + 𝜇𝑟  )𝑆𝑟 + 𝜆𝑟𝑆𝑟  − (𝜌 + 𝛿𝑟 + 𝜇𝑟)𝐼𝑟 +  𝜌𝐼𝑟 −
𝜇𝑟𝑅𝑟 ≥ 0 

Λ𝑟 − 𝜇𝑟𝑆𝑟 − 𝛿𝑟𝐼𝑟 − 𝜇𝑟𝐼𝑟 − 𝜇𝑟𝑅𝑟 ≥ 0 

Λ𝑟 − 𝜇𝑟(𝑆𝑟 + 𝐼𝑟 + 𝑅𝑟) − 𝛿𝑟𝐼𝑟 ≥ 0 

Λ𝑟 − 𝜇𝑟𝑁𝑟 − 𝛿𝑟𝐼𝑟 ≥ 0 

But  

Λ𝑟 – 𝜇𝑟𝑁𝑟 − 𝛿𝑟𝐼𝑟 ≤ Λ𝑟 – 𝜇𝑟𝑁𝑟 ≥ 0 

 = 𝑁𝑟 ≤
Λ𝑟 

𝜇𝑟
                          (16) 

Setting the initial time at 𝑡 = 0, we have  

= 𝑁𝑟(0) ≥ 0                   (17) 

Clearly 𝑆𝑟(0) ≥ 0, 𝐼𝑟(0) ≥ 0  and 𝑅𝑟(0) ≥ 0  are the non-

negative initial condition  

Hence the set 𝜔 is positive invariant. Therefore the model is 

feasible since it is positive invariant on the domain over time 

t. 

 

Model Disease Free Equilibrium Points 

This an equilibrium state where at least one of the infected 

compartments of the model is non-zero. To obtain the Disease 

free equilibrium point 𝜀0 , we set the systems of equation (3-

9) to zero to obtain a nonlinear system 

 
𝑑𝑆ℎ
𝑑𝑡

=
𝑑𝐼ℎ
𝑑𝑡
 =
𝑑𝑇ℎ
𝑑𝑡

=
𝑑𝑅ℎ
𝑑𝑡

=
𝑑𝑆𝑟
𝑑𝑡

=
𝑑𝐼𝑟
𝑑𝑡
=
𝑑𝑅𝑟
𝑑𝑡

= 0 

Λℎ  −  (𝜆ℎ    +     𝜇ℎ)𝑆ℎ = 0 

𝜆ℎ𝑆ℎ  −   (𝛼 + 𝛿ℎ + 𝜇ℎ)𝐼ℎ = 0 

       𝛼𝐼ℎ − (𝜉ℎ + 𝜇ℎ )𝑇ℎ = 0                            (18) 

𝜉ℎ𝑇ℎ  −  𝜇ℎ𝑅ℎ = 0                      
Λ𝑟 − (𝜆𝑟 + 𝜇𝑟  )𝑆𝑟 = 0 

𝜆𝑟𝑆𝑟  −   (𝜌 + 𝛿𝑟 +  𝜇𝑟)𝐼𝑟 = 0 

      𝜌𝐼𝑟   −   𝜇𝑟𝑅𝑟  = 0                        
Setting 𝐼ℎ = 0 and 𝐼𝑟 = 0, we obtain 𝑇ℎ, 𝑅ℎ  = 0 and 𝑅𝑟  =
0. We then set 𝜆ℎ = 0 and 𝜆𝑟 = 0,  

Then equation (3) and (7) becomes  

𝑆ℎ =  
Λℎ  

𝜇ℎ
  and   𝑆𝑟 = 

Λ𝑟  

𝜇𝑟
 

hence 

𝜀0 =  (𝑆ℎ ,𝐼ℎ, 𝑇ℎ, 𝑅ℎ, 𝑆𝑟 , 𝐼𝑟 , 𝑅𝑟) =  (
Λℎ  

𝜇ℎ
, 0,0,0,

Λ𝑟  

𝜇𝑟
, 0,0) 

     (19) 

 

Basic Reproduction Number and Local Stability Analysis of the Model 

i. Basic Reproduction Number Point 

The Basic Reproduction Number (𝑅0) is an important parameter that defines the average number of secondary infections 

caused by an individual in a susceptible population. This number indicated whether the infection will spread through the 

population or not.  𝑅0 is established using the next generation operator method on the DFE (𝜀0)using the next generation 

matrix method as described in (Driessche & Wathmough, 2002). The matrices F and for the new infection terms and the 

remaining transfer terms are given by 
𝑑𝐼ℎ
𝑑𝑡
  =   𝜆ℎ𝑆ℎ  −   (𝛼 + 𝑆ℎ + 𝜇ℎ)𝐼ℎ 

  
dTh

dt
=   αIh − (ξh + μh )Th         (20) 

𝑑𝐼𝑟
𝑑𝑡
=   𝜆𝑟𝑆𝑟  −   (𝜌 + 𝛿𝑟 +  𝜇𝑟)𝐼𝑟 

Substituting   

𝜆ℎ = 𝑎
𝐼𝑟

𝑁𝑟
+ 𝑏

𝐼ℎ

𝑁ℎ
     and        𝜆𝑟 = 

𝑚𝐼𝑟

𝑁𝑟
, we obtain  

𝑑𝐼ℎ
𝑑𝑡
  = ( 𝑎

𝐼𝑟
𝑁𝑟
+ 𝑏

𝐼ℎ
𝑁ℎ
) 𝑆ℎ  −  (𝛼 + 𝑆ℎ + 𝜇ℎ)𝐼ℎ = 𝜙1                 

𝑑𝑇ℎ

𝑑𝑡
=   𝛼𝐼ℎ − (𝜉ℎ + 𝜇ℎ )𝑇ℎ =  𝜙2            (21) 
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𝑑𝐼𝑟
𝑑𝑡
=    

𝑚𝐼𝑟𝑆𝑟
𝑁𝑟

−  (𝜌 + 𝛿𝑟 +  𝜇𝑟)𝐼𝑟 = 𝜙3                            

 

Let  𝑥 = (𝐼ℎ ,  𝑇ℎ, 𝐼𝑟)
𝑇, then the equation () can be written as   

𝑑𝑥

𝑑𝑡
=  𝐹(𝑥) − 𝑉(𝑥)                             (22) 

where 

𝐹(𝑥) =  

(

 

( 𝑎
𝐼𝑟

𝑁𝑟
+ 𝑏

𝐼ℎ

𝑁ℎ
) 𝑆ℎ

0
𝑚𝐼𝑟𝑆𝑟

𝑁𝑟 )

 , 𝑉(𝑥) =  (

− (𝛼 + 𝑆ℎ + 𝜇ℎ)𝐼ℎ
𝛼𝐼ℎ − (𝜉ℎ + 𝜇ℎ )𝑇ℎ
−  (𝜌 + 𝛿𝑟 +  𝜇𝑟)𝐼𝑟

)              (23) 

Evaluating the derivative of 𝐹 and 𝑉 at the DFE (𝜀0) point, gives 

𝐹 =  

(

 
 

𝑑𝜙1

𝑑𝐼ℎ

𝑑𝜙1

𝑑𝑇ℎ

𝑑𝜙1

𝑑𝐼𝑟
𝑑𝜙2

𝑑𝐼ℎ

𝑑𝜙2

𝑑𝑇ℎ

𝑑𝜙2

𝑑𝐼𝑟
𝑑𝜙3

𝑑𝐼ℎ

𝑑𝜙3

𝑑𝑇ℎ

𝑑𝜙3

𝑑𝐼𝑟)

 
 

 = 𝐹  = (

𝑏 𝑆ℎ

𝑁ℎ
0

𝑎 𝑆ℎ

𝑁𝑟

0 0 0

0 0
𝑚 𝑆𝑟

𝑁𝑟

), 𝐹(𝜀0) =

(

 

Λℎ𝑏

𝜇ℎ𝑁ℎ
0

𝑎 Λℎ

𝜇ℎ𝑁𝑟

0 0 0

0 0
𝑚 Λ𝑟

𝜇𝑟𝑁𝑟)

         (24) 

 

    𝑉 = (

−(𝛼 + 𝛿ℎ + 𝜇ℎ) 0 0

𝛼 −(𝜉 + 𝜇ℎ) 0

0 0 −(𝜌 + 𝛿𝑟 +  𝜇𝑟)
)              (25) 

Let  𝑐1 =  𝛼 + 𝛿ℎ + 𝜇ℎ ,     𝑐2 =  𝜉 + 𝜇ℎ    and   𝑐3 =  𝜌 + 𝛿𝑟 +  𝜇𝑟 

Thus  

𝑉 =  (
− 𝑐1 0 0
𝛼 − 𝑐2 0
0 0 −𝑐3

) 

       𝑉−1 =   

(

 
 

−
1

𝑐1
0 0

−
𝛼

𝑐1𝑐2
−
1

𝑐2
0

0 0 −
1

𝑐3)

 
 

  

𝐹𝑉−1 =  

(

 

Λℎ𝑏

𝜇ℎ𝑁ℎ
0

𝑎 Λℎ

𝜇ℎ𝑁𝑟

0 0 0

0 0
𝑚 Λ𝑟

𝜇𝑟𝑁𝑟)

 

(

 
 

−
1

𝑐1
0 0

−
𝛼

𝑐1𝑐2
−
1

𝑐2
0

0 0 −
1

𝑐3)

 
 
                   (26) 

Also, let  𝑑1 = 
Λℎ𝑏

𝜇ℎ𝑁ℎ
 ,     𝑑2 =  

𝑎 Λℎ

𝜇ℎ𝑁𝑟
 ,     and    𝑑3 =  

𝑚 Λ𝑟

𝜇𝑟𝑁𝑟
 

𝐹𝑉−1 =  

(

 
 
 
 

−
𝑑1
𝑐1

0 −
𝑑2
𝑐1

−
𝛼𝑑1
𝑐1𝑐2

−
𝛼

𝑐2

1

𝑐2

𝛼𝑑2
𝑐1𝑐2

0 0 −
𝑑3
𝑐3)

 
 
 
 

= 

(

 
 
 
 

−

−
𝑑1
𝑐1

0 −
𝑑2
𝑐1

𝛼(𝑑1 + 𝑐1)

𝑐1𝑐2
−
1

𝑐2
1

𝛼𝑑2
𝑐1𝑐2

0 0 −
𝑑3
𝑐3)

 
 
 
 

 

= 

(

 
 
 
 

−

−

𝑏Λℎ
𝜇ℎ𝑁ℎ

 

𝛼+𝛿ℎ+𝜇ℎ
0 −

𝑎 Λℎ
𝜇ℎ𝑁𝑟

𝛼+𝛿ℎ+𝜇ℎ

𝛼(
Λℎ𝑏

𝜇ℎ𝑁ℎ
+(𝛼+𝛿ℎ+𝜇ℎ))

(𝛼+𝛿ℎ+𝜇ℎ)( 𝜉+ 𝜇ℎ)
−

1

( 𝜉+ 𝜇ℎ)

𝛼(
𝑎 Λℎ
𝜇ℎ𝑁𝑟

)

(𝛼+𝛿ℎ+𝜇ℎ)( 𝜉+ 𝜇ℎ)

0 0 −

𝑚 Λ𝑟
𝜇𝑟𝑁𝑟

 𝜌+ 𝛿𝑟+  𝜇𝑟 )

 
 
 
 

               (27) 

The Reproduction number 𝑅0 is the spectral- radius of the product of  𝐹𝑉−1 which is given as 

𝑅0,ℎ = −

𝑏Λℎ
𝜇ℎ𝑁ℎ

 

𝛼+𝛿ℎ+𝜇ℎ
,     𝑅0,𝑟 = −

𝑚 Λ𝑟
𝜇𝑟𝑁𝑟

 𝜌+ 𝛿𝑟+  𝜇𝑟
                      (28) 

where 𝑅0,ℎ and 𝑅0,𝑟 are the monkey pox induced reproduction numbers for  humans and rodents 

Therefore, Theorem 1: The disease free equilibrium is locally asymptotically stable when 𝑅0 < 1 and unstable when  𝑅0 > 1.  

Proof: 

Since 𝑅0,ℎ and 𝑅0,𝑟 are negative, the endemic equilibrium is locally asymptotically stable. That shows the proof. 

 

ii. Local Stability of the Endemic Equilibrium (EE) Point 

To obtain the Jacobian  matrix 𝐽 and evaluate it at 𝜀𝜃, then let  

 

𝜙1 = Λℎ  −
𝛽1𝐼𝑟𝑆ℎ

𝑁ℎ
−
𝛽2𝐼ℎ𝑆ℎ

𝑁ℎ
− 𝜇ℎ𝑆ℎ         (29) 
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𝜙2 = 
𝛽1𝐼𝑟𝑆ℎ
𝑁ℎ

+
𝛽2𝐼ℎ𝑆ℎ
𝑁ℎ

− (𝛼 + 𝛿ℎ + 𝜇ℎ)𝐼ℎ 

𝜙3 =  𝛼 𝐼ℎ − (𝜉ℎ + 𝜇ℎ )𝑇ℎ 

𝜙4 =   𝜉ℎ𝑇ℎ − 𝜇ℎ𝑅ℎ 

𝜙5 = Λ𝑟 −
𝛽3𝐼𝑟𝑆𝑟
𝑁𝑟

− 𝜇𝑟𝑆𝑟 

𝜙6 = 
𝛽2𝐼𝑟𝑆𝑟
𝑁𝑟

− (𝜌 + 𝛿𝑟 + 𝜇𝑟)𝐼𝑟 

𝜙7 =  𝜌𝐼𝑟 − 𝜇𝑟𝑅𝑟                         (30) 

Evaluating the derivative of  equation (30), we have 

 

𝐽 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝜙1
𝜕𝑆ℎ

𝜕𝜙1
𝜕𝐼ℎ

𝜕𝜙1
𝜕𝑇ℎ

𝜕𝜙1
𝜕𝑅ℎ

𝜕𝜙1
𝜕𝑆𝑟

𝜕𝜙1
𝜕𝐼𝑟

𝜕𝜙1
𝜕𝑅𝑟

𝜕𝜙2
𝜕𝑆ℎ

𝜕𝜙2
𝜕𝐼ℎ

𝜕𝜙2
𝜕𝑇ℎ

𝜕𝜙2
𝜕𝑅ℎ

𝜕𝜙2
𝜕𝑆𝑟

𝜕𝜙2
𝜕𝐼𝑟

𝜕𝜙2
𝜕𝑅𝑟

𝜕𝜙3
𝜕𝑆ℎ

𝜕𝜙3
𝜕𝐼ℎ

𝜕𝜙3
𝜕𝑇ℎ

𝜕𝜙3
𝜕𝑅ℎ

𝜕𝜙3
𝜕𝑆𝑟

𝜕𝜙3
𝜕𝐼𝑟

𝜕𝜙3
𝜕𝑅𝑟

𝜕𝜙4
𝜕𝑆ℎ

𝜕𝜙4
𝜕𝐼ℎ

𝜕𝜙4
𝜕𝑇ℎ

𝜕𝜙4
𝜕𝑅ℎ

𝜕𝜙4
𝜕𝑆𝑟

𝜕𝜙4
𝜕𝐼𝑟

𝜕𝜙4
𝜕𝑅𝑟

𝜕𝜙5
𝜕𝑆ℎ

𝜕𝜙5
𝜕𝐼ℎ

𝜕𝜙5
𝜕𝑇ℎ

𝜕𝜙5
𝜕𝑅ℎ

𝜕𝜙5
𝜕𝑆𝑟

𝜕𝜙5
𝜕𝐼𝑟

𝜕𝜙5
𝜕𝑅𝑟

𝜕𝜙6
𝜕𝑆ℎ

𝜕𝜙6
𝜕𝐼ℎ

𝜕𝜙6
𝜕𝑇ℎ

𝜕𝜙6
𝜕𝑅ℎ

𝜕𝜙6
𝜕𝑆𝑟

𝜕𝜙6
𝜕𝐼𝑟

𝜕𝜙6
𝜕𝑅𝑟

𝜕𝜙7
𝜕𝑆ℎ

𝜕𝜙7
𝜕𝐼ℎ

𝜕𝜙7
𝜕𝑇ℎ

𝜕𝜙7
𝜕𝑅ℎ

𝜕𝜙7
𝜕𝑆𝑟

𝜕𝜙7
𝜕𝐼𝑟

𝜕𝜙7
𝜕𝑅𝑟)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The local stability will be established using linearization method (Usman and Adamu, 2017) Therefore, the Jacobian matrix 𝐽 
of the model equations is given as 

               

=  

(

 
 
 
 
 
 
 
 
 
 
−
𝛽1𝐼𝑟
𝑁ℎ

−
𝛽2𝐼ℎ
𝑁ℎ

− 𝜇ℎ −
𝛽2𝐼ℎ
𝑁ℎ

0 0 0 −
𝛽1𝑆ℎ
𝑁ℎ

0

𝛽1𝐼𝑟
𝑁ℎ

+
𝛽2𝐼ℎ
𝑁ℎ

𝛽2𝑆ℎ
𝑁ℎ

− (𝛼 + 𝛿ℎ + 𝜇ℎ) 0 0 0
𝛽1𝑆ℎ
𝑁ℎ

0

0 𝛼 −(𝜉ℎ + 𝜇ℎ ) 0 0 0 0
0 0 𝜉 −𝜇ℎ 0 0 0

0 0 0 0 −
𝛽3𝐼𝑟
𝑁𝑟

− 𝜇𝑟 −
𝛽3𝑆𝑟
𝑁𝑟

0

0 0 0 0
𝛽3𝐼𝑟
𝑁𝑟

𝛽3𝑆𝑟
𝑁𝑟

− (𝜌 + 𝛿𝑟 + 𝜇𝑟) 0

0 0 0 0 0 𝜌 −𝜇𝑟)

 
 
 
 
 
 
 
 
 
 

 

 

𝐽(𝜀𝜃) =

(

 
 
 
 
 
 
 

−𝜇ℎ −
𝛽2Λℎ  

𝜇ℎ𝑁ℎ
0 0 0 −

𝛽1Λℎ  

𝜇ℎ𝑁ℎ
0

0 −(𝛼 + 𝛿ℎ + 𝜇ℎ) 0 0 0
𝛽1Λℎ  

𝜇ℎ𝑁ℎ
0

0 𝛼 −(𝜉ℎ + 𝜇ℎ ) 0 0 0 0
0 0 𝜉 −𝜇ℎ 0 0 0

0 0 0 0 −𝜇𝑟
𝛽3Λ𝑟  

𝜇𝑟𝑁𝑟
0

0 0 0 0 0 −(𝜌 + 𝛿𝑟 + 𝜇𝑟) 0
0 0 0 0 0 𝜌 −𝜇𝑟)

 
 
 
 
 
 
 

      (31) 

 

Let    𝑑1 = 
𝛽2Λℎ  

𝜇ℎ𝑁ℎ
 ,     𝑑2 = 

𝛽1Λℎ  

𝜇ℎ𝑁ℎ
 ,       𝑑3 =  𝛼 + 𝛿ℎ + 𝜇ℎ ,      𝑑4 = 𝜉ℎ + 𝜇ℎ,     𝑑5 =  

𝛽3Λ𝑟  

𝜇𝑟𝑁𝑟
 ,     𝑑6 =  𝜌 + 𝛿𝑟 + 𝜇𝑟 

 

𝐽(𝜀𝜃) =

(

 
 
 
 

−𝜇ℎ −𝑑1 0 0 0 −𝑑2 0
0 −𝑑3 0 0 0 𝑑2 0
0 𝛼 −𝑑4 0 0 0 0
0 0 𝜉 −𝜇ℎ 0 0 0
0 0 0 0 −𝜇𝑟 𝑑5 0
0 0 0 0 0 −𝑑6 0
0 0 0 0 0 𝜌 −𝜇𝑟)

 
 
 
 

                 (32) 

 

The eigenvalues are  
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𝜆1 = −𝑑6,      𝜆2 = −𝑑4,     𝜆3 = −𝑑3 ,      𝜆4 = −𝜇𝑟 ,       𝜆5 = −𝜇ℎ,        𝜆6 = −𝜇ℎ,       𝜆7 = −𝜇𝑟 

 

Thus   

𝜆1 =  −(𝜌 + 𝛿𝑟 + 𝜇𝑟) 
 

𝜆2 =  −(𝜉ℎ + 𝜇ℎ) 
𝜆3 =  −(𝛼 + 𝛿ℎ + 𝜇ℎ) 
 

𝜆4 = −𝜇𝑟      𝑡𝑤𝑖𝑐𝑒  
 

𝜆5 = −𝜇ℎ    𝑡𝑤𝑖𝑐𝑒 

 

RESULTS AND DISCUSSION  

The SITR-SIR Monkey Pox model was solved using the 

inbuilt classical Runge- Kutta method of Maple21 

programming software. For the numerical simulation, the 

initial conditions with the values of the parameters for the 

model in table1 was used, some of these parameters were 

sourced from existing literatures where available, and some 

were assumed for the purpose of illustrations to fit the model 

analysis where otherwise. We considered a duration of 6 years 

(t) starting from September 2017 to 19th June 2022 and we 

take the fixed time step as, h=0.1

 

 
Figure. 1:  Plot showing the solutions of the Susceptible Humans  

Figure 1 shows that the susceptible human population decreasing exponentially, this decrease is due to the migration to the 

infected population. 
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Figure 2:  Plot showing the solutions of the Infected Humans 

 

A decrease is observed in figure 2, as the infected human receive treatment they are being move to the recovery population.  

 
Figure 3:  Plot showing the solutions of Humans who are treated 

 

It is observed in figure 3 that the treated human population decreases exponentially. This decrease is due to the migration of 

treated humans to the recovery population. Also, the treated population suffers natural mortality.  
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Figure 4:  Plot showing the solutions of the Recovered Humans 

 

Figure 4 shows that the recovery population grows 

exponentially up to equilibrium level, and which then started 

decreasing. This decrease is due to the treatment received by 

the infected humans. And this means that, when the infected 

human population approaches zero, the recovered class dies 

out exponentially, and besides, humans recover with 

permanent immunity and that recovered class also suffers 

natural mortality. 

 
Figure 5:  Plot showing the solutions of the Susceptible Rodents 
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Figure 6:  Plot showing the solutions of the Infected Rodents 

 

 
Figure 7:  Plot showing the solutions of the Recovered Rodents 

 

Figure 5-7 shows that the rodent susceptible, infected and 

recovery population decrease due to various migration to the 

next population. Also the rodent recovery population dies out 

exponentially in the absence of an infected rodent.  
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CONCLUSION 

In this paper, we developed a mathematical model for monkey 

pox disease dynamics in Nigeria using the available 

information from the NCDC dataset. The model is formulated 

with the aid of a schematic diagram using appropriate 

parameters. The model analysis was carried out to show the 

feasible region, the disease-free equilibrium points, the basic 

reproduction number, and the local stability of the model. We 

proved that the disease-free equilibrium is locally 

asymptotically stable if  𝑅0 < 1 and unstable if 𝑅0 > 1.  The 

model was solved to show the effect of the parameters using 

the Maple 21 programming software. The simulations results 

revealed that, the disease will be eradicated from both humans 

and the non-human primates with the developed model in due 

time. 
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